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Abstract
Anomaly detection is essential for identifying unusual system be-

haviors and has wide-ranging applications, from fraud detection

to system monitoring. In web servers, anomalies are typically de-

tected using two types of data: metrics (numerical indicators of

performance) and logs (records of system events). While correla-

tions between metrics and logs in real-world scenarios highlight

the need for joint analysis, which is termed the "metric-log anom-

aly detection" problem, it has not been fully explored yet due to

inherent differences between metrics and logs. In this paper, we pro-

pose ICeTEA, a novel system for metric-log anomaly detection that

integrates three detectors: a metric-log detector based on a multi-

modal Variational Autoencoder (VAE), and two individual metric

and log detectors. By leveraging the ensemble technique to combine

outputs of these detectors, ICeTEA enhances the effectiveness and

robustness of metric-log anomaly detection. Case studies demon-

strate two key functionalities of ICeTEA: data visualization and

rankings of contributions to anomaly scores. Experiments demon-

strate that our proposed ICeTEA accurately detects true anomalies

while significantly reducing false positives.
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1 Introduction
Anomaly detection is a classic unsupervised learning problem in-

vestigated for decades with the goal of finding unusual patterns or

behaviors that deviate from expected system performance [4, 6, 15–

17, 23]. It encompasses a wide range of applications, including fraud

detection in financial transactions, cyber intrusion detection, and

machinery fault diagnosis [1–3, 5, 7, 8, 19, 21, 27, 28]. In the ap-

plication of web servers, anomalies are usually detected by two

data modalities: metrics and logs. Metrics are measurable indica-

tors of system performance and health, like CPU usage, memory

consumption, and network bandwidth [32]. They also include per-

formance measures such as latency and throughput, as well as

business metrics like customer satisfaction and revenue growth.

Logs, in contrast, are records of system events and activities gen-

erated by the Internet of Things (IoT), such as operating systems,
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networks, and applications. Both metrics and logs are monitored

over time to maintain server performance, troubleshoot issues, and

ensure smooth operation [32].

Most existing studies focus on either metrics or logs for anom-

aly detection [1, 14, 18, 29]. However, their combinations have not

been fully explored yet due to their inherently different natures:

metrics are regularly generated, represented as numerical and con-

tinuous values, and can be multivariate; time-series anomalies are

usually detected as outliers whose behaviors deviate from normal

time-series patterns (e.g., peaks or troughs). Logs, however, are
event-driven (i.e., a large volume of logs can be generated within

milliseconds), recorded as text, and can be converted to discrete

event types [7, 8, 29]. Log anomalies can be detected by either un-

expected sequences (e.g., unusual repetition of the same event) or

error messages. Despite their structural differences, metrics and

logs are often correlated, making their joint analysis important for

accurate anomaly detection, defined as the so-called "metric-log

anomaly detection" problem. For example, a spike in CPU usage

might be normal during the launch of a large application but can

be unusual if no corresponding log entry is recorded. As another

example, an increase in the volume of router events could be normal

if the network traffic rises but would indicate a hardware issue if

the traffic remains stable. Therefore, the metric-log anomaly detec-

tion problem demands attention and extensive investigation from

machine learning researchers.

To bridge this gap, we propose ICeTEA, a unified system for

metric-log anomaly detection. ICeTEA adopts an ensemble archi-

tecture comprising three components: a metric-based detector, a

log-based detector, and a metric-log detector. The metric-log de-

tector extends the Variational Autoencoder (VAE) to a multimodal

setting, capturing cross-modal interactions to detect joint anom-

alies. In contrast, the metric and log detectors specialize in unimodal

anomalies. The final anomaly scores are derived by aggregating the

outputs from all three detectors. Our key contributions are:

• We study the unexplored metric-log anomaly detection prob-

lem, which holds significant research and application value.

• We propose ICeTEA, a novel system for metric-log anomaly

detection based on input metrics and logs.

• We develop a platform to provide detailed anomaly detection

analysis for web server performance monitoring.

• We conduct experiments on real-world business data to show

that the ICeTEA outperforms existing anomaly detection

models.

2 Related Work
Existing works on anomaly detection in IT operations can bemainly

categorized into metric-based and log-based approaches.

Metric Anomaly Detection: Metric anomaly detection is a classi-

cal and challenging task in time series analysis that has been studied
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Figure 1: Pipeline of the ICeTEA system: it consists of input processing, anomaly detection, and anomaly report generation.

for decades [1, 24]. The challenges include unpredictable patterns

due to the inherent dynamicity of metric data, distribution shifts

caused by configuration changes, and the scarcity of labeled anom-

alies [28]. For multivariate metric data, previous anomaly detection

techniques are classified into forecasting-based and reconstruction-

based methods [31]. Forecasting-based methods detect anomalies

based on forecasting errors [13]. In contrast, reconstruction-based

methods learn representations of metric data by reconstructing the

original metric input using latent variables [25]. In our proposed

ICeTEA model, the metric detector is based on forecasting methods,

while the metric-log detector employs reconstruction methods.

Log Anomaly Detection: Log files are crucial for monitoring

computer systems, capturing both normal operations (e.g., process
starts/stops, VM restarts, and user access) and unexpected events

(e.g., process failures, availability issues, and security incidents).

Consequently, log anomaly detection models aim to learn normal

system behavior and identify deviations for human review. Previous

techniques primarily used deep learning models to learn normal

system behaviors such as DeepLog [9] and LogRobust [30].

While metric and log anomaly detection have been extensively stud-

ied individually, their integration remains underexplored. This gap

stems from two key challenges: the inherently different modalities

of metrics and logs, and the difficulty in modeling their interactions.

To address these challenges, we propose ICeTEA, which adopts a

multimodal VAE architecture. ICeTEA encodes metrics and logs

into a shared latent space, where their interactions are captured

through a dedicated fusion module.

3 The ICeTEA System
The diagram of our ICeTEA system is shown in Figure 1. First, the

metric and log inputs are processed. Next, the processed inputs

are fed into the anomaly detection model, which consists of three

detectors, and their outputs are aggregated to make final detec-

tions using the ensemble technique. Finally, an anomaly report is

generated based on the detection results.

3.1 Input Processing
3.1.1 Input Cleaning. For metric data, all metrics are normalized

to ensure a consistent data range, and missing values are imputed

with default values. For log data, the Drain parser is trained on

the training log data to construct a parse tree [11]. The parse tree

Figure 2: The overview of the anomaly detection model: final
detections are aggregated by outputs from the metric-log
detector, the metric detector, and the log detector.

maps each test log to a template, assigning the corresponding log

template ID as an event type for the log. This event type forms one

part of the log input for the anomaly detection model.

In addition to event types, the other part of the log input consists

of token IDs obtained from log messages. Specifically, log messages

are tokenized using the HuggingFace tokenizer library
1
, and the

tokens are mapped to token IDs.

3.1.2 Input Resampling. Due to the inherently different frequen-

cies of metrics and logs (i.e., regular versus event-driven), resam-

pling is performed to align the two data modalities. The entire time

period is divided into evenly spaced overlapping time segments.

Multiple metric records are averaged if they fall within a time seg-

ment. Thus, each time segment contains constant records for the

metrics, while the log sequences vary in length.

3.2 Anomaly Detection
In the step of anomaly detection, the processed inputs are fed into

the anomaly detection model, as shown in Figure 2. The anomaly

detection model consists of three detectors: the metric-log detector,

the metric detector, and the log detector.

1
https://github.com/huggingface/tokenizers/blob/main/docs/source-doc-

builder/index.mdx

https://github.com/huggingface/tokenizers/blob/main/docs/source-doc-builder/index.mdx
https://github.com/huggingface/tokenizers/blob/main/docs/source-doc-builder/index.mdx
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3.2.1 Metric-Log Detector. The metric-log detector adopts a multi-

modal VAE architecture, comprising three key components: the

encoder, the fusion module, and the decoder. The encoder includes

both a metric encoder and a log encoder, which are responsible for

encoding their respective inputs into latent representations. Simi-

larly, the decoder consists of a metric decoder and a log decoder,

which reconstruct the metric and log data from the fused represen-

tations. The metric-log detector is the core of the ICeTEA system,

and its architecture will be illustrated in detail in the next section.

3.2.2 Metric Detector. Aside from the metric-log detector, two indi-

vidual metric and log detectors are also utilized to detect anomalies

based on the single modality, providing further support for the

metric-log detector. The thresholds of the two detectors are defined

as the 95th percentile anomaly scores of all training samples.

Specifically, the metric detector is set to the Peak Over Threshold

(POT) model [26], which is a statistical approach based on extreme

value theory. The POT model learns the behavior of extreme events

by fitting them into the generalized Pareto distribution, on which

the anomaly score is based.

3.2.3 LogDetector. For the log detector, a combination of a frequency-

based detector and a simple Principal Component Analysis (PCA)

model is employed: the frequency-based log detector checkswhether

log time-series exhibit periodic patterns, and the PCA model trans-

forms a sequence of event types into continuous feature representa-

tions (e.g., occurrence counts or Term Frequency-Inverse Document

Frequencies (TF-IDFs) of event types). The anomaly score is the

reconstruction error between the reconstructed representations

and the actual representations. The anomaly score of the log de-

tector is the average of the normalized anomaly scores from the

frequency-based log detector and the PCA detector (i.e., here the
normalized anomaly score is the original anomaly score divided by

the threshold).

3.2.4 Detection Aggregation. Outputs from three independent de-

tectors are aggregated tomake final detections, and a simplemajority-

voting strategy is applied: a sample is flagged as an anomaly if two

out of three detectors label it as an anomaly. We believe that our

ICeTEA model is effective and robust not only because of the en-

semble technique but also due to the diversity of our detectors: our

metric-log detector is a nonlinear reconstruction-based model, our

metric detector is a probabilistic approach, and our log detector is

based on frequency and low-dimensionality. This means that they

can potentially capture different types of anomalies (e.g., abnormal

frequencies of event types, unexpected log sequence patterns, and

extreme metric values).

3.3 Anomaly Report Generation
In order to make our anomaly report instructive and insightful, the

anomaly report will cover two parts: data visualization and ranking

lists of contributions to anomaly scores. In the current version,

we simply visualize time-series metric values and the patterns of

log event types by selected time ranges, and the same time-series

metrics with different time ranges can be compared. The anomaly

scores for specific metrics and logs are also demonstrated respec-

tively. Moreover, ranking lists of contributions to anomaly scores

are also provided. In other words, these ranking lists will display

the top metrics or logs that contribute the most to anomaly scores.

To measure such contributions, gradient-based attribution methods

[22] are utilized to calculate how metrics and logs contribute to

the anomaly scores (e.g., the gradients of the reconstruction loss

with respect to metric/log input embeddings in the metric-log de-

tector). The top ten metrics/logs will be shown in the ranking lists

for further anomaly analysis and investigation.

3.4 Architecture of the Metric-Log Detector
The metric-log detector is the focus of the ICeTEA system. In this

section, we detail its multi-modal VAE architecture.

1. Encoder. Representations of a metric 𝑥𝑖 and a log𝑚 𝑗 are denoted

as 𝑥𝑖 and �̃� 𝑗 , respectively, as shown below:

𝑥𝑖 = 𝑔1 (𝑡𝑖 + 𝑥𝑖 ), �̃� 𝑗 = 𝑔2 (𝜏 𝑗 + 𝑢 𝑗 +𝑚 𝑗 ) .

where 𝑡𝑖 and 𝑥𝑖 represent the metric time and value encodings from

Equations (1) and (3), respectively. Similarly, 𝜏 𝑗 , 𝑢 𝑗 , and𝑚 𝑗 repre-

sent the log time, event, and message encodings from Equations (2),

(4), and (5), respectively. Both 𝑔1 and 𝑔2 are transformer encoders.

The details are described below:

(a). Time Representation. The time representation is computed

using sinusoidal functions that exhibit smooth periodic oscillations.

For the metric timestamp 𝑡𝑖 , we define

𝑐𝑡
𝑖,𝑘

= cos

(
2𝜋𝑡𝑖

2
𝑖

)
, 𝑠𝑡
𝑖,𝑘

= sin

(
2𝜋𝑡𝑖

2
𝑖

)
.

and for the log timestamp 𝜏 𝑗 , we have

𝑐𝜏
𝑗,𝑘

= cos

(
2𝜋𝜏 𝑗

2
𝑗

)
, 𝑠𝜏
𝑗,𝑘

= sin

(
2𝜋𝜏 𝑗

2
𝑗

)
.

Then time representations are calculated as follows:

𝑡𝑖 = 𝑓𝑡 (𝑡𝑖 ) =𝑊𝑡 [𝑐𝑡𝑖,1, 𝑠
𝑡
𝑖,1, 𝑐

𝑡
𝑖,2, 𝑠

𝑡
𝑖,2, . . . , 𝑐

𝑡
𝑖,𝐾 , 𝑠

𝑡
𝑖,𝐾 ]

⊤, (1)

𝜏 𝑗 = 𝑓𝜏 (𝜏 𝑗 ) =𝑊𝜏 [𝑐𝜏𝑗,1, 𝑠
𝜏
𝑗,1, 𝑐

𝜏
𝑗,2, 𝑠

𝜏
𝑗,2, . . . , 𝑐

𝜏
𝑗,𝐾
, 𝑠𝜏
𝑗,𝐾

]⊤ . (2)

where 𝑡𝑖 and 𝜏 𝑗 are the time representations of 𝑡𝑖 and 𝜏 𝑗 , respectively.

𝑊𝑡 and𝑊𝜏 are learned projection matrices for the metric and log

timestamps, and 𝐾 is the number of sinusoidal function pairs.

(b). Metric Representation. The metric representation 𝑥𝑖 is:

𝑥𝑖 = 𝑔3 (𝑥𝑖 ). (3)

where 𝑔3 is a transformer encoder.

(c). Event and Message Representations. The event and message

representations are tokenized and embedded using the token em-

bedding function 𝒆(•). These embeddings can be learned from

scratch or initialized using a pretrained tokenizer:

𝑢 𝑗 = 𝒆(𝑢 𝑗 ), (4)

𝑚 𝑗 = 𝑔4 (𝒆(𝑚 𝑗 )) . (5)

where 𝑢 𝑗 and𝑚 𝑗 are the event and message representations of 𝑢 𝑗
and𝑚 𝑗 , respectively. 𝑔4 is a transformer encoder.

2. FusionModule. The goal of the fusion component is to integrate

the metric representation 𝑥𝑖 and the log representation �̃� 𝑗 into a

joint context representation:

ℎ = 𝑔5
(
{𝑥𝑖 }𝑖=1 ◦ {�̃� 𝑗 } 𝑗=1

)
.

where 𝑔5 is a fusion transformer encoder, ◦ is the concatenation

along the time dimension, and ℎ is a contextual representation.
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Here ℎ is used to compute the mean 𝜇 and the standard deviation

𝜎 of the posterior distribution 𝑞(𝑧 |𝑋,𝑀), which will be utilized to

sample a latent representation 𝑧 for metric and log reconstructions:

[𝜇;𝜎] =𝑊ℎ + 𝑏, 𝑞(𝑧 |𝑋,𝑀) = N(𝑧; 𝜇, 𝜎𝐼 ) .
where𝑊 and 𝑏 are the weight and bias of the linear layer.

3. Decoder. Given a sampled latent 𝑧 ∼ 𝑞(𝑧 |𝑋,𝑀), the goal of the
decoder component is to reconstruct the metric and the log from 𝑧,

which are achieved by transformer decoders𝐺1 and𝐺2. Specifically,

the reconstructed metric is shown as follows:

𝑥𝑖 = 𝐺1 (𝑧, {𝑢 𝑗 } 𝑗=1) .
where 𝑧 and 𝑢 𝑗 are aligned by the cross-attention in 𝐺1 to match

the metric representation in 𝑧. Similarly, the reconstructed log is

𝑢
′
𝑗 = 𝐺2 (𝑧, {𝑥𝑖 }𝑖=1) ∈ [0, 1], 𝑢 𝑗 = argmax𝑢

′
𝑗 .

where 𝑢
′
𝑗
is the probability distribution of the reconstructed event

type, and 𝑢 𝑗 is the reconstructed event type. Noticeably, we do not

reconstruct message𝑚 𝑗 due to the posterior collapse problem [20].

4. Objective and Anomaly Score. We denote 𝑋 = {𝑡𝑖 , 𝑥𝑖 }𝑇𝑖=1 and
�̂� = {𝜏 𝑗 , 𝑢 𝑗 ,𝑚 𝑗 }𝑁𝑗=1 as the reconstructed metric and log sequences,

respectively. Then the objective is formulated mathematically as

follows:

L = Lmet (𝑋,𝑋 ) + 𝛼Llog
(𝑀, �̂�) + 𝛽Lreg (𝑋,𝑀) .

where Lmet (𝑋,𝑋 ) is the reconstruction loss of the metric, which is

achieved by the Mean Squared Error (MSE). L
log

(𝑀, �̂�) is the re-
construction loss of the log, which is achieved by the Cross-Entropy

loss. Lreg (𝑋,𝑀) is the regularization loss, which is achieved by

the Kullback–Leibler (KL) divergence. 𝛼 > 0 and 𝛽 > 0 are two

hyperparameters to balance three terms.

The anomaly score is defined as the sum of two reconstruction

losses. The threshold is defined as the mean plus three standard

deviations of anomaly scores of all training samples.

4 Demonstration Scenarios
This section demonstrates two major functionalities of the ICeTEA

system: visualization of metrics and logs (i.e. Figure 3) and rankings

of contributions to anomalies scores (i.e. Figure 4).

1. Data Visualization. Figure 3 demonstrates visualizations of

metrics and logs. Specifically, for the metric data, different entities

(e.g., webservers 1 and 2), metrics, and data ranges can be freely cho-

sen. Moreover, metric visualization supports comparisons between

different start times. As Figure 3(a) shows, red and purple curves

represent plots of CPU utilization starting from 13:09 and 14:09

on September 13th, respectively. The comparison shows a peak in

the purple curve, while no obvious peaks are observed in the red

curve, suggesting that the peak in the purple curve may indicate

a potential anomaly. The visualization of logs is similar to that of

metrics, where log visualization explores occurrence patterns of

different event types.

2. Rankings of Contributions to Anomaly Scores. Figure 4

demonstrates ranking lists of all anomalies, anomaly metrics, and

anomaly logs. The tab "List of events" shows all anomalies above

the thresholds. When different anomalies are selected, the blue ver-

tical line in the right-hand figure, "Anomaly Score Graph," changes

correspondingly. Similarly, when different metrics in the tab "Event

(a). Metrics.

(b). Logs.

Figure 3: Visualizations of metrics and logs.

Figure 4: All anomalies and ranking lists of top metrics and
logs contributing the most to anomaly scores.

Detail - Metrics" are selected, the metric curves in the right-hand

"Metric Graph" figure are adjusted accordingly. The tabs "Event

Detail - Metrics" and "Event Detail - Log" rank anomaly metrics and

logs based on their contributions to anomaly scores, respectively.

The tab "Event Detail - Metrics" lists rankings, entities, metrics, and

contributions to anomaly scores, whereas the tab "Event Detail -

Log" lists rankings, entities, event types, times, log messages, and

contributions to anomaly scores.
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5 Experiments

Settings #Metric(train/test) #Log(train/test)

A 7,781/1,943 67,417/7,798

B 8,334/3,439 69,691/12,692

Table 1: Statistics of two settings in the dataset.

5.1 Experiment Setup
5.1.1 Dataset Description: We evaluate our proposed ICