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ABSTRACT

Long, uninterrupted gaps in time series data can significantly hin-
der downstream analysis, particularly in scientific and operational
environments. Standard imputation techniques, such as forward or
backward filling, often distort temporal structure or violate known
constraints, resulting in unrealistic values and degraded predictive
performance. This paper introduces a simulated annealing-based
approach designed to address these challenges. Our method frames
imputation as a constrained optimization problem that balances
smoothness, periodic trends, and monotonic behavior. We evaluate
our framework on real-world network telemetry from the Energy
Sciences Network (ESNet), specifically the connection between Fer-
milab and Argonne National Laboratory. Results show that our
method (GAPSA) produces realistic imputations that align with
expected traffic patterns and capture the variance in the data better
while achieving comparable MSE and SMAPE values as state-of-
the-art methods.
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1 INTRODUCTION

This study is part of the Tachyon Project [4], which explores new
approaches to modeling the infrastructure involved in large-scale
scientific computing workflows associated with the Deep Under-
ground Neutrino Experiment (DUNE) [1]. DUNE generates vast
quantities of data from liquid argon detectors at Fermilab (FNAL),
which are transferred for data analysis to supercomputers at Ar-
gonne National Laboratory (ANL) via the Energy Sciences Network
(ESNet). As a result, ESNet becomes a critical component of the
experimental pipeline, and understanding its behavior is an integral
part of the project.

ESNet telemetry offers a window into the behavior of data trans-
fers between FNAL and Argonne. It logs metrics like byte counters
and packet counts at regular intervals, which can be used to moni-
tor performance, detect anomalies, and predict network usage. But
these insights rely on having continuous data. In reality, equipment
maintenance, outages, or logging errors often create large gaps. In
our case, over four months of data are missing due to corrupted
database issues.

Filling these kinds of gaps is far from trivial. Common methods
like forward fill or linear interpolation are easy to apply, but they
can flatten important trends or introduce sharp transitions that
don’t reflect how the system actually behaved. More sophisticated
models like BRITS [2] or SAITS [5] use machine learning to es-
timate missing values, but they usually expect scattered missing
points. When faced with an extended blackout, they tend to fall
back on overly smooth or generic estimates that fail to capture real
dynamics.

Our approach takes a different route. We treat imputation as
a constrained optimization problem and solve it by minimizing a
quadratic objective using simulated annealing (SA). We name our
approach GAPSA (Gap-Aware Probabilistic Simulated Annealing).
The problem is formulated as a QUBO (Quadratic Unconstrained
Binary Optimization), where each possible value for a missing time
step is mapped to a binary variable, and the overall configuration
is scored based on how well it aligns with expected patterns. The
objective function penalizes deviations from a smooth trend, viola-
tions of typical value ranges, and sharp transitions across adjacent
time steps. It also includes soft priors when available, nudging the
solution toward plausible domain-informed patterns. A one-hot
constraint ensures that exactly one value is chosen per time step. We
perform simulated annealing over this QUBO, guiding the search
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through the space of discrete imputations. This setup ensures that
the imputed segment not only fits known temporal structure but
also satisfies hard endpoint constraints, such as matching the total
increase across the gap.

To evaluate the method, we apply it to two different datasets:
telemetry from the FNAL-ANL ESNet link, and a benchmark air
quality dataset from UCI [22]. This allows us to test both domain-
specific and general-purpose imputation. Across both cases, we
compare our method against traditional and deep learning-based
techniques, not just by reconstruction error, but by how well they
support forecasting models trained on the filled data. Our results
show that the simulated annealing approach holds up well, often
producing more coherent and interpretable fills. It reflects the real-
world patterns better than generic smoothers, which helps both
analysts and predictive models make sense of the data.

2 RELATED WORK

Time series imputation has been widely studied, with early methods
relying on statistical heuristics such as forward fill, backward fill,
linear interpolation, or exponential smoothing [7]. While these
methods are computationally cheap, they tend to distort seasonal
patterns and underperform in the presence of long or structured
gaps.

More sophisticated approaches apply statistical models, such as
Kalman smoothing or Expectation-Maximization (EM) techniques,
which attempt to infer missing values using learned temporal dy-
namics [6]. However, these models assume certain distributions
or stationarity, and their accuracy degrades with large contigu-
ous gaps. Low-rank matrix completion methods [23] and nearest-
neighbor-based strategies like MissForest and kNN imputation [19]
offer improvements but often struggle with temporal coherence
and global structure.

Deep learning has recently emerged as a dominant paradigm
for imputation. Models like BRITS [2] and GRU-D [3] use recur-
rent neural networks to iteratively refine missing values, treating
them as learnable parameters. Transformer-based models such as
SAITS [5] and PatchTST [15] incorporate attention mechanisms
to exploit long-range dependencies across both time and features.
These methods perform well when trained on large, representative
datasets, but often assume that missingness is random or scattered,
which limits their ability to handle large, contiguous gaps without
retraining.

Simulated annealing (SA) has been used in various optimiza-
tion contexts for time series, including imputation, but is typically
limited to simpler settings such as short gaps or single-variable
sequences. For example, works like [14] used SA for small-scale
interpolation problems or outlier smoothing. However, they do not
model the gap as a structured constrained optimization problem,
nor do they integrate prior knowledge about traffic behavior or
domain constraints.

Our approach differs by formulating imputation as a discrete
quadratic unconstrained binary optimization (QUBO) problem over
plausible values for each time point in the gap. The energy function
integrates multiple terms: fidelity to a seasonal prior, smoothness
relative to expected slope, range constraints, and hard endpoint
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consistency. A one-hot encoding ensures that only a single can-
didate value is selected per time point. The QUBO is then solved
using classical simulated annealing. This makes our method both
interpretable and easily tunable, while allowing hard constraints
and priors to be encoded directly into the optimization. Compared
to neural models, our approach requires no retraining, adapts to
each individual gap, and can incorporate domain knowledge (e.g.,
from similar past intervals or known traffic profiles) via a soft prior
term.

3 EXPLORATORY DATA ANALYSIS
3.1 Data Wrangling

The raw network data contained information about the number of
broadcast, unicast, multicast, and cumulative number of packets
coming in and going out of each interface of the ESNet router at
the respective site. Since we were interested in the larger patterns
of network traffic at each site, we summed up the data across all
interfaces for a router at a given point in time.

There were a number of challenges with handling the time series
data. First, the data had irregular intervals. The intervals varied
randomly within a range of an hour, from 5 minutes to 35 minutes
between consecutive data points. Additionally, the dataset had
data points for September 2024 and February 2025 but no data
points in between, causing a large gap. To address these issues,
we first applied backward fill to regularize the data to intervals
of 10 minutes and then imputed the gap with various methods -
Forward Fill, Backfill, Exponential Smoothing, SAITS, BRITS, and
our method GAPSA.

3.2 Feature Description and Selection

The router telemetry dataset used in this study contains several fea-
tures that reflect different aspects of network traffic. These include
counters for incoming and outgoing multicast and broadcast pack-
ets, high-capacity octet transmission, and various other packet-level
metrics. Each feature represents a specific measurement collected
at regular intervals from network routers, offering a detailed view
of how traffic flows through the network.

Among these features, we focus on two in particular: ifHCOut-
BroadcastPkts and ifHCOutOctets. The first captures the number
of broadcast packets transmitted by the router, while the second
records the total number of octets (bytes) sent out. Together, they
serve as strong indicators of network utilization and traffic volume.

Our decision to focus on these two features is guided by the
objectives of the Tachyon project. One of the project’s key goals is
to develop robust models that can accurately forecast bandwidth
demands within the ESNet infrastructure. This capability is crucial
for optimizing data transfer pipelines supporting large-scale scien-
tific experiments like DUNE. By modeling and forecasting these
metrics, we aim to better understand usage patterns and anticipate
periods of high load or potential congestion. These insights can, in
turn, inform scheduling, resource allocation, and anomaly detection
strategies across the scientific computing workflow.
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3.3 Observed Weekday Trend Patterns

We examine average network activity patterns by day of the week
using ESNet telemetry data between Fermilab and Argonne Na-
tional Laboratory. Aggregating the data by weekday reveals charac-
teristic behaviors that vary across features, helping identify usage
cycles that may align with workweek dynamics or scheduled tasks.

Daily trend of iflnMulticastPkts by Weekday
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Figure 1: Weekday trend of ifInMulticastPkts. The x-axis
shows weekdays, and the y-axis indicates the average incom-
ing multicast packet count. The trend shows minimal activity
throughout the week, followed by a sharp and dramatic peak
on Sunday.

