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Abstract
Wavelet transform is widely used to analyze non-stationary data

whose frequencies change exponentially over time. In recent years,

there have been attempts to use the continuous wavelet coefficients

obtained by the continuous wavelet transform as features for ma-

chine learning. Mother wavelets are usually chosen from limited

collections of functions. To obtain mother wavelets suitable for

a specific machine learning task, we propose a novel method to

flexibly construct a mother wavelet with a compact support in the

Fourier domain using a neural network.We call themodel Learnable

Continuous Wavelet transform Network (LCWnet). We show that

LCWnet significantly improves the performance of classification

tasks compared with existing mother wavelets in three datasets.
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• Computing methodologies→ Neural networks.
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1 Introduction
Time-series data is widely observed in various domains, such as

industry [22], speech recognition [7], medicine [26], wind speed

prediction [16], and geology [11].With the increase in data obtained

by attaching sensors to various devices, there has been an emphasis

on the importance of incorporating signal processing techniques,

which have been extensively researched from both theoretical and

practical perspectives, into machine learning. These techniques

are essential for extracting meaningful patterns from raw data and

enhancing model interpretability and performance.

Among the signal processing techniques, wavelet transform is

particularly useful for non-stationary data that change exponen-

tially in frequency, such as acoustic data and vibration data.Wavelet
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transform provides time-frequency representation of the data con-

volving a function called mother wavelet while changing its scale.

Wavelet transform can be either discrete or continuous [6]. Dis-

crete transform is an efficient computation for obtaining wavelet

coefficients and is used for information compression and feature

extraction. Continuous transform gives wavelet coefficients for

all scales. The wavelet coefficient, which is obtained by wavelet

transform, depends on the mother wavelet.

It has been reported that using continuous wavelet coefficients to

extract features of machine learning can improve the performance

of some tasks [14]. For instance, when diagnosing arrhythmia by

analyzing electrocardiogram heartbeats, it is effective to use contin-
uous wavelet transform (CWT) to extract the time-frequency char-

acteristics of the electrocardiogram [27]. The continuous wavelet
coefficients (CWC), which is obtained by CWT, can be treated as a

two-dimensional feature and classified using a convolutional neural
network (CNN). On the other hand, the discrete wavelet transform

offers high time resolution for high frequencies and low time resolu-

tion for low frequencies. Therefore, unlike the continuous wavelet

transform, the discrete wavelet transform cannot be computed at a

constant resolution and thus cannot be directly applied to calcula-

tions requiring two-dimensional feature analysis.

Mother wavelets must be selected from functions that satisfy the

so-called admissible condition. One criterion for choosing it is that

the wavelet coefficients should be as sparse as possible to enhance

information compression and the interpretability of visualization

[20]. Qualitatively, a sparse representation can be achieved by using

amother wavelet that matches the shape of the time-series data [23].

In the quantitative method, the mother wavelet is selected based on

the entropy [5] or the minimum description length of the wavelet

coefficients [9]. However, there are expected to be more appropriate

functions for mother wavelets when using wavelet coefficients as

features for machine learning because mother wavelets are selected

from a limited collection of functions in these methods.

Learning the mother wavelet from data is a promising method to

improve performance. However, this poses a significant challenge

because the mother wavelet must satisfy the admissible condition.

If the CWT is performed with a function that fails to meet this

condition, the resulting transform may not accurately represent the

time-frequency characteristics of the data. Additionally, the range

of scales to be calculated could become excessively large, leading to

practical difficulties. These issues highlight the need for a learnable

and theoretically sound approach that ensures both computational

feasibility and signal fidelity.

To address these challenges, we propose a Learnable Continu-

ous Wavelet Transform using a neural network, named LCWnet.

