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M2Traj: A Data-Driven Framework for Multimorbidity Trajectory
Identification from Multi-Disease Diagnosis Time Series

Anonymous Author(s)

Abstract
Multimorbidity, the co-occurrence of multiple chronic conditions

in an individual, is a growing global health challenge, particularly

in ageing populations. Although existing studies have identified

cross-sectional patterns of multimorbidity, little is known about

how these patterns evolve throughout life. In this study, we propose

M
2
Traj, a data-driven framework to identify and analyse multimor-

bidity trajectories from large-scale longitudinal diagnosis records.

Leveraging electronic health records from 3.3 million individuals in

England, we first stratify participants by age and sex, then apply la-

tent class analysis to learn disease co-occurrence clusters. Wemerge

similar clusters across age bands using hierarchical clustering to

define stable multimorbidity profiles, and reconstruct individual-

level trajectories by tracking transitions between profiles over time.

Our results reveal interpretable progression pathways, persistent

profiles, and critical transition points across the lifespan, providing

novel insights to support long-term prevention, risk stratification,

and chronic disease management.
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1 Introduction
The digitalisation of healthcare systems has led to the accumulation

of large-scale electronic health records (EHRs), providing unprece-

dented opportunities for artificial intelligence (AI) and data min-

ing to transform healthcare research and clinical decision-making

[13]. In particular, longitudinal EHR data offer a rich resource for

identifying patient subgroups, modelling disease progression, and

supporting personalised and population-level care strategies.

One of the most critical challenges in this context is multimorbid-

ity, which refers to the presence of two or more chronic conditions

in an individual [15, 16]. Multimorbidity is highly prevalent, partic-

ularly in ageing populations, and is associated with poorer health
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outcomes, greater use of healthcare, and increased costs [16]. Al-

though many studies quantify multimorbidity simply by counting

co-occurring conditions [6, 7, 9], such measures do not account for

heterogeneity in disease composition and progression. To address

this, recent research has focused on identifying multimorbidity

profiles, i.e., common combinations of chronic conditions. These

studies have discovered clinically significant disease groups such

as cardiovascular or cardiometabolic profiles [2–4, 14]. However,

most of them are based on cross-sectional data and cannot capture

how disease patterns evolve over the life course.

Studying life-course multimorbidity trajectories presents unique

methodological challenges. First, diagnosis data are sparse and irreg-

ularly sampled, with high dimensionality and variable observation

windows. Furthermore, disease development is influenced by age

and sex, requiring stratified modelling. To address these challenges,

we propose a scalable, interpretable framework named M
2
Traj for

identifying and reconstructing multimorbidity trajectories from

multi-disease diagnosis time series data. Specifically, M
2
Traj first

converts multi-disease diagnosis histories into age-based represen-

tations and models the health states of individuals as binary vectors

indicating the presence or absence of multiple conditions. Within

each age-sex group, a latent class analysis [1, 5, 11] is applied to

discover clusters of individuals who share similar disease patterns.

These clusters are then linked across adjacent age bands using hi-

erarchical clustering based on disease prevalence and exclusivity

to define multimorbidity profiles that are stable over time. Finally,

individual trajectories are reconstructed by tracking transitions be-

tween profiles across the life span, enabling downstream analyses

of disease progression pathways at the population scale.

Our key contributions are summarised as the following:

• We propose M
2
Traj, a scalable and interpretable framework for

multimorbidity profile and trajectory identification from multi-

disease diagnosis time series.

• We apply latent class analysis and hierarchical clustering to

identify 39 multimorbidity profiles stratified by age and sex,

capturing distinct and clinically meaningful combinations of

chronic conditions in primary care.

• We reconstruct population-wide multimorbidity trajectories by

tracing individual-level transitions between profiles over nine

age bands, revealing dominant pathways and critical stages of

disease accumulation.

