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Abstract
Time series anomaly detection is a difficult problem that has been

studied in a broader spectrum of research areas due to its diverse ap-

plications in different domains. Despite significant progress in this

field, including the widespread adoption of modern machine learn-

ing algorithms, no single anomaly detection method has proven to

generalize effectively across all time series datasets. Nevertheless,

the adoption of deep learning techniques—particularly the Long

Short TermMemory (LSTM) algorithm—for time series analysis has

continued to grow in both academia and among major cloud service

providers. The increase in the usage of LSTM is largely driven by

the belief that neural networks (NN)—given their success in many

other domains—can be generalized for all predictive tasks, along

with the widespread availability of open-source implementations.

However, there are alternatives to LSTM that may be better suited

to address the unique challenges of time series analysis—one such

method is MSET (Multivariate State Estimation Technique). In this

study, we conducted a comprehensive comparative evaluation of

MSET against other state-of-the-art techniques from the literature

to better understand its value proposition. A benchmark test bed is

developed to evaluate the detection results, reconstruction accuracy,

and computational cost of the anomaly detection techniques of be-

ing studied. The benchmark datasets consist of synthetic datasets

and publicly available datasets. MSET is demonstrated to achieve a

higher F1 score, on average, than LSTM in most cases, and deliver

an advantage over other competing methods in regards to false

alarms, reconstruction accuracy, and computational cost. Lastly,

although the explainability cannot be quantified in our study, we

showcase it is a key value proposition of MSET favored by the IoT

industries targeted by MSET.
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1 Introduction
Anomalies are patterns in data that do not conform to a well de-

fined notion of normal behavior. While there are many anomaly

detection applications specific to the type of data, this paper fo-

cuses on anomaly detection in time series data. Machine learning

(ML) techniques are increasingly being used in the area of time

series anomaly detection thanks to the ever-growing computational

capacity. Conventional attempts to remove anomalies in the time

series data are based on simplistic outlier detection methods, such

as three standard deviation thresholds [3], which are not capable

of detecting “inlier" (anomalies that stay within the normal range

of the signal). Unsupervised techniques are often utilized when no

prior knowledge of the training dataset is available. However, many

unsupervised techniques employ clustering type algorithms that as-

sumes anomalous data resides inside small clusters [19], or are built

through linear projection and transformation, which is unable to

handle non-linearity and exploit the inter-correlations of multivari-

ate time series [16]. More sophisticated unsupervised methods such

as Generative Adversarial Networks (GAN) [6] have proven helpful,

but the fact that its training objective often results in saddle point

convergence makes the GAN models difficult to train. On the other

hand, supervised techniques for time series anomaly detection have

been intensively studied and widely adopted for decades, from the

conventional approaches such as Support Vector Machines [17] and

Artificial Neural Networks [12], to more recent Long Short Term

Memory (LSTM) models which have shown strong performance in

capturing temporal dependencies[11, 15, 22].

Despite a wide spectrum of anomaly detection approaches be-

ing available, they often show promise on specific datasets only.

Additionally, there is a dearth of evaluation for these techniques

against prognostic functional requirements. Motivated by this, we

review the literature to identify state-of-the-art anomaly detection

techniques and conduct a benchmark study to evaluate their per-

formance—alongside our Multivariate State Estimation Technique

(MSET) [21] across multiple aspects relevant to time series anomaly

detection. Specifically, we compare the detection decisions, recon-

struction accuracy as well as the computation time between the

methods using both synthetic and publicly available datasets. We

provide a thorough quantitative assessment about the performance

of these techniques using a standard set of benchmark metrics,
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alongside a general notion of the competitive differentiating fea-

tures that MSET possesses over LSTM and other 7 alternatives.

The paper is organized as follows. In Section 2, the multivariate

time series anomaly detection models and the datasets used in this

work are introduced. In Section 3, we present two detailed case

studies using both synthetic and published datasets, followed by an

extensive benchmark testing with more published datasets. Section

4 provides deep insight into the performance and value propositions

of MSET over the alternative options presented in the study. Finally,

Section 5 concludes the paper.

2 Data and Benchmark Setup
2.1 Anomaly Detection Technique: MSET
The anomaly detection technique used in this benchmark study is

a nonlinear, nonparametric, multivariate pattern recognition tech-

nique, called the Multivariate State Estimation Technique (MSET).

It was originally developed by Argonne National Laboratory (ANL)

to discover anomalies in time series sensor data in nuclear power

applications [7, 10]. Over the years, MSET has been evolved and

scaled to the big data prognostic applications commonly seen in

safety-critical industries including aerospace, utilities, and com-

puter systems [8, 9].