1. Dramatic Sunday Peak: Certain features, notably
ifInMulticastPkts, exhibit low average values consistently from
Monday to Saturday, followed by an abrupt and significant peak
on Sunday (Figure 1). This suggests scheduled multicast-heavy
operations that specifically occur at week’s end.
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Figure 2: Weekday trend of ifInBroadcastPkts. The x-axis
shows weekdays, and the y-axis represents average incoming
broadcast packet count. Activity generally rises through the
weekdays, peaks significantly on Friday, sharply drops on
Saturday, and partially recovers on Sunday.

2. End-of-Week Peak with Weekend Drop: In cases such
as ifInBroadcastPkts, network activity progressively increases
from Monday, reaching a pronounced peak on Friday, then sharply
declining on Saturday before a partial recovery on Sunday (Figure 2).
This could indicate high usage patterns related to weekly business
or batch processes concluding before the weekend.

3. Multiple Midweek and Weekend Peaks: Features like
ifOutBroadcastPkts present oscillating weekly behavior char-
acterized by midweek and weekend peaks (Figure 3). The pattern
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Figure 3: Weekday trend of ifOutBroadcastPkts. The x-axis
shows weekdays, and the y-axis indicates average outgoing
broadcast packet count. The activity pattern oscillates, show-
ing multiple peaks during the week, notably on Thursday
and Sunday, with reduced values midweek.

suggests regularly scheduled tasks or periodic data broadcasting
events throughout the week, culminating in Sunday peaks.
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Figure 4: Weekday trend of ifHCOutMulticastPkts. The x-
axis shows weekdays, and the y-axis represents average out-
going multicast packet count. Activity exhibits alternating
peaks and valleys, reaching its highest average on Thursday
and lowest on Tuesday.

4. Midweek Variability: Some features, like
ifHCOutMulticastPkts, demonstrate fluctuating patterns through-
out the week with alternating peaks and valleys, notably peaking on
Thursday and dipping significantly on Tuesday (Figure 4). This al-
ternating activity may reflect varying load conditions or scheduled
multicast traffic tied to specific midweek operational routines.

These weekday-level patterns complement long-term trends and
offer additional structure that can inform imputation and forecast-
ing strategies.

3.4 Observed Hourly Trend Patterns

To better understand how network activity fluctuates throughout
the day, we examined the hourly average of several telemetry fea-
tures across the available portion of the dataset. Although our data
includes a multi-month gap, aggregating by hour across the full
timeline still reveals clear and recurring daily rhythms. Figure 5
highlights three representative patterns observed in different fea-
tures of the ESNet telemetry data.
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Figure 5: Hourly trends for selected ESNet features. The x-axis shows the hour of the day (0 to 23), and the y-axis shows the
corresponding average packet count. Top: ifInMulticastPkts shows an extreme spike around 1:00 AM with minimal activity
otherwise. Middle: ifInBroadcastPkts exhibits multiple fluctuations with notable peaks around midnight, noon, and late
evening. Bottom: ifHCOutMulticastPkts follows an irregular but repeating pattern with several peaks throughout the day,

notably around early afternoon and late evening.

The first pattern, shown in the top panel for ifInMulticastPkts,
is characterized by minimal activity across most hours, with an
isolated and significant spike at around 1:00 AM. This could reflect
a scheduled multicast event or a nightly synchronization task.

The second pattern, evident in ifInBroadcastPkts, shows vari-
ability with multiple peaks at approximately midnight, noon, and
especially pronounced peaks late in the evening. This suggests pe-
riodic broadcast events or regularly scheduled network operations
at these hours.

The third pattern, observed in ifHCOutMulticastPkts, demon-
strates fluctuating yet repetitive behavior with peaks occurring
throughout the day, notably in early afternoon around 14:00 and
again around 22:00. Such a rhythm could be related to system
maintenance, monitoring routines, or automated multicast trans-
missions.

Taken together, these examples underscore the diversity of tem-
poral behaviors in the network. Some features reflect human-driven
usage spikes, while others hint at automated background processes
or asynchronous system operations. These insights are valuable
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when designing models that need to learn from or impute over such
data, as ignoring time-of-day effects could lead to unrealistic or
biased outputs.

4 METHODOLOGY

This study investigates a range of methods for imputing large con-
tiguous gaps in multivariate time series data derived from ESNet
telemetry. These gaps, often spanning weeks or months, are com-
mon in real-world monitoring systems due to maintenance outages,
logging failures, or transient system errors. Standard imputation
strategies tend to fail in such contexts, especially when they assume
randomly missing values. We systematically compare several estab-
lished approaches alongside our proposed method, GAPSA (Gap-
Aware Probabilistic Simulated Annealing), which is specifically
designed to preserve temporal structure and physical constraints
in long-gap scenarios.