2 Dataset Description
We used primary care electronic health records on a population

scale in England to examine the distribution and progression of

multimorbidity. Specifically, we accessed data from the UK Clini-

cal Practice Research Datalink (CPRD) [18], identifying 3,314,652

individuals who had been diagnosed with two or more chronic

conditions by the end of 2019. For each individual, longitudinal

diagnosis records were available from the time of registration in

1
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Figure 1: Illustration of our proposedM2Traj framework, shown formale patients. Clinical diagnosis trajectories are extracted for
participants over the life course, stratified by sex and age band. Trajectories are encoded as health state vectors representing the
presence of specific conditions at each age band. Latent class analysis is applied within each stratum to identify multimorbidity
clusters (e.g., 𝐶𝑖,𝑀

𝑗
denotes the 𝑗-th cluster within the 𝑖-th age band for males). To capture consistent multimorbidity patterns

across age bands, hierarchical clustering is performed based on condition prevalence and exclusivity within the cluster.
Condition prevalence is defined as the proportion of individuals within a cluster who has a given condition, whereas condition
exclusivity is defined as the proportion of individuals with a specific condition in a given age band who belongs to that particular
cluster. This yields generic multimorbidity profiles (e.g., M1, M5, M9). Individual multimorbidity trajectories are reconstructed
by mapping transitions across profiles over the life course.

the healthcare system, from birth until death or exit from the study.

Study exit was defined as the first deregistration from general prac-

tice or the last data collection date for that practice. Our dataset

includes longitudinal diagnoses of 18 commonly reported chronic

diseases spanning mental health (anxiety, depression, serious men-

tal illnesses), respiratory (asthma, chronic obstructive pulmonary

disease), metabolic (diabetes), cardiovascular (hypertension, coro-

nary heart disease, stroke or transient ischaemic attack, atrial fib-

rillation, heart failure, peripheral arterial disease), renal (chronic

kidney disease), neurological (dementia, Parkinson’s disease), mus-

culoskeletal (osteoporosis, rheumatoid arthritis), and oncological

(cancers) domains.

3 Methods
3.1 Problem Definition
We are given a patient diagnosis dataset D = {(𝑖,D𝑖 ) | 𝑖 =

1, · · · , 𝑁 }, where 𝑁 is the number of patients. The multi-disease

diagnosis history of the 𝑖-th patient is defined as an event time

series (i.e., irregularly sampled time series) D𝑖 = {(𝑥𝑖, 𝑗 , 𝑡𝑖, 𝑗 ) | 𝑗 =
1, · · · , 𝑁 disease

𝑖
}, where 𝑥𝑖, 𝑗 and 𝑡𝑖, 𝑗 denote the type of disease and

the diagnosis time of the 𝑗-th disease diagnosed with the patient

𝑖 . The type of disease 𝑥𝑖, 𝑗 belongs to a set of 𝑁 disease
unique dis-

eases X. Hence, the multimorbidity trajectory task can be formally

defined below.

Problem 1. Multimorbidity Trajectory Identification.Given
a diagnosis dataset D, the multimorbidity trajectory identification

task is to identify the progression pathways across a set of profiles
P = {𝑃 𝑗 | 𝑗 = 1, · · · , 𝑁 profile} throughout the life course, such that
each profile 𝑃 𝑗 represents a group of patients with similar patterns of
chronic diseases.

An overview of the proposed framework, M
2
Traj, is shown in

Figure 1. For each individual, we first transform their diagnosis

history into an age-aligned trajectory and construct a sequence

of health state vectors across predefined age bands. Within each

age band, latent class analysis is used to group individuals into

disease clusters. To ensure longitudinal consistency, we compute

similarity metrics across clusters of adjacent age bands and apply

hierarchical clustering to derive a unified set of multimorbidity

profiles. Finally, each individual’s trajectory is reconstructed by

mapping their progression across these profiles over time.

3.2 Stratified Diagnosis Representations
Age and sex are known to influence the development of multimor-

bidity [10, 15]. We therefore stratify our analysis by age and sex.

For each individual 𝑖 , the diagnosis trajectory D𝑖 = {(𝑥𝑖, 𝑗 , 𝑡𝑖, 𝑗 )} is
converted into an age-based trajectory Dage

𝑖
= {(𝑥𝑖, 𝑗 , 𝑎𝑖, 𝑗 )}, where

𝑎𝑖, 𝑗 is the age at diagnosis. The lifespan is divided into nine age

bands: <18, 18–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, and

≥85, following previous research [19]. For each band 𝑎 and sex

𝑠 ∈ {𝑀, 𝐹 }, an individual’s health state is represented as a binary

vector 𝒉𝑎,𝑠
𝑖

∈ {0, 1}𝑁 disease

indicating the presence or absence of

each disease.