LCWnet is a mother wavelet whose CWC is suitable for a specific
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Figure 1: Overview of mother wavelets trained using LCWnet. LCWnet consists of real and imaginary parts, each of them has a
compact support in the Fourier domain. LCWNet transforms input data to CWC. After vectorized, CWC is input to a machine
learning model as a feature. The parameters of LCWnet are updated by the output of the model. Blue arrows and orange arrows
represent inference and learning processes, respectively.

task, and trained from the output of the subsequent machine learn-

ing model (Figure 1). It has a compact support in the Fourier domain

in order to stable learning and ensure that it satisfy the admissible

condition.

Our contributions are as follows:

• We propose a novel framework where the mother wavelet

can learn from data.

• It is proven that LCWnet satisfies the admissibility condition,

thereby establishing itself as a mother wavelet.

• LCWnet achieves the highest performance in binary classifi-

cation experiments compared with existing mother wavelets.

2 Related works
In this section, we describe existing researches from three perspec-

tives. The first is learning discrete wavelet transform from the view-

point of finite-length filter. The second is research on optimizing

the parameters of conventional mother wavelets. The third is the

relationship between operator learning and CWT when regarded

as an operator.

2.1 Discrete wavelet transform.
In discrete wavelet transform, mother wavelets are represented

as filters, and the time-series data can be decomposed at scales

that are powers of 2. Multi resolution analysis (MRA) [18] is a time-

efficient method for performing discrete wavelet transform. In re-

cent years, numerous efforts have been made to utilize the discrete

wavelet coefficients learned from the data for machine learning

tasks. For instance, each level of the MRA filters are constructed

as a one-dimensional CNN, and learn from the data to obtain a

sparse representation [19]. In this method, the filter might not nec-

essarily satisfy the construction condition of the mother wavelet

because there is no restriction on the filter. Furthermore, because

this method represents the mother wavelet as a filter, it cannot be

directly extended to the continuous wavelet transform.

2.2 Existing continuous mother wavelets.
There have been attempts to train existing mother wavelets by

adjusting their parameters. The parameters of Shannon wavelet

filter has been learned for speech recognition [24]. The center

frequency and width parameters of the Morlet wavelet have been

learned to classify gravitational waves [25]. However, the mother

wavelets learned by these methods are limited to existing ones, and

they are not necessarily suitable for machine learning tasks.

2.3 Operator learning.
Learning CWT differs from the discrete transform, which involves

learning a finite number of filters. CWT should be treated as an

operator that maps one-dimensional time-series function to a two-

dimensional image. Neural networks have been employed to learn

operators for a considerable period [4]. Various effective models

have been proposed based on DeepONet [17], which was proposed

as a method for finding solutions to partial differential equations. In

particular, Fourier neural operator (FNO) [15] is a method that trans-

forms functions by repeatedly using Fourier layers that transform

the input functions by convolutions. Learning the mother wavelet

for continuous wavelet transform is similar to FNO because both

involve convolutions. However, since FNO learns the integral ker-

nel without imposing any restrictions, it cannot consistently learn

functions that satisfy the admissible condition. Therefore, learning

the CWT requires a new method in which the convolution kernel

function always satisfies the admissibility condition.

3 Methodology
In this section, we describe the preliminary of wavelet transform to

formulate the definition of mother wavelets and numerical calcula-

tion to implement CWT. Following an examination of the necessary

conditions for the mother wavelet, we propose LCWNet based on

these considerations.
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3.1 Preliminary
The mathematical formulation of continuous wavelet transform
(CWT) is presented as follows [6]. CWT provides a time-frequency

representation of a function by convolving a mother wavelet, at

different scales. Complex wavelet transform, where the mother

wavelet takes complex values, is used to extract the phase informa-

tion of the time-series data. To perform complex wavelet transform,

complex mother wavelets𝜓 are chosen from the following subspace

W of C-valued square-integrable functions,

W =

{
𝜓 ∈ 𝐿2 (R)

����∫ ∞

−∞
𝑑𝑘

|F [𝜓 ] (𝑘) |2
|𝑘 | < ∞

}
, (1)

where F represents the Fourier transform,

ˆ𝜓 (𝑘) = F [𝜓 ] (𝑘) = 1

√
2𝜋

∫ ∞

−∞
𝑑𝑥𝜓 (𝑥)𝑒−

√
−1𝑘𝑥 . (2)