4.1 Baseline Methods

We benchmark five imputation methods from classical, statistical,
and deep learning paradigms:

Forward fill copies the last observed value before the gap forward
across all missing time steps. This method is simple but can flatten
dynamics and remove temporal variability.

Backward fill mirrors the forward fill approach by propagating
the first available value after the gap backward into the missing
segment.

Exponential smoothing linearly interpolates between boundary
values but applies a decay factor to weigh older observations more
heavily, offering a balance between continuity and trend adherence.

BRITS [2] models the time series with a bidirectional recurrent
neural network that dynamically estimates missing values as part of
the model training loop. Each missing point is treated as a parameter,
refined over epochs through backpropagation.

SAITS [5] applies a self-attention mechanism across the temporal
and feature dimensions. It relies on a transformer backbone and
is capable of learning contextual patterns across long horizons,
assuming missingness is sufficiently random and training data is
abundant.

4.2 GAPSA: Simulated Annealing for Time
Series Imputation

Our method, GAPSA (Gap-Aware Penalized Simulated Annealing),
frames the imputation problem as a discrete optimization task over
a contiguous missing segment of length N. For each time index
i, we construct a small candidate set X; of integer values around
the expected value x;, obtained via interpolation between pre- and
post-gap observations. We associate a binary variable z; x € {0,1}
for each x € Xj, indicating whether value x is selected at position i.
We minimize the following QUBO objective:
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Here, yo and y; are the known values immediately before and
after the gap, and § is the estimated per-step increment derived
from historical trends. The high- and low-value penalties ensure
the imputed values stay within realistic bounds. The final one-hot
constraint enforces that exactly one value is chosen per time step.

The resulting QUBO is solved using simulated annealing. If a
variable assignment is missing (i.e., all associated z;x = 0), we
assign the nearest integer to X; as a fallback. This procedure is
repeated independently for each feature in the multivariate series.

4.3 Forecast-based Evaluation

To evaluate the practical impact of imputation, we assess how well
the imputed series supports downstream forecasting. We select
three forecasting models:

RandomForestRegressor is a non-parametric ensemble model
that uses recent lags to predict future values. It offers robustness to
outliers but struggles with long-term dependencies.

PatchTST [15] segments the time series into non-overlapping
patches and applies self-attention layers to learn temporal repre-
sentations. It is effective in capturing complex periodicity and scale
variations.

DLinear [25] performs time series decomposition followed by
simple linear layers. Its inductive bias suits stable or trend-dominated
sequences, and it is computationally efficient for long sequences.

Each forecasting model is trained on data consisting of pre-gap
observations and the completed (imputed) gap, then tested on real
observed values after the gap. We use MSE (mean squared error)
and SMAPE (symmetric mean absolute percentage error) to quan-
tify performance, capturing both magnitude and percentage-based
discrepancies.

4.4 Implementation and Reproducibility

All models were implemented in Python using PyTorch and Scikit-
learn, with experiments with RandomForestRegressor conducted
on an Apple M4 Max CPU. The experiments with DLinear and
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Table 1: MSE and SMAPE for various imputation methods across two features. Lower is better.

Feature Model Metric | Forward Fill | Backfill | ExpSmooth | SAITS | BRITS | GAPSA
RandomForestRegressor MSE 2.042 1.032 1.144 2.006 1.041 1.675
8 SMAPE 191.009 112.115 176.598 196.437 | 102.965 | 193.035
. MSE 2.286 1.363 1.796 1.864 2.545 1.688
ifHCOutBroadeastPkts PatchTST SMAPE 0.676 0.485 0.863 1.040 | 0623 | 1.214
. MSE 2.285 1.370 1.629 1.910 2.598 1.699
DLinear
SMAPE 0.698 0.504 0.901 1.121 0.699 1.257
RandomForestResressor MSE 1.028 2.187 1.404 1.174 1.069 1.399
& SMAPE 167.981 163.701 159.808 173.597 | 94.899 172.757
MSE 2.285 1.364 1.806 1.851 2.545 1.688
ifHCOutOctet PatchTST
HEAUECters are SMAPE 0.676 0.485 0.861 1033 | 0623 | 1215
. MSE 2.285 1.370 1.629 1.910 2.598 1.699
DLinear
SMAPE 0.698 0.504 0.901 1.121 0.699 1.257
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Figure 6: Visual comparison of imputation quality for ifHCOutBroadcastPkts across three methods. The x-axis shows time
(months), and the y-axis indicates outgoing broadcast packet volume. The gap spans October 2024 to January 2025. BRITS yields
the lowest MSE and SMAPE (Table 1) but imputes a flat sequence with little variation. SAITS introduces minor fluctuations
yet remains overly smooth. In contrast, GAPSA restores realistic variability aligned with pre-gap trends. Although its error
is higher numerically, the result is qualitatively more natural, which is especially important for scientific telemetry and

bandwidth forecasting tasks.