2
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3.3 Multimorbidity Cluster Learning
For each age-sex stratum (𝑎, 𝑠), we develop a latent class analysis

method [11] for clustering. Specifically, let H𝑎,𝑠 = {ℎ𝑎,𝑠
𝑖

| 𝑖 =

1, · · · , 𝑁𝑎,𝑠 } denote the set of health state vectors of all the 𝑁𝑎,𝑠

patients observed in that stratum. Given a predetermined number of

latent classes (clusters) 𝐾 , each health state vector 𝒉𝑎,𝑠
𝑖

is assumed

to be generated conditionally independently given the latent class

𝐶 ∈ {1, · · · , 𝐾}, which can be expressed as:

P(𝒉𝑎,𝑠
𝑖

| 𝐶 = 𝑘) =
𝑁 disease∏
𝑗=1

P(ℎ𝑎,𝑠
𝑖, 𝑗

| 𝐶 = 𝑘).

Furthermore, the likelihood of the observation is:

P(𝒉𝑎,𝑠
𝑖

) =
𝐾∑︁
𝑘=1

P(𝐶 = 𝑘)P(𝒉𝑎,𝑠
𝑖

| 𝐶 = 𝑘).

Let 𝜃 𝑗,𝑘 = P(ℎ 𝑗 = 1 | 𝐶 = 𝑘) denote the class-specific Bernoulli
probability for disease 𝑗 , and let 𝜋𝑘 = P(𝐶 = 𝑘) be the prior proba-
bility of class 𝑘 , satisfying

∑𝐾
𝑘=1

𝜋𝑘 = 1. For simplicity, we omit the

stratum identifier (𝑎, 𝑠) for the two variables. Then the marginal

likelihood for an individual 𝒉𝑎,𝑠
𝑖

is expressed as:

P(𝒉𝑎,𝑠
𝑖

) =
𝐾∑︁
𝑘=1

𝜋𝑘

𝑁 disease∏
𝑗=1

𝜃
ℎ
𝑎,𝑠
𝑖,𝑗

𝑗𝑘
(1 − 𝜃 𝑗,𝑘 )

1−ℎ𝑎,𝑠
𝑖,𝑗 .

The total log-likelihood over all patients in stratum (𝑎, 𝑠) is then
calculated as:

L𝑎,𝑠 =
𝑁𝑎,𝑠∑︁
𝑖=1

log
©­«
𝐾∑︁
𝑘=1

𝜋𝑘

𝑁 disease∏
𝑗=1

𝜃
ℎ
𝑎,𝑠
𝑖,𝑗

𝑗𝑘
(1 − 𝜃 𝑗,𝑘 )

1−ℎ𝑎,𝑠
𝑖,𝑗
ª®¬ .

The model parameters {𝜋𝑘 , 𝜃 𝑗,𝑘 | 𝑘 = 1, · · · , 𝐾, 𝑗 = 1, · · · , 𝑁 disease}
are estimated bymaximising this log-likelihood using the Expectation-

Maximization (EM) algorithm. Finally, we derive the posterior prob-

ability that an observation 𝒉𝑎,𝑠
𝑖

belongs to latent class 𝑘 as:

𝛾
𝑎,𝑠

𝑖,𝑘
= P(𝐶 = 𝑘 | 𝒉𝑎,𝑠

𝑖
) =

𝜋𝑘

𝑁 disease∏
𝑗=1

𝜃
ℎ
𝑎,𝑠
𝑖,𝑗

𝑗,𝑘
(1 − 𝜃 𝑗,𝑘 )

1−ℎ𝑎,𝑠
𝑖,𝑗

𝐾∑
𝑙=1

𝜋𝑙

𝑁 disease∏
𝑗=1

𝜃
ℎ
𝑎,𝑠
𝑖,𝑗

𝑗,𝑙
(1 − 𝜃 𝑗,𝑙 )

1−ℎ𝑎,𝑠
𝑖,𝑗

.

Therefore, the most likely cluster assignment for each patient is

argmax𝑘 𝛾
𝑎,𝑠

𝑖,𝑘
, yielding 𝐾 clusters per stratum. We let 𝐶

𝑎,𝑠
𝑗

denote

the 𝑗-th obtained cluster from age band 𝑎 and sex group 𝑠 .

Following previous studies [1, 5], the optimal number of clusters

for each stratum is determined based on model parsimony using

the Bayesian information criterion (BIC), Akaike information cri-

terion (AIC) and consistent AIC (cAIC), which balance goodness

of fit against model complexity to minimise overfitting. The final

selection also incorporates clinical relevance and interpretability,

as established through successive rounds of review by an expert

panel and consensus meetings with clinicians.