We also use ·̂ to represent functions in the Fourier domain. Mother

wavelets must satisfy the condition in Equation (1), which is called

the admissible condition. Functions to be wavelet transformed are

assumed to be square integrable. For a function 𝑓 ∈ 𝐿2 (R), contin-
uous wavelet coefficients (CWC) using a complex mother wavelet𝜓

is obtained by

𝑇wav

𝜓
𝑓 (𝑎, 𝑏) = |𝑎 |−1/2

∫ ∞

−∞
𝑑𝑥 𝑓 (𝑥)𝜓

(
𝑥 − 𝑏
𝑎

)∗
, (3)

where the parameters 𝑎 and𝑏 represent the scale and the translation

of the mother wavelet, respectively, and the asterisk ∗ denotes the
complex conjugate.

Equation (3) can also be expressed using the Fourier transform

F and its inverse transform F −1
as follows,

𝑇wav

𝜓
𝑓 (𝑎, 𝑏) =

√
𝑎F −1 [F [𝑓 ] (·)F [𝜓 ]∗ (𝑎·)] (𝑏), (4)

where · represents the argument of the function. The inverse Fourier

transform in Equation (4) is obviously written as follows,

F −1 [F [𝑓 ] (·)F [𝜓 ]∗ (𝑎·)] (𝑏)

=
1

√
2𝜋

∫ ∞

−∞
𝑑𝑘F [𝑓 ] (𝑘)F [𝜓 ]∗ (𝑎𝑘)𝑒

√
−1𝑘𝑏 . (5)

It is well-established that the wavelet transform is invertible.

Specifically, when 𝑓 is a real-valued function and the support of the

mother wavelet in the Fourier domain F [𝜓 ] is [0,∞), the inverse
transform weakly converges as follows,

𝑓 = 2𝐶−1
𝜓

∫ ∞

0

𝑑𝑎

𝑎2

∫ ∞

−∞
𝑑𝑏Re

[
𝑇wav

𝜓
𝑓 (𝑎, 𝑏)𝜓𝑎,𝑏

]
, (6)

where

𝐶𝜓 = 2𝜋

∫ ∞

0

𝑑𝑘 |𝑘 |−1 | ˆ𝜓 (𝑘) |2, (7)

𝜓𝑎,𝑏 (𝑥) = |𝑎 |−1/2𝜓
(
𝑥 − 𝑏
𝑎

)
. (8)

This expression can be interpreted that 𝑇wav

𝜓
𝑓 has the all informa-

tion of the original function 𝑓 at scales 𝑎 > 0.

3.2 Problem setting
The numerical computation of the CWC can be computed by dis-

cretizing Equation (4). For time series data 𝒇 = (𝑓0, . . . , 𝑓𝐿−1) ∈ R𝐿
of length 𝐿 obtained at a sampling frequency 𝑞

freq
and a complex

mother wavelet𝜓 and discretized 𝑆 scales 𝒂 = (𝑎0, . . . , 𝑎𝑆−1) ∈ R𝑆 ,
the complex continuous wavelet transform 𝑇wav

𝜓
: R𝐿 → C𝑆×𝐿 is

computed by the following calculation for 𝑠 = 0, . . . , 𝑆 − 1,

𝑇wav

𝜓
𝒇(𝑠,𝑙 ) =

√
𝑎𝑠F −1

disc

[
F
disc

[𝒇 ] ⊙ Ψ𝑎𝑠
]
𝑙
, (9)

where ⊙ represents the point-wise product of vectors, 𝐹
disc

and 𝐹−1
disc

are discrete Fourier transform and its inverse transform defined as

F
disc

[𝒇 ]𝑘 =

𝐿−1∑︁
𝑙=0

𝑓𝑙𝑒
−2

√
−1𝜋𝑘𝑙
𝐿 , (10)

F −1
disc

[𝒇 ]𝑙 =
1

𝐿

𝐿−1∑︁
𝑘=0

𝑓𝑘𝑒
2

√
−1𝜋𝑘𝑙
𝐿 , (11)

and Ψ𝑎𝑠 is a discretized form of F [𝜓 ]∗ (𝑎𝑠 ·) defined as

(Ψ𝑎𝑠 )𝑙 = F [𝜓 ]∗ (𝑎𝑠𝑞𝑙 ) for 𝑙 = 0, . . . , 𝐿 − 1, (12)

where

𝒒 =

{
𝑞
freq

𝐿
(0, 1, . . . , 𝐿−1

2
,−𝐿−1

2
, . . . ,−1) if 𝐿 is odd,

𝑞
freq

𝐿
(0, 1, . . . , 𝐿

2
− 1,−𝐿

2
, . . . ,−1) otherwise,

(13)

is a vector representing frequencies obtained by discrete Fourier

transform.

CWC is numerically computed in Equation (9). This calculation

has the advantage of computational efficiency compared to original

Equation(3) because it does not require integration, and can be

calculated simultaneously for all time 𝑙 .

While the discrete wavelet transform is generally computed

such that the scales are halved, the continuous wavelet transform

allows for specifying scales at any resolution. Consequently, F [𝜓 ]∗
must be computed at any scale, requiring the mother wavelet to be

defined not only at a finite points but at any point.

In this paper, we address the classification of time series data.

Throughout the task, the CWC is treated as a feature input for

machine learning classification. We consider a framework to obtain

the mother wavelet that maximizes performance.

3.3 Constructing a learnable mother wavelet
We now describe the configuration of LCWnet. For a function to

qualify as a mother wavelet, it must satisfy the admissible condi-

tion, which can be interpreted as the following three necessary

conditions:

(1) In the integral of the admissible condition, it must converge

to zero at the origin faster than the order O(𝑘1/2) to avoid

divergence.

(2) To prevent divergence at infinity, it must decay at infinity

with an order of O(𝑘−𝛼 ) for any 𝛼 > 0.

(3) It must avoid divergence over the integration interval.

Based on this consideration, we introduce the LCWnet to con-

struct the mother wavelet which have a compact support in the

Fourier domain as illustrated in Figure 2. First, we prepare a multi-
layer perceptron MLP𝜃 parameterized by 𝜃 with one-dimensional
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Figure 2: The architecture of LCWnet.

input and output layers. The activation function of the MLP is lin-

ear for the final layer, and nonlinear continuous functions over R
such as Rectified Linear Unit (ReLU) or logistic sigmoid function

for the other layers. This MLP is assumed to have finite layers and

finite units for each layer in order to be a continuous function. Next,

we construct the real part
ˆ𝜓
(𝑟 )
𝜃𝑟

and the imaginary part
ˆ𝜓
(𝑖 )
𝜃𝑖

of the

complex mother wavelet in the Fourier domain as follows,

ˆ𝜓
(𝑟 )
𝜃𝑟

(𝑘) = MLP𝜃𝑟 (𝑘)ReLU(𝑘)ReLU(𝑘max − 𝑘), (14)

ˆ𝜓
(𝑖 )
𝜃𝑖

(𝑘) = MLP𝜃𝑖 (𝑘)ReLU(𝑘)ReLU(𝑘max − 𝑘), (15)

where 𝑘max is a hyperparameter that limits the domain of the

mother wavelet and, 𝜃𝑟 and 𝜃𝑖 are the parameters of real and imag-

inary mother wavelets. ReLU represents

ReLU(𝑘) =
{
𝑘 if 𝑘 ≥ 0,

0 if 𝑘 < 0.
(16)

Using these, we construct the complex mother wavelet defined in

the Fourier domain as follows,

ˆ𝜓𝜃 (𝑘) = ˆ𝜓
(𝑟 )
𝜃𝑟

(𝑘) +
√
−1 ˆ𝜓 (𝑖 )

𝜃𝑖
(𝑘) . (17)

Then, the constructed function satisfies the admissible condition.

Proposition 3.1.
ˆ𝜓𝜃 in Equation (17) is a mother wavelet. In other

words, this function satisfies the admissible condition.

Proof. We prove that the output of the function satisfies the ad-

missible condition. The integral in Equation (1) can be decomposed

of its real part and imaginary part as follows,∫ ∞

−∞
𝑑𝑘

| ˆ𝜓𝜃 (𝑘) |2
|𝑘 |

=

∫ ∞

−∞
𝑑𝑘

| ˆ𝜓 (𝑟 )
𝜃𝑟

(𝑘) |2

|𝑘 | +
∫ ∞

−∞
𝑑𝑘

| ˆ𝜓 (𝑖 )
𝜃𝑖

(𝑘) |2

|𝑘 | . (18)

It is enough to show that only the real part is bounded because the

real part and the imaginary part have the same structure.∫ ∞

−∞
𝑑𝑘

| ˆ𝜓 (𝑟 )
𝜃𝑟

(𝑘) |2

|𝑘 |

=

∫ 𝑘max

0

𝑑𝑘
��
MLP𝜃𝑟 (𝑘)

��2 𝑘 (𝑘max − 𝑘)2,

< 𝑘3
max

∫ 𝑘max

0

𝑑𝑘
��
MLP𝜃𝑟 (𝑘)

��2 . (19)

TheMLPs are assumed to be obtained by repeating affine transforms

and nonlinear continuous transforms a finite number of times. Since

a function obtained by composition of a finite number of continuous

functions is also continuous, | (MLP𝜃𝑟 ) | is continuous and takes the
maximum value 𝑀 in [0, 𝑘max] by the maximum value principle.

Therefore, the left hand side of Equation (19) is bounded above by

𝑘4
max

𝑀2
. Hence, the function satisfies the admissible condition. □

To calculate the CWC using LCWnet, simply replace F [𝜓 ]∗ in
Equation (12) with LCWnet and use Equation (9). LCWnet takes

values only in the positive frequency, inverse wavelet transform

can be conducted in Equation (6). This means the positive scales of

CWC transformed by LCWnet contain all information of the data.

Therefore, we consider only the positive scales.

Having a compact support not only satisfies the admissible con-

dition, but also stabilizes the learning. We calculate the CWC for

the prepared scales during the learning process. As the shape of

the function changes during learning, the activation position of

the CWC shifts in the scale direction This might cause the CWC to

move outside the scales at which we calculate. However, if mother

wavelets have a compact support, this shift can be prevented be-

cause the range where CWC can shift is limited.

3.4 Learning algorithm
Here, we provide a detailed description of the LCWnet learning

framework illustrated in Figure 1. We consider 𝐾 class prediction

model C : C𝑆×𝐿 → R𝐾 to output the probability that the time-

series data belong to each class from its CWC. To train both the

mother wavelet and the machine learning model simultaneously by

gradient descent method, the model is assumed to be differentiable.

Let D = {(𝒇𝑖 , 𝒍𝑖 )}𝑖 be the 𝑁 pairs of time-series data 𝒇𝑖 ∈ R𝐿
and its one-hot label 𝒍𝑖 ∈ {0, 1}𝐾 for 𝑖 = 1, . . . , 𝑁 . One-hot label

represents the element corresponding to the class of the data takes 1

and others take 0. Then the loss function L is described as follows,

L = E(𝒇 ,𝒍 )∼D [CrossEntropy(C(𝑇wav

𝜓
𝒇 ), 𝒍)], (20)

where E(𝒇 ,𝒍 )∼D represents data average and CrossEntropy is de-

fined as

CrossEntropy(𝒑, 𝒍) =
𝐾∑︁
𝑘=1

𝑙𝑘 log 𝑝𝑘 . (21)
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In this paper, we employ a simple linear separator as the subse-

quent machine learning model to examine the differences in the

impact of CWC features. Specifically, the linear separator C is imple-

mented using linear regression and softmax. This selection is made

to ensure that the prediction performance is not predominantly

influenced by the complexity of the subsequent model, thereby

highlighting the contribution of the input CWC.

The following transformations are applied before the linear sep-

arator. Firstly, since the linear separator accepts vectors as input,

the CWC is rearranged from a second-order tensor into a one-

dimensional form. Secondly, given that the CWC is a complex val-

ued vector, it must be converted to be real values. This can be

achieved by either concatenating the real and imaginary parts of

the vector or by taking the absolute value. In this paper, we use

the absolute value to conduct robust inference. This is because the

absolute value of the CWC represents the amplitude of the time-

frequency components of the data, eliminating the influence of

phase differences. Finally, LCWnet does not normalize the mother

wavelet so that its L2 norm becomes 1, resulting in the CWC po-

tentially taking on extremely large or small values. This makes

training the subsequent linear separator difficult. To stabilize learn-

ing and also reduce training time, we utilize layer normalization

[2] to standardize the vectorized CWC. After these transformations,

the CWC is input into a one-layer fully connected layer, which is

treated as a linear separator.

4 Experiments
We demonstrated through numerical experiments that the proposed

method can provide features more suitable for linear separation

compared to existingmother wavelets. The data were selected based

on the following two criteria: The first is that the time series data

should exhibit frequency variations to leverage the properties of

the wavelet transform. The second is that the dataset should be

large enough to reflect the learning effect of the mother wavelet.

Based on these criteria, we selected two speech dataset, TIMIT

[12] and LIBRISPEECH [21], and machine sounds dataset MIMII

[10]. For each of these datasets, we performed binary classification

tasks, which can be accomplished by linear separation. To ensure a

fair evaluation, we assessed performance using multiple metrics,

including accuracy and the F1 score. The F1 score, which is the

harmonic mean of precision and recall, is particularly useful for

checking biased predictions, even with imbalanced data. Since our

method aims to select an appropriate mother wavelet tailored to the

data and task, we benchmarked it against existing mother wavelets

that do not involve learning.

4.1 Datasets
The TIMIT corpus includes speech utterances from 630 speakers

across eight regions of the United States. Each person reads ten

sentences. We used gender information as labels for the binary

classification task. The training and test data were given in the

dataset. We created the validation data by extracting one-fifth of

the entire training data.

The LIBRISPEECH dataset contains over 1000 hours of English

audiobook recordings. The training, development, and test data

were given in the dataset. Additionally, there are separate devel-

opment and test datasets for both clean and other speech. In this

paper, the development data was used for validation. We trained

the models by 100 hours of clean speech training data (clean-100)

and 500 hours of other speech data (other-500), each of them was

evaluated by clean data and other data, respectively. We used gen-

der information as labels for the binary classification task as well

as TIMIT.

MIMII dataset includes machine sounds from four types of ma-

chines: valve, pump, slider, and fan, with labels for normal and

abnormal sounds. Artificially collected noises were added to the

dataset in three levels so that the signal-to-noise ratio (SNR) be-

comes 6dB, 0dB and -6dB. In this experiments 6dB was used because

low SNR was difficult for linear separation. We used the label of

normal or abnormal condition for the classification task.

All three datasets were recorded at 16kHz. Non-speech periods

were removed from the TIMIT and LIBRISPEECH dataset in ad-

vance. During training, a random selection of mini-batch was taken

for each epoch, and a time series length of 3200 was randomly

extracted and used as input data for the binary classification task.

Similarly, for the validation and test data, a time series length of

3200 was extracted and some portion of them were fixed to be used

for evaluation.

4.2 Existing mother wavelets
Variousmotherwavelets have been proposed for continuouswavelet

transform. We used complex Mexican hat wavelet, Gabor wavelet,

and Shannonwavelet as benchmarks. These functions in the Fourier

domain are shown in Figure 3.

TheMexican hat wavelet is introduced as the second derivative of

the Gaussian function. The positive frequency part of the Mexican

hat wavelet is called the complex Mexican hat function
ˆ𝜓Mexican

[1].

ˆ𝜓Mexican (𝑘) ∝
{
𝑘2𝑒−𝑘

2/2
for 𝑘 ≥ 0,

0 for 𝑘 < 0.
(22)

Gabor wavelet is a function that exponentially decays a triangu-

lar wave [8]. It has parameters that represent the center frequency

𝑘0 and the width𝑤 .

ˆ𝜓
Gabor

(𝑘) ∝ 𝑒−(𝑘−𝑘0 )2𝑤2

. (23)

Shannon wavelet is a function that has a compact support in the

Fourier domain [3]. It has a role as a band-restriction function.

ˆ𝜓
Shannon

(𝑘) ∝ 𝑒−2𝜋
√
−1𝑘 (Π(2𝑘) + Π(−2𝑘)), (24)

where Π is a gate function representing Π(𝑘) = 1 for 1 < 𝑘 < 2,

and Π(𝑘) = 0 for others,

4.3 Experimental settings
Cross-entropy was used as the loss function. Additionally, we added

the L2 norm of the coefficients in the linear model to the loss

function to prevent overfitting. The regularization parameter was

set to 10
−2

for other-500 dataset of LIBRISPEECH and 10
−4

for

other datasets. Regularization was not applied to the weights of the

MLP in the mother wavelet, because their weights do not directly

affect prediction performance.
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(a) Complex Mexican hat (b) Gabor (c) Shannon

Figure 3: Function shapes of existing mother wavelets in the Fourier domain.

Mother wavelet Metric TIMIT

LIBRISPEECH

clean-100 other-500

Mexicanhat

Accuracy 0.9598 0.8511 0.7839

F1 score 0.9713 0.8499 0.7528

Shannon

Accuracy 0.9564 0.8579 0.8000

F1 score 0.9689 0.8533 0.7668

Gabor

Accuracy 0.9577 0.8579 0.7861

F1 score 0.9568 0.8553 0.7486

LCWnet

Accuracy 0.9610 0.8598 0.8028
F1 score 0.9721 0.8622 0.7741

Table 1: Experimental results on two human voice datasets,
TIMIT and LIBRISPEECH. The highest score for each dataset
is highlighted in bold, and the second highest score is under-
lined.

The number of scales 𝑆 was set to 64. The minimum scale 𝑎0

was 2
𝑘max𝐿/𝑞freq

and the maximum scale 𝑎𝑆−1 was 2
10

−4𝐿/𝑞
freq

. The

intermediate scales were set to have equal intervals over power of

2.

The range of explored hyperparameters is as follows: The maxi-

mum frequency 𝑘max of LCWnet is [1, 4, 16]. For the Gabor wavelet,

the central frequency 𝑘0 was examined from [2, 4, 8] with a width

𝑤 = 1. The Shannon wavelet and Mexican hat wavelet do not have

function-specific hyperparameters.

The Adam optimizer [13] was used to train all models. The MLP

to construct real and imaginary parts of the mother wavelets has

a one-dimensional input and output layer, three 128-dimensional

intermediate layers. The number of epochs was set to 50,000, with

a mini-batch size of 2,024. Model selection was performed using

early stopping, meaning the performance was monitored every 500

epochs during the training and selected the model with the highest

performance.

All the experiments were performed using one NVIDIA A100

40GB GPU. The real time required for training one model was

approximately 80 minutes for TIMIT and 120 minutes for LIB-

RISPEECH and MIMII.