2.2 Synthetic Data for Benchmark
Public benchmark datasets have been commonly used to benchmark

various anomaly detection techniques. However, Wu and Keogh

[27] recently conducted a careful evaluation of these datasets and

concluded the majority of the faults suffer from one or more cate-

gories of flaws. Other recent studies can be found in [14]. Our team

has been aware of the difficulties in procuring viable real world

datasets [25], and to address the reasonable concerns outlined in

[27], we have developed a compendium of realistic types of time

series sensor fault signatures. The signatures have been observed

in real anomaly detection use cases, across a variety of industries,

providing a reliable test bed with “known ground truth" injected

faults and “known ground truth" absence of faults, for evaluating

the anomaly detection techniques. The compendium of fault types

is summarized as follows:

• Ramp: An anomally emulating signal drift, where degradation ini-

tiates “inside” the noise band, develops over time, and eventually

exceeds signal’s normal range.

• Mean Shift: A graduate or abrupt change point in the mean

level of a time series (e.g., caused by sensor decalibration bias,

sudden changes in the ambient condition, or onset of severe asset

degradation).

• Gain Change: A class of “inlier failures” in IoT industries, where

the physical transducer diminishes its response to the physical

parameter it is sensing, which the instrumentation specialists

call “Loss-of-Gain” failures.

• Time Lag: A type of clock-skew error in one or more distributed

Data Acquisition modules.

• Signal Dropout: One sensor out of an array of sensors suddenly

disappears (data acquisition fault) or goes to a perfectly flat line

(transducer “stuck-at” fault), resulting in the loss of its share in

subsequent accumulated measurements.

Incidentally, to create synthetic datasets for analysis, a synthetic

signal generator is often used for machine learning tuning and vali-

dation. Lai et. al [13] have developed a quality signal generator
1
. We

utilize our advanced Telemetry Parameter Synthesis System, which

generates synthetic time series telemetry based on real measured

signals using Fourier decomposition and reconstruction. The sys-

tem allows customization of sampling rates, signal-to-noise ratios,

serial correlation, amplitudes, mean values, and a user-defined “dis-

persion factor” to distribute the signals more broadly and arbitrarily

across a specified range.

The aforementioned library of fault types is synthesized and

injected individually or collectively, into one or more synthetic

signals, at the same and/or different times under a wide variety

of single-fault, multiple-sequential fault, and multiple concurrent

fault scenarios. A total of 15 datasets are generated as the test cases.

2.3 Real World Data for Benchmark
We also conducted an extensive literature review and identified

several real-world datasets commonly used in anomaly detection

research. We carefully evaluated them, and selected a subset of

datasets to serve as the benchmark data in this study. The selected

datasets are listed and briefly described below.

2.3.1 Pool Server Metric (PSM). A dataset collected internally from

multiple application server nodes at eBay[1], including numerous

signals from business performance data, such as user traffic and

activity, to infrastructure data, such as application CPU andmemory

utilization. An anomaly indicates a potential threat to the business

operation, for example, cybersecurity attacks or an internal code

bug, which could result in service downtime. The dataset consists

of 26 variables, and the training set consists of 13 weeks, followed

by eight weeks testing data with known anomalies in presence.

2.3.2 Secure Water Treatment System Data (SWAT) & Water distri-
bution testbed (WADI). SWaT[5] is a water treatment testbed for

research in the area of cyber security, whichwas built by SUTDwith

the aim to publish time series data meant for anomaly detection

research. The data contain multivariate time series measurements

from a scale model of Singapore’s water treatment system and has

real anomalies in the testing dataset that are labeled for a ground

truth comparison
2
. The data consists of 51 features, and spans over

11 days of continuous operation including 7 days under normal

operation and 4 days with attack scenarios.

WaDi[2] is an extension of SWaT.WaDi utilizes portion of SWaT’s

reverse osmosis permeate and raw water, into its additional water

tanks and reservoirs, thus forming a complete and realistic water

treatment, storage and distribution network. The combination of

these two testbeds allow researchers to witness the cascading ef-

fects of cyber attacks on one testbed to another. The WaDi data

features 123 sensors and actuators, operating for 16 days. The data

collected during the first 14 days are purported to be clean and used

for training, while the rest contains anomalies. The test dataset had

a total of 15 anomaly segments.

1
https://github.com/datamllab/tods/tree/benchmark/benchmark/synthetic/Generator

2
https://itrust.sutd.edu.sg/itrust-labs_datasets/, accessible as of May 2025.
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2.4 Benchmark Setup
In the benchmark study, we first compare MSET to LSTM that is the

core algorithm ofmany commercial anomaly detection services (e.g.,

Azure Anomaly Detection
3
, AWS Lookout for Metrics

4
) with the

synthetic datasets. Note that the role of ML in timeseries anomaly

detection applications is predicting sensor values, and therefore

an additional anomaly detector is required to detect and label the

anomalies. While MSET leverages a sequential probability ratio test

(SPRT)[24] as its anomaly detector, a common approach [26, 30]

to pairing an anomaly detector with LSTM is implementing an

algorithm that slides a moving window across the residuals between

the LSTM model estimates and actual measurements, calculates the

MAE in that window, and compares it to a predefined threshold.

The threshold and the window size are tuned by iteratively running

the LSTM model through ground truth clean data until all false

alarms are removed.

To enable a more robust evaluation, we expanded the study to

include additional modern anomaly detection techniques that are

publicly available in the academic research with the real-world

datasets. The selected techniques are listed and briefly described

below.

2.4.1 DeepAnT[18]. DeepAnT consists of two modules: time series

forecaster and anomaly detector. The time series predictor module

uses a convolutional neural network (CNN) to predict the next time

stamp on the defined horizon. This module takes a window of time

series (used as a context) and attempts to predict the next time

stamp. The predicted value is then passed to the anomaly detector

module, which is responsible for tagging the corresponding time

stamp as normal or abnormal.

2.4.2 RANSynCoders[1]. RANSynCoders is an unsupervised deep

learning architecture for real-time anomaly detection and localiza-

tion within large multivariate time series. It uses spectral analysis

on the feature representation to capture frequency domain infor-

mation in multivaraite time series signals. The method utilizes

synchrony-analysis on latent representations for adjusting asyn-

chronous variate fed into an encoder, bootstrap aggregation of

decoders, and quantile loss optimization for anomaly detection.

2.4.3 OmniAnomaly[23]. OmniAnomaly is a recurrent neural net-

work (RNN) based method that integrates RNNs and Variational

Auto-encoder to account for both temporal dependence and the

stochastic nature of MTS, which improves the capability of learning

robust representations of multivariate timeseries.

2.4.4 TS2Vec[29]. TS2Vec performs contrastive learning in a hier-

archical way over augmented context views, which enables a robust

contextual representation for each timestamp.

2.4.5 Temporal Hierarchical One-Class (THOC) network[20]. THOC
is a temporal one-class classification model for time series anomaly

detection. It captures temporal dynamics in multiple scales by using

a dilated RNN with skip connections. Using multiple hyperspheres

obtainedwith a hierarchical clustering process, a one-class objective

called Multiscale Vector Data Description is defined. This allows the

3
https://azure.microsoft.com/en-us/products/ai-services/ai-anomaly-detector

4
https://aws.amazon.com/lookout-for-metrics/

temporal dynamics to be well captured by a set of multi-resolution

temporal clusters.

2.4.6 CARLA (ContrAstive Representation Learning Approach)[4].
CARLA leverages existing generic knowledge about time series

anomalies and injects various types of anomalies as negative sam-

ples. It learns normal behavior as well as deviations indicating

anomalies. It creates similar representations for temporally closed

windows and distinct ones for anomalies. Additionally, it leverages

the information about the representation’s neighbors through a

self-supervised approach to classify windows based on their near-

est/furthest neighbors in the representation space to further en-

hance the performance of anomaly detection.

2.4.7 DCdetector[28]. DCdetector is a multi-scale dual attention

contrastive representation learning model. It utilizes a dual atten-

tion asymmetric design to create the permutated environment and

pure contrastive loss to guide the learning process, thus learning a

permutation invariant representation with superior discrimination

abilities.

Among the seven state-of-the-art anomaly detection techniques,

we were able to obtain the source code for RANSync and DeepAnT.

To enable a comprehensive benchmark, we implemented these

models in our testbed and evaluated their performance against

MSET and LSTM using the published datasets introduced in Section

2.3. For the remaining five techniques, we referenced the reported

performance metrics from their respective studies directly.

2.5 Benchmark Metrics
To compare different prognostic algorithms, a set of statistical met-

rics is required to quantify the performance of the algorithms. This

paper uses the common benchmark metrics to investigate the accu-

racy of the model estimates as well as the anomaly decisions, such

as Precision–Recall–F1 score, and Root-Mean-Square Error (RMSE),

as defined in Eqns. (1 - 2).

Finally, an important quantitative functional requirement—often

a key factor in scaling time series prognostics—is computational

cost. It is well established that, for time series machine learning

algorithms, computational cost increases approximately linearly

with the number of observations but non-linearly with the number

of input signals. To assess this overhead, compute time (in seconds)

was measured and reported as part of the evaluation.

Precision =
TP

TP+FP

,

Recall =
TP

TP+FN

,

F1 =
2TP

2TP+FP+FN

,

(1)

RMSE(𝑦,𝑦) =

√︄∑𝑁total−1
𝑖=0

(𝑦𝑖 − 𝑦𝑖 )2

𝑁
total

, (2)

where TP, FP, FN are true positives, false positives, false negatives,

𝑦𝑖 and 𝑦𝑖 represent the model estimate and actual observation at

timestamp i.
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3 Benchmark Results
3.1 Benchmark using Synthetic Data
As introduced in Section 2.2, We have developed 15 test cases,

utilizing a library of faults, that mimic real world anomalies in time

series data. These cases are derived from sophisticated sinusoidal

composites; each has 5000 timestamps and 20 signals. The first

2500 timestamps are considered training data whereas the rest

contains one or more contextual anomalies across one or more

signals. The fault location (initial timestamp and signal), length,

type, and quantity were all randomly selected. Other features such

as the mean and variance were also randomized to increase the

complexity of the datasets.

3.1.1 Case Study. One detailed example is analyzed in this section

to illustrate the performance of MSET and LSTM. The benchmark

study introduced in Section 2.4 is conducted on Case #13, in which

the dataset contains three faults located on 3 of 20 signals. The

fault types are contextual and within 3 standard deviations from

the mean. Two of the three anomalies spanning different lengths

are caused by attenuation of the sensor readings of different mag-

nitudes. The third anomaly is caused by a time lag. Fig. 1 illustrates

one of the signals that contains a fault to explain the performance

of MSET.

Figure 1: The anomaly detection results of MSET on a faulty
signal in Case #13. Top: model estimates (green) vs. the actual
measurements (red). Dashed line indicates the range of the
training data. Middle: residuals between the MSET estimates
and the actual measurements. Bottom: Anomaly decisions
classified as either green (normal) or red (anomalous) are
made by applying the anomaly detector (SPRT) to the resid-
uals.

In the case, an MSET model is trained using the training part

of the dataset (1st half), and then used to produce estimates for

testing part of the dataset (2nd half). Pairwise differences between

the model estimates and the actual testing observations are calcu-

lated. The residuals are analyzed using SPRT to produce anomaly

detections. A decision value of 0 is assigned to the residual values

deemed as expected behavior (green dots), and 1 to the residual

values deemed as anomalous (red dots).

Similarly, LSTM is evaluated on the same use case (Fig. 2), where

a LSTM model is trained using the same training data and used

to make predictions on the same testing data. The residuals are

then analyzed by the MAE dynamic threshold algorithm (Section

2.4) to produce anomaly decisions. A requirement of LSTM is the

normalization of the signals before training. Consequently, the test

measurements must also be normalized for reasonable results.

Figure 2: The anomaly detection results of LSTM on the same
faulty signal in Case #13, in comparison to the MSET results
as shown in Fig. 1.

As shown in Figs. 1-2, both methods were able to detect the

known anomaly event ranging from the 250th to 500th timestamps.

MSET, in conjunction with SPRT, localized the anomaly event with

a 3-segment “alarm string" (red dots in Fig. 1), which reveals the

anomaly event. The rest of the testing data was correctly labeled

as clean. The LSTM method localized the anomaly event with less

uncertainty by flaggingmore anomalous observations, revealing the

duration of the anomaly more concisely; however, that comes with

a tradeoff. More false positives were produced, which is indicated by

the consecutive red dots around the 1000th and 1600th observations

in Fig. 2, reducing the overall reliability.

The ability to correctly identify truly anomalous observations

is measured by Recall, while the ability to correctly distinguish

truly normal observations is measured by Precision. The ideal per-

formance metrics would be full Recall (1) and full Precision (1). In

reality, the perfect metrics can never be achieved. There is always a

trade-off between Recall and Precision metrics: to label all anoma-

lous observations that bracket an anomaly, the model and detector

have to act aggressively and label any unusual behavior, including

statistical noise, as anomalous, which inevitably causes false alarms.

MSET is able to achieve a balance between aggressive and conser-

vative detection strategies because SPRT functions with defined

false alarm and missed alarm probabilities. Illustrated by this case,

although MSET captured fewer anomalous points than LSTM, it

still performed adequately in localizing the fault, which is equally

informative to domain experts in real world applications when it is

compared to LSTM. Other than the anomaly region, MSET achieved

perfect Precision (0 False Positive), which avoids expensive asset

shutdown.

3.1.2 Aggregate Case Statistics. The evaluation of both MSET and

LSTM methods is conducted over an extensive set of 15 cases and

the case-by-case performance comparison is summarized in Figure
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3. Overall, MSET outperforms LSTM in F1 score and Precision, and

underperforms in Recall, as the findings in Case #13 are persistent

throughout the 15 cases: MSET tends to outperform LSTM in Pre-

cision by a wide margin while underperform LSTM in Recall by

a small margin over the course of all signals, resulting in an over-

all better F1 score. Again, it is worth noting that although MSET

generally misses more anomalous observations than LSTM from a

quantitative perspective, we have confirmed that MSET does not

miss any anomalies from a qualitative perspective (meaning it never

completely misses the anomalies).

Figure 3: Bar charts of F1 score (top), Precision (middle), and
Recall (bottom) for MSET (blue) and LSTM (red) over 15 test
cases.

Moreover, the complexity of the dataset varies with the test cases.

Cases #14 and #15 particularly are much more complicated than the

others as the datasets are composed of groups of signals of different

correlations or exhibit a high degree of seasonality. MSET outper-

forms LSTM on both cases by a wide margin, which demonstrates

that MSET may possess advantages over other methods in some

circumstances.

3.1.3 Computational Cost. In addition to the performance met-

rics for anomaly detection, the training time for each model was

also recorded. As the complexity of the cases increases, the models

must also become more sophisticated to maintain high detection

performance. The parameter to increase the model complexity for

MSET is the number of memory vectors, which are sampled from

the original training data and used for making similarity compar-

isons in the training subspace—the more training vectors, the more

computational cost. The analogous parameter for the LSTM is the

number of hidden layers in the network.

The computational cost of the training process for both methods

on three specific test cases is compiled in Table 1. These cases

represent the least, most, and median levels of complexity among

the anomaly detection applications. The values provide a reasonable

indication of the overall trends for the computational cost of MSET

and LSTM. It is obvious that MSET is much less computationally

expensive, which is expected as it is a deterministic regression

type algorithm. Finally, the difference in training compute cost is

expected to scale with the dimensionality of the problem.

Table 1: Computational cost of training for MSET and LSTM
on selected test cases representing the least, most, and me-
dian levels of complexity in anomaly detection applications

Case 1 Case 7 Case 15

MSET 1.41s 1.59s 2.62s

LSTM 22.0s 37.0s 90.0s

3.2 Case Study with Public Datasets
3.2.1 PSM Data. In this section, we set up a testing framework

to evaluate the performance of MSET and LSTM using several

published benchmark datasets that have become popular to assess

multivariate anomaly detection techniques in the literature. As we

stated earlier, we additionally deployed RANSync and DeepAnT in

the testing framework. The F1 scores and the associated statistics

of each methods are reported in Fig. 4.

Figure 4: Bar charts of F1 score, Precision, and Recall for
MSET (blue), LSTM (red), RANSync (orange), and DeepAnT
(purple) models on the PSM dataset.

MSET performs generally better on the F1 score than the other

three methods. Additionally, it achieves approximately 1.5 times

higher Precision than LSTM and RANSync, but performs worse in

Recall by a similar margin. DeepAnT behaves similarly to MSET

in the sense of achieving high Precision at the cost of low Recall,

yet it is prone to missing more anomalous observations in the fault

region than MSET.

While this may seem like a trade-off but in reality the Recall

metric is a “red herring". The F1 scores can be easily propped up by

the high but imprecise Recall. A detailed discussion is provided in

Section 4.

3.2.2 Reconstruction Accuracy. In addition to evaluating the anom-

aly detection performance, we also assessed the reconstruction

accuracy (i.e., accuracy of estimates) of the 4 methods by tracking
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the RMSE of the residuals between the test data and the model esti-

mates. For many industry and utility applications, reconstruction

performance and anomaly detection decisions are equally informa-

tive to the subject matter experts, because accurate model estimates

for the signals being monitored provide insights to the early and

subtle signs of the degradation and facilitate the troubleshooting

process after the anomalies are identified.

The RMSE metrics for the 4 methods on all signals are reported

in Fig. 5. The reconstruction quality of MSET is significantly better

(i.e. lowest RMSE values) than the other three methods. Note that

DeepAnT performs the worst in all PSM signals, which is dispro-

portionate to its anomaly detection performance indicated in Fig.

4. We have investigated the root cause and found that DeepAnT

analyzes the multivariate dataset in a univariate fashion, although

it is claimed to be a multivariate anomaly detection solution. The

fact that it builds a unique model for each signal means it is not

leveraging the correlated observations across the entire signal set,

resulting in inaccurate estimates.

Figure 5: Comparison of the RMSE metrics among MSET
(blue), LSTM (red), RANSync (orange), and DeepAnT (purple).

Figure 6 further illustrates how the performance of reconstruc-

tion (Fig. 5) correlates with the accuracy of the detection results (Fig.

4). First, as shown in the top subplot in Fig. 6a, the MSET estimates

closely align with the actual measurements. Therefore, the mean

of the residuals (middle suplot) is near zero and the variance is

minimal except for the timestamps where the faults are present

(highlighted in cyan), resulting in a low RMSE and accurate signal

reconstruction. All faults are correctly identified as they are flagged

at the corresponding timestamps (red dots in bottom subplot). The

false alarms are present only in the end of the signal (after 8.6e4

where no faults is present). Overall, the false alarm count is low,

which boosts the Precision metric.

For LSTM (Fig. 6b), the mean of the residuals starts to deviate

from zero and the variance increases. The dynamics of the residuals

marginally exhibit the dynamics of the actual measurements (top

(a)

(b)

(c)

Figure 6: Comparison of anomaly detection results among
MSET (a), LSTM (b), and RANSync (c) on the PSM dataset.
Cyan highlights show periods of time when anomalies are
present. Same figure layout as Fig. 1.

subplot), indicating a less accurate set of estimates from the model.

Compared to MSET, LSTM was able to detect all the faults and

identified more anomalous observations, as indicated by the denser

string of red dots in the bottom subplot. However, it also generated

significantly more false alarms, such as around 6.7e4 and 7.6e4,

which significantly boots Recall while largely lowers Precision.

Lastly, for RANSync (Fig. 6c), the reconstruction accuracy be-

comes much worse with the residuals closely resembling the sinu-

soidal pattern of the test signal (red in the top subplot). As a result,
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more anomalous observations were missed in the fault regions, and

more false alarms were present throughout the signal. Note that the

red dots are visually dense in the anomaly-free regions suggesting

high false alarm count, but they are more sporadic than they appear

to be due to the high density of observations in the plot. In fact, the

number of false alarms is approximately the same as that of LSTM,

as indicated by the density of green dots. Nevertheless, compared

to MSET and LSTM, RANSync missed more anomalous observa-

tions, resulting in the worst Recall among the models, though its

Precision is comparable to that of LSTM.

As demonstrated with Figs. 5 and 6, MSET exhibits superior re-

construction performance when compared to the competing meth-

ods, which correlates with higher Precision and better overall anom-

aly detection performance.Moreover, in this case, the high Recall for

LSTM and RANSync benefits from the dispersed faults and frequent

flagging. Conversely, an inferior anomaly detection technique that

excessively flags alarms can also achieve a great Recall score when

faults are sporadically distributed. Therefore, high Recall without

high precision is not meaningful in assessing the anomaly detection

performance. MSET achieves a favorable balance between Precision

and Recall, and ultimately yields the highest F1 score among the

four methods evaluated in this use case.

3.2.3 Computational Cost. Lastly, the computational cost of the

training process for all 4 methods is tabulated in Table 2. MSET

outperforms the other methods by orders of magnitude owing to

its deterministic mathematical algorithm.

Table 2: Training computational cost on the PSM dataset for
MSET, LSTM, RANSync, and DeepAnT methods

MSET LSTM RANSync DeepAnT

0 min 3 sec 169 min 2 sec 96 min 54 sec 325 min 12 sec

3.3 Benchmarking over More Published
Datasets

3.3.1 SWaT and WADI Datasets. We further validate MSET against

LSTM and five state-of-the-art anomaly detection algorithms on

two published datasets. Table 3 presents the performance metrics

for MSET and other 6 competing methods on the SWaT and WaDi

datasets. Note that in this table, the algorithms other thanMSET and

LSTM are proprietary to private firms or public universities, which

limited our access to their source code. Thus we only evaluated

MSET and LSTMon the two datasets, while the performancemetrics

for the remaining algorithms were cited from a benchmark study

[4] that utilized the same datasets.

Overall, MSET ranks the 4th and 2nd out of 7 in term of the F1

score on the SWaT and WaDi datasets, respectively. We further

investigated the difference in the anomaly detection performance

on the two datasets. For the SWaT dataset, the testing data con-

tains 41 unique anomalies. But there is one particular anomaly that

is a large and sudden mean shift, resembling a long lasting step

change (spans thousands of consecutive anomalous timestamps),

which constitutes 62.68% of all anomalous timestamps, thereby

dominating the remaining 40 anomalies. Because of that, the F1

score can become biased in favor of algorithms that accurately flag

anomalous timestamps associated with that dominant anomaly,

thereby significantly boosting Precision while incurring only mar-

ginal losses in Recall. As demonstrated in Fig. 7, we can improve

the F1 score of LSTM by up to 47.92% by fine-tuning its anomaly

detector to label as many anomalous observations from the domi-

nant anomaly as possible, at the expense of ignoring many of other

subtle and short-lived anomalies (refer to the red dots in Fig. 7b),

which is misleading. In fact, this is a well-recognized issue refer-

enced in the anomaly detection domain. The lack of a weighting

function in the Recall metric—one that differentiates between the

number of distinct anomaly events detected and the total count

of anomalous timestamps—limits the effectiveness of the F1 score

as a general-purpose performance metric for time series anomaly

detection.

Without explicit knowledge of the undisclosed parameter tuning

process for these algorithms, it is difficult to determine whether

whether the comparison on the SWaT dataset was conducted on

an equitable basis. By contrast, the WADI dataset does not contain

any dominant anomalies that deviate significantly from the normal

statistical operating range. Instead, it contains many sporadic subtle

anomalies that are inherently more challenging to detect. Conse-

quently, the performance metrics for all algorithms are notably

lower, and in this case, MSET ranks as the second-best performer,

while two of the previous top performers THOC and OmniAnomaly

struggle to effectively detect the anomalies.

4 Discussions
4.1 Applications for MSET
MSET is a multivariate anomaly detection technique that is de-

signed for correlated signals. The variety of the competing methods

presented in this study can generally produce reasonable anomaly

detection results on a given multivariate dataset. However, MSET

demonstrates advantages over them on low false alarms and accu-

rate reconstruction in the multivariate datasets consisting of corre-

lated signals, and the gap between the performance is expected to

expand as the number of correlated signals increases.

Multivariate datasets comprised of correlated signals are becom-

ing commonly available in the recent years, with the widespread

adoption of dense-sensor across multiple IoT industries including

utilities, Oil&Gas, manufacturing, commercial aviation, and enter-

prise IT assets in data centers. These industries are ideal for MSET,

as assets in these industries typically have a large number of sensors

installed for prognostic monitoring and predictive maintenance so

the telemetry signals of these assets are intrinsically correlated. For

use cases that instead just contain a collection set of uncorrelated

signals, the common deep learning based techniques like LSTM

and the more recent techniques introduced in Section 2.4 should

be considered, and in some cases, a univariate anomaly detection

technique would be a better choice.

4.2 Compute Cost
As we discover in this benchmark study, MSET outperforms all

the competitors in computational cost by order of magnitudes,

thanks to its deterministic mathematical structure, and also its

pattern recognition methodology requires much less training data

to characterize the behavior of the correlated signals.
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Table 3: Performance metrics of MSET and other competing methods on SWaT and WADI Datasets

Dataset Performance Metric MSET LSTM OmniAnomaly THOC TS2Vec CARLA DC Detector

Precision 0.5024 0.3689 0.9068 0.5453 0.1535 0.9886 0.1214

SWaT Recall 0.7990 0.7647 0.6582 0.7688 0.8742 0.5673 0.9999

F1 0.6169 0.4977 0.7628 0.6380 0.2611 0.7209 0.2166

Precision 0.1616 0.1411 0.1315 0.1017 0.0662 0.1850 0.1417

WADI Recall 0.5750 0.3782 0.8675 0.3507 0.9287 0.7316 0.9684

F1 0.2523 0.2055 0.2284 0.1577 0.1237 0.2953 0.2472

(a)

(b)

Figure 7: Comparison of anomaly detection results for LSTM
before (a) and after (b) tuning the anomaly detector to focus
primarily on the dominant anomaly. Despite a 48% increase
in the F1 score following the tuning, the number of distinct
detected anomalous events significantly decreases.

One related computational cost issue for LSTM and other NN

based algorithms is that, it is often too computational expensive

for them to scale to a moderate use case in real world applications.

Major Cloud providers that deploy LSTM in their anomaly detection

offerings typically limit the number of variables to 300
5
. By contrast,

MSET is capable of handling thousands of sensor signals or more. In

this benchmark study, we intentionally kept the dataset size small

5
e.g., as per Azure’s service doc for their Anomaly Detection product,

https://learn.microsoft.com/en-us/azure/ai-services/anomaly-detector/concepts/best-

practices-multivariate

to favor NN based algorithms, allowing their anomaly detection

performance to be evaluated within a reasonable time frame. If the

problem scale were increased to a typical industrial or utility use

case—often involving 500 or more signals—iterative comparison

and tuning of such models would become impractical.

4.3 Value Proposition of MSET
The value proposition of MSET deserves further discussion. Besides

the detection performance with correlated signals and minimal

computational cost discussed in the previous sections, a key ad-

vantage that MSET possesses over other NN based methods is the

explainability, which is favored in many safety critical industries.

Specifically, MSET excels in discerning the faults on an individual

signal basis, which allows it to disambiguate between sensor failure

and asset failure. As shown in the example in Section 2.2 (Figs. 1 and

2) where there are three faults appearing in different sensors, MSET

is able to generate the anomaly alerts on the faulty sensors only,

while LSTM tends to “overreact" by producing excessive alarms dur-

ing the same time period across multiple signals that do not contain

faults. Such false alarms can misleadingly suggest an asset-wide

failure, leading to incorrect conclusions regarding the root cause.

Furthermore, MSET leverages the similarity among sensor readings,

and its prediction process is inherently reversible—reapplying the

training observations yields identical anomaly decisions. This de-

terministic behavior is particularly valuable for root cause analysis,

as it enables precise traceback in the context of asset failures. LSTM

and other DNN algorithms do not always provide identical anom-

aly detection decisions despite identical input due to the stochastic

optimization mechanism, and also because the neuron coverage

depends on the training input and the initial weight configurations,

making their behavior less deterministic and less suitable for repro-

ducible root cause analysis. To achieve the same level of definiteness

as MSET, those methods would need extraordinarily large amount

of training data for the models to converge to the same point, which

is often computationally prohibitive. Furthermore, depending on

the number of neurons required to accurately capture complex

signals dynamics, backwards identification of the neural pathways

can become an intractable process, often resistant to effective anal-

ysis or interpretation. Overall, although the explainability is not a

quantifiable performance metric, it constitutes a value proposition

of MSET.

4.4 Future Research Work
With our the findings in this study, we have identified several

directions for future research on MSET. Compared to the MAE

windowing approach, SPRT appears to be less sensitive to faults
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in scenarios where the variance of the normal timestamps is small,

resulting in reduced Recall. The future effort will focus on enhanc-

ing the sensitivity of SPRT to faults under these circumstances by

incorporating temporal changes in L1 norm (MAE) or L2 norm

(RMSE) over time into the SPRT decision making process, which is

expected to improve Recall and overall detection performance.

Other avenues of research are related to the selection of mem-

ory vectors used to train MSET. This parameter determines the

similarity metric that ultimately determines the accuracy of the

reconstruction. The current method for selecting the training vector

values is optimized for finding the topological boundaries of the

data but not necessarily for capturing the most representative sam-

ples of the training data. Thus, changes in memory vector selection

do not exhibit a directly proportional relationship with anomaly

detection performance. We will leverage eigenvalue decomposi-

tion to identify the most representative values in the dataset and

use the spectral radius to determine an approximate eigenvalue

equivalence between the memory vector subspace and the training

data. Similar processes have been used in finite element analysis

and graph theory. A more robust memory vector selection process

is expected to handle the complex training data more efficiently

although it will likely increase the computation cost.

5 Conclusions
Using machine learning for detecting anomalies in time-series data

has received extensive attention. Although a wide range of anomaly

detection techniques are available, no single algorithm has been

shown to generalize effectively across all time-series datasets. In

this paper, a quantitative assessment of the anomaly detection

algorithm MSET and other competing methods in both academia

and industry, is provided using a variety of benchmark datasets

including synthetic datasets and real world datasets. The benchmark

results have shown that MSET possesses advantages to the other

algorithms on the multivariate applications that involve correlated

signals and large-scale datasets.
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