PatchTST were conducted on an Nvidia Tesla V100 GPU. Our com-
plete codebase is available on GitHub! for reproducibility.

5 RESULTS
5.1 ESNet Dataset

Table 1 summarizes the Mean Squared Error (MSE) and Symmetric
Mean Average Percentage Error(SMAPE) obtained across different
models (RandomForestRegressor, PatchTST, and DLinear) and im-
putation methods for ifHCOutBroadcastPkts and ifHCOutOctets.
The values are reported after standard scaling is applied to the data.
In addition, the values for SAITS and BRITS are reported after 100
epochs of training.

Although GAPSA does not achieve the lowest numerical error
across all evaluation metrics, qualitative inspection reveals that
it produces more plausible and natural imputation sequences. As
shown in Figure 6, GAPSA preserves the overall shape and variabil-
ity of the signal more faithfully than SAITS or BRITS, for example.
In contrast, SAITS tends to oversmooth and fill the gap with a
single average trend, while BRITS often collapses to a flat extrapo-
lation. These behaviors, while resulting in lower MSE or SMAPE,

1https://anonymous.4open.science/r/KDD_MiLeTs_ZOZ5_submission8

can obscure critical transitions or anomalies that downstream ap-
plications rely on. Our method offers greater interpretability and
respects physical constraints such as continuity and counter behav-
ior, which are essential in scientific telemetry contexts.

We also analyze the performance of the forecasting models
themselves to understand model efficacy in different data patterns.
Across both features, RandomForestRegressor generally performs
the worst in terms of SMAPE, particularly on data imputed using
SAITS and simulated annealing. This is likely due to the model’s
limited capacity to capture complex temporal dependencies, which
becomes more pronounced when the imputed segments contain
high variance or abrupt shifts.

In contrast, PatchTST and DLinear show stronger performance
and more interesting variation. For instance, in the ifHCOutBroad-
castPkts feature, PatchTST outperforms DLinear on data imputed
using backward fill, BRITS, and simulated annealing, while DLinear
slightly outperforms PatchTST on exponentially smoothed data.
This pattern is consistent with their design philosophies: PatchTST,
with its transformer-based patch attention mechanism, handles
variability and sudden transitions more robustly, whereas DLinear,
relying on decomposition into trend and seasonality, benefits from
smoother inputs.
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Figure 7: SHAP feature importance plots for ifHCOutBroadcastPkts using backward fill imputation. RandomForestRegressor
shows minimal and diffuse attributions, while DLinear reveals moderate importance with greater variance. PatchTST exhibits
clear separation and strong contributions from key features like ifHCOutOctets, reflecting its ability to capture complex
temporal dependencies. These differences align with observed forecasting performance, where PatchTST outperforms the

others.

The BRITS model performs particularly well across the board,
often achieving the lowest MSE and SMAPE among all imputation
methods. However, as mentioned earlier, this is not useful as it just
produces a flat line over the gap.

Simulated annealing produces more natural-looking imputations,
as discussed in the qualitative analysis, but this comes at a slight
cost in terms of forecasting accuracy. Its performance remains
competitive, particularly with PatchTST, but is often outperformed
by BRITS and backward fill in raw metrics. SAITS, while effective
on shorter or scattered missing segments, tends to underperform
on large contiguous gaps, possibly due to its reliance on learned
attention patterns that falter without sufficient temporal context.

Overall, the interaction between imputation method and fore-
casting model is nontrivial. While backward fill and BRITS produce
lower forecasting error on average, methods like simulated anneal-
ing offer interpretability advantages, and their compatibility with
advanced forecasting models like PatchTST suggests a trade-off
worth considering in real-world applications.

In order to analyze the reasoning behind the difference in perfor-
mance of the forecasting models, we examine the SHAP (SHapley
Additive exPlanations) feature importance values for one specific
use case: predicting ifHCOutBroadcastPkts with data from the back-
ward fill imputation method.

Figure 7 demonstrates distinct differences in feature utilization
and model interpretability across the three models. Notably, the
ifHCOutBroadcastPkts feature exhibits varying levels of impact.

RandomForestRegressor displays relatively small SHAP magni-
tudes across all features, with values tightly clustered around zero.
This indicates that the model fails to extract strong and consis-
tent patterns from the input features, consistent with the known

limitations of tree-based methods in high-dimensional or highly
correlated time series settings.

In contrast, DLinear and PatchTST show substantially larger
SHAP magnitudes. DLinear captures stronger feature relationships
compared to RandomForestRegressor, but its SHAP values exhibit
greater variance, suggesting sensitivity to input noise. PatchTST,
however, exhibits the sharpest feature differentiation, with high
SHAP magnitudes and well-separated impacts across features such
as ifHCOutOctets and ifHCInOctets. This sharper feature separation
implies that PatchTST more effectively captures both short-term
fluctuations and long-term dependencies.

Overall, these observations align with the model performance
outcomes: PatchTST outperforms both DLinear and RandomFore-
stRegressor, with DLinear occupying an intermediate position. The
superior performance of PatchTST can be attributed to its capac-
ity to model complex temporal feature interactions, whereas Ran-
domForestRegressor’s underperformance highlights the challenges
of applying traditional tree-based methods to irregular and high-
dimensional time series data.

5.2 Air Quality Dataset

To further evaluate the generalizability of our imputation approach,
we applied it to the widely-used Air Quality dataset. A synthetic
7-day gap was inserted in the multivariate time series, and each
imputation method was tasked with filling this gap. All experiments
were conducted on an Apple M4 Max CPU with 64 GB of memory.
For fairness, SAITS and BRITS were trained for 150 epochs each.
Table 2 summarizes the performance across four key metrics:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and the wall-clock time
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required to perform the imputation. It should be noted that these
values are reported without standard scaling. Our simulated anneal-
ing approach achieved the lowest RMSE (294.6), MAE (156.3), and
MARPE (85.1), while completing in just under 21 seconds. In contrast,
BRITS and SAITS had RMSEs of 645.5 and 628.0, and MAPE values
exceeding 100%, with runtimes of over 9 and 8 minutes respectively.

Although BRITS and SAITS were given ample time to train,
their results were still less accurate than those from our method.
It’s worth noting, however, that these models might improve with
longer training or fine-tuned hyperparameters. Still, the results
suggest that our optimization-based approach can produce strong
and efficient imputations without relying on large-scale training or
GPU acceleration.

Table 2: Imputation Performance on the Air Quality Dataset

Model RMSE | MAE | MAPE | Time (s)

GAPSA 294.6 156.3 85.1 20.95
BRITS (150 epochs) | 645.5 423.1 97.4 1407.5
SAITS (150 epochs) | 628.0 | 405.7 106.1 538.5

6 CONCLUSION AND FUTURE WORK

This study introduced a physics-inspired imputation framework
using simulated annealing to address large, contiguous gaps in time
series data. By formulating the imputation task as a constrained
optimization problem, our approach explicitly integrates domain
knowledge—such as periodic trends and monotonic counters—into
a unified QUBO model. Through extensive evaluation on network
telemetry and the Air Quality dataset, we demonstrated that GAPSA
yields competitive or superior imputation quality compared to state-
of-the-art learning-based models, particularly in terms of preserv-
ing inherent variability of the time series with limited computing
resources.

While deep learning models like BRITS and SAITS can outper-
form in certain metrics given sufficient training time and tuning,
they require significantly higher runtimes and depend heavily on
GPU acceleration. In contrast, our approach achieves reliable per-
formance with minimal configuration and can run efficiently on
standard CPUs.

Looking ahead, one promising direction is to accelerate our
optimization-based approach using quantum annealing [8] hard-
ware. Since our formulation naturally maps to the QUBO format,
it is well-suited for quantum processors like D-Wave’s Advantage
system. Leveraging quantum annealing could allow us to solve
larger imputation problems in less time or with better solution
quality, especially for high-dimensional datasets. Future work will
also explore hybrid approaches that combine physics-based reg-
ularization with deep learning models to improve generalization
while maintaining interpretability.

Ultimately, this work highlights the value of tailored imputation
strategies in critical domains like scientific networking, where data
gaps are long, structure matters, and trustworthiness is paramount.

Chari et al.
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