4.4 Results
From Table 1, the proposed method achieved the highest perfor-

mance in terms of both accuracy and F1 score on human speech

data from the TIMIT and LIBRISPEECH datasets. Figures 4 (a) and

(b) show the mother wavelets learned from TIMIT and clean-100

Mother Wavelet Metric Fan Pump Slider Valve

Mexicanhat

Accuracy 0.8886 0.9374 0.8545 0.8856

F1 score 0.7776 0.6262 0.5392 0.0000

Shannon

Accuracy 0.9165 0.9488 0.8980 0.8863

F1 score 0.8371 0.7231 0.7167 0.0285

Gabor

Accuracy 0.9290 0.9526 0.8881 0.8854

F1 score 0.8630 0.7440 0.6810 0.0070

LCWnet

Accuracy 0.9315 0.9535 0.9046 0.8871
F1 score 0.8670 0.7497 0.7363 0.0338

Table 2: Experimental results on MIMII for 6dB SNR for each
machine. The highest score for each dataset is highlighted
in bold, and the second highest score is underlined.

of LIBRISPEECH take similar shapes. The real part forms a small

peak near 𝑘 = 0, returns to zero, and then forms a larger peak.

The imaginary gradually increase away from 𝑘 = 0. Their shapes

are considered similar because this shape is useful for determining

gender from clean human speech data.

Other-500 of LIBRISPEECH is difficult to learn from due to the

diversity in pronunciation. Consequently, the model trained on this

data exhibited lower classification performance compared to the

other two datasets. The shape of mother wavelet derived from this

data, as illustrated in Figure 4 (c), was different from the others. This

indicates that, even for the same task, different mother wavelets

may be learned depending on the data.

Table 2 presents the performance results from the experiments

using the MIMII. The proposed method achieved the highest per-

formance on this dataset as well. The valve data records acoustics

during opening and closing, where timing information is crucial

for anomaly detection. However, due to the loss of such timing

information in the linear separation, the F1 scores for all methods

were close to zero. For other machines, frequency characteristics

related to abnormal sounds were important, enabling successful

learning.

As shown in the Figure 5, the mother wavelets learned from the

MIMII take different shapes compared to those learned from the

other speech datasets. This indicates that useful mother wavelets

differ depending on the task and data, such as detecting anomalies

in machine sounds versus determining gender from human speech.

LCWnet can learn the shapes of functions with multiple peaks,

not just unimodal functions, because the mother wavelets trained

from fan and pump data resemble a period of a sine wave in the

imaginary part.
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(a) TIMIT (b) LIBRISPEECH

clean-100

(c) LIBRISPEECH

other-500

Figure 4: Mother wavelets in the Fourier domain learned from TIMIT and LIBRISPEECH. The maximum frequency was selected
1, 4, and 1 for (a), (b), and (c), respectively.

(a) Fan (b) Pump (c) Slider (d) Valve

Figure 5: Mother wavelets in the Fourier domain learned from MIMII. The maximum frequency was selected 4, 4, 4, and 16 for
(a), (b), (c), and (d), respectively.

Throughout all experiments, it was demonstrated that the pro-

posed method could utilize highly performant functions without

the need to select a specific mother wavelet. Additionally, it was

confirmed that the learned mother wavelets tend to have similar

shapes when dealing with the same type of task.

5 Discussion and conclusion
In this paper, we proposed LCWnet, a novel framework for flexibly

obtaining mother wavelets suitable for a specific machine learning

task. In classification experiments using human voice and machin-

ery sound datasets, we confirmed that LCWnet provides useful

CWCs compared to existing mother wavelets. LCWNet can be di-

rectly applied to tasks other than linear separation.

The limitation of the LCWnet method is that the mother wavelet

is restricted to functions with compact support in the Fourier do-

main. However, many mother wavelets without a compact support,

such as the Mexican hat or Gabor wavelets, exponentially decay.

Since LCWnet can approximate exponential decay in the range of

the support, the difference between exponential decay and reaching

zero is negligible. Therefore, it is considered that having a compact

support does not lead to performance degradation.

CWT using LCWnet can be performed regardless of the sampling

rate of the time-series data because it is an operator. In future

work, we consider our method can maintain its performance under

various sampling rates if the subsequent model does not depend

on sampling rate. Furthermore, it is possible to use a lighter neural

network to construct the mother wavelets by knowledge distillation

because the mother wavelet is just a one-dimensional function.
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