3.4 Multimorbidity Profile Identification
Once multimorbidity clusters have been identified within each age-

sex stratum (𝑎, 𝑠), we examine their consistency across adjacent

age bands to identify stable patterns of disease accumulation. Since

chronic diseases often exhibit persistent trends with ageing, clus-

ters from neighbouring age bands may represent similar underlying

multimorbidity patterns. To capture these longitudinal consisten-

cies, we implement a cluster merging step to construct the final set

of multimorbidity profiles.

We merge clusters based on two key characteristics: disease

prevalence and disease exclusivity. For a given cluster 𝐶
𝑎,𝑠
𝑗
, let

H𝑎,𝑠
𝑗

= {𝒉𝑎,𝑠
𝑖

| argmax𝑘 𝛾
𝑎,𝑠

𝑖,𝑘
= 𝑗} denote the set of health state

vectors assigned to that cluster. The disease prevalence vector 𝒇𝑎,𝑠
𝑗

represents the proportion of individuals within the cluster diag-

nosed with each disease and is defined as:

𝒇𝑎,𝑠
𝑗

=
1

| H𝑎,𝑠
𝑗

|

∑︁
𝒉∈H𝑎,𝑠

𝑗

𝒉.

On the other hand, the disease exclusivity vector is calculated as

the proportion of individuals with a specific disease in a given age

band who belong to that particular cluster, and the exclusivity value

for 𝑙-th disease can be calculated as:

𝒈𝑎,𝑠
𝑗,𝑙

=

∑
𝒉∈H𝑎,𝑠

𝑗
ℎ𝑙∑

𝒉∈H𝑎,𝑠 ℎ𝑙
.

With the two characteristic vectors obtained, we concatenate

them together into a vector, i.e., 𝒙𝑎,𝑠
𝑗

= [𝒇𝑎,𝑠
𝑗

;𝒈𝑎,𝑠
𝑗
] ∈ R2𝑁 disease

,

which describes the characteristics of the 𝑗-th multimorbidity clus-

ter learnt from the age-sex stratum (𝑎, 𝑠). Subsequently, we apply
agglomerative hierarchical clustering using Ward’s method to the

concatenated vectors of each sex group, thus quantifying the simi-

larity of the cluster across age bands. Clusters within each sex group

are merged based on thresholds informed by clinical interpretability

and hierarchical clustering results, thus forming multimorbidity

profiles P = {𝑃𝑖 | 1, · · · , 𝑁 profile}. Each multimorbidity profile is

characterised by its distinct composition of chronic diseases and

is named according to a convention guided by clinicians. This ap-

proach ensures accurate identification of sex- and age-specific pro-

files while capturing multimorbidity patterns consistently across

different strata.

3.5 Multimorbidity Trajectory Reconstruction
Based on the multimorbidity profiles identified in each age-sex

stratum, we reconstruct the temporal progression of each individual

as a discrete-time sequence over predefined age bands. Specifically,

for each individual, we construct a sequence of states, where each

state corresponds to one of the following:

• a multimorbidity profile (e.g., 𝑃1, 𝑃2, . . . , 𝑃𝑁
profile

),

• a healthy state without any of the 18 studied conditions (denoted

as “H”)

• a state with only one diagnosed condition (denoted as “S”)

• death (denoted as “D”)

• study exit (denoted as “E”).

This results in a trajectory vector of length equal to the number of

age bands (nine in our study), capturing the patient’s longitudinal

evolution of the patient’s health states throughout life. The structure

of these trajectories is discrete, aligned to irregular age-specific

sampling windows, and categorical in nature, making it particularly

suitable for symbolic time series analysis.

3
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To enable downstream analysis, we further encode each trajec-

tory as a symbolic sequence 𝑇𝑖 = [𝑧1
𝑖
, 𝑧2
𝑖
, ..., 𝑧𝐴

𝑖
], where 𝑧𝑎

𝑖
∈ Z

is the assigned state of the individual 𝑖 in the age band 𝑎, and Z
is the full set of possible states as described above. This symbolic

representation allows for:

• Trajectory pattern discovery, using frequent sequence mining

techniques to identify common progression paths;

• Temporal clustering, where patients are grouped based on

shared progression patterns using distance measures such as

Dynamic Time Warping (DTW) or edit distance;

• Predictive modelling, enabling future state prediction (e.g.,

transition to a complex multimorbidity profile) using Markov

models or sequence-based neural architectures;

• State transition analysis, where we estimate empirical transi-

tion matrices and characterise dominant disease accumulation

pathways across age bands.

Importantly, this formulation generalises traditional time series

analysis to the setting of discrete multivariate event sequences with

age-aligned structure. It accommodates the irregular nature of diag-

nosis data and uses unsupervised temporal abstraction tomodel pro-

gression without requiring dense sampling or fixed-length time in-

tervals. Hence, M
2
Traj provides a scalable and interpretable frame-

work for mapping population-wide multimorbidity dynamics using

real-world multi-disease diagnosis time series.

4 Experiments
4.1 Experimental Setting
Weuse the dataset described before for experiments. The prevalence

of the multimorbidity profile within the social subgroup is used

to quantify social disparities. All experiments are run on an RTX

6000 GPU with 32 GB RAM. The latent class analysis methods

are implemented using the StepMix package [12], and hierarchical

clustering is performed using the SciPy package [17] in Python.

4.2 Identified Multimorbidity Profiles
The proposed framework identified 21male and 18 femalemultimor-

bidity profiles over the course of life, as shown in Figure 2. These

profiles exhibited a clear age-dependent progression, increasing in

both prevalence and complexity with age.

In early life (<35 years), profiles were primarily mental health–

predominated, often co-occurring with asthma (e.g., M1–M5 in

males, F1–F6 in females). From age 35 to 64, the cardiometabolic and

cancer-related profiles became more prominent (M6–M12, F7–F13),

while older adults (≥65) exhibited more complex, multi-system pro-

files that involve cardiovascular, renal, metabolic, and respiratory

domains (M13–M21, F14–F18).

Profiles classified as “complex” (mean condition count >4 [8])

were concentrated in older age bands. For example, M14 (Cardiovas-

cular + Cardiometabolic + Renal) andM15 (Mental + Cardiovascular

+ Renal + Respiratory) in males had mean condition counts of 5.86

(SD: 1.34) and 7.03 (SD: 1.30), respectively. Their female counter-

parts, F16 and F15, exhibited similar complexity, with 4.53 and 7.02

conditions on average. Distinct disease combinations were evident:

while M15 and F15 were dominated by mental health and respira-

tory conditions (depression prevalence >85%), M14 and F16 had a

higher burden of heart failure and atrial fibrillation.

Several profiles showed long persistence across age bands. M1

and F1 (Anxiety + Depression) were present across six age bands be-

fore 65. F10 (Cardiometabolic + Renal) and M11 (CHD-predominant

Cardiovascular + Diabetes) spanned five consecutive bands starting

at age 45. F10 ultimately became the most prevalent profile in older

females, peaking at 28.24% (95% CI: 28.14–28.35%) in ages 75–84.

Sex-specific patterns were consistent and notable. Males were

overrepresented in cardiovascular, respiratory, and cancer-dominant

profiles (e.g., M11, M14–M16), while females appeared more fre-

quently in mental, neurological, and musculoskeletal profiles (e.g.,

F14, F15, F18). For example, M19 (predominant in COPD) had a

prevalence of COPD of 81. 37%, compared to a lower respiratory

complexity in the female profiles. In contrast, osteoporosis was

concentrated in F13 (Musculoskeletal + Cancer), with a prevalence

exceeding 94%.

These findings highlight consistent temporal patterns in mul-

timorbidity evolution and marked differences by sex and disease

domain. The profiles offer a data-driven abstraction of disease co-

occurrence, which serve as the foundation for reconstructing tra-

jectories in the next stage.

4.3 Identified Multimorbidity Trajectories
Figure 3 presents the reconstructed multimorbidity trajectories

across the age bands using the symbolic representations derived

from the profile assignments. The number of individuals in multi-

morbidity states increased with age, peaking at 65–74 and declining

in older bands due to mortality or exit. The transitions between pro-

files reveal dominant pathways of disease progression throughout

life.

In both sexes, mental health-only profiles (M1 and F1) frequently

marked the onset of multimorbidity and served as precursors to

more complex profiles that incorporate hypertension and diabetes.

By midlife (45–64), transitions from M1/F1 to M6/F7 (Hypertension

+ Depression + Anxiety) became common. In later age bands (65–

74), profiles such as M13 and F14 (Mental + Physical Long-term

Conditions) absorbed individuals from M1, F1, M6, F7, and M8/F8,

indicating convergence toward multi-system burden.

Cardiovascular trajectories typically involved early transitions

from healthy or single-disease states into M11 or F11 (CHD + Dia-

betes ±Mental Health), followed by progression to more complex

cardiometabolic-renal profiles such as M14 and F16. For example,

M11 contributed 42.25% and 31.22% of M14’s population in the

65–74 and 75–84 bands, respectively. A similar sequence was ob-

served in females: F11 transitioned into F16 through F10 and F17

intermediaries.

Cardiometabolic-renal transitions exhibited shared and sex-specific

patterns. In males, M10 (Hypertension + Diabetes) and M12 (Hy-

pertension + Cancer + Renal) were frequent entry points, often

leading to M17 (Cardiometabolic + Renal) and M18 (Cancer + Phys-

ical Long-term Conditions). These two profiles accounted for over

70% of M17 and nearly 80% of M18. In females, F10 and F17 played

analogous roles, feeding into F16, with 45.50% of F17’s population

transitioning to F10 in the 75–84 age band.
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Figure 2: Characteristics of the identified multimorbidity profiles for (a) Males and (b) Females. In each panel, the left part
presents a heatmap of disease prevalence within each profile, with darker blue shades indicating higher prevalence. The
middle part presents a bubble plot, where the size of circles corresponds to the prevalence for a profile across an age band. The
colour intensity reflects the mean number of conditions per individual, with darker red shades indicating a higher number
of conditions. Profile labels are positioned between the two plots, and the right part lists the name of each profile. Diseases
listed in the profile names are ordered by prevalence, and those with a mean number of diseases exceeding four are annotated
as “Complex”. Condition abbreviations: anxiety (Anx), depression (Dep), serious mental illness (SMI), asthma (Ast), chronic
obstructive pulmonary disease (COPD), diabetes (Diab), hypertension (Hyp), coronary heart disease (CHD), stroke or transient
ischaemic attack (Stroke), atrial fibrillation (AF), heart failure (HF), peripheral arterial disease (PAD), chronic kidney disease
(CKD), osteoporosis (Ost), rheumatoid arthritis (RA), cancer excluding non-melanoma skin cancers (Can).
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Figure 3: Multimorbidity trajectories over the life course for (a), Males and (b), Females. The Sankey diagrams illustrate
transitions of the 3.3 million individuals in the primary study cohort between multimorbidity profiles across different age
bands. For each panel, the height of each bin is proportional to the number of individuals within the corresponding profile.
Each coloured flow represents the transition of individuals from one profile to another, where the thickness of the flow
is proportional to the number of individuals in the transition. Transitions from the same source profile are shown in the
same colour. The common profiles across sexes are represented using the same colour, and profiles with similar condition
compositions use similar hues. For clarity, transitions from individuals with no or single conditions into multimorbidity
profiles are omitted.
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Respiratory trajectories also differed by sex. Inmales,M9 (Asthma

+ Hypertension) was present from ages 35–74 and frequently tran-

sitioned to M19 (COPD + Cardiovascular) at older age. In females,

respiratory and mental health conditions were more closely cou-

pled. F5 (Depression + Asthma) transitioned almost entirely to F2

(Anxiety + Depression + Asthma) in midlife, which then contributed

heavily to F9 and F12, both asthma-predominant with increasing

physical comorbidities.

Overall, the profile-to-profile transitions provide an interpretable

discrete approximation of disease progression. Common patterns in-

clude: (1) mental health–only profiles as early-stage multimorbidity;

(2) cardiometabolic conditions emerging in midlife and persisting

into later stages; (3) distinct paths toward complexity through either

cardiovascular or respiratory comorbidity accumulation. The iden-

tified multimorbidity trajectory captures critical transition points

over the life course, offering a principled way to stratify the popu-

lation by risk and temporal dynamics.

5 Conclusion
We present M

2
Traj, a comprehensive framework for identifying

multimorbidity profiles and reconstructing their longitudinal tra-

jectories using large-scale primary care records of multi-disease

diagnosis time series. By integrating latent class analysis, hierar-

chical clustering, and age–sex stratified trajectory modelling, our

approach captures the dynamic evolution of multimorbidity across

the life course. The resulting profiles reveal persistent disease clus-

ters, age-related progression patterns, and clear sex-specific dif-

ferences. These findings provide actionable insights for tailoring

prevention and intervention strategies, underscoring the value of

life-course-informed and population-scale approaches to chronic

disease management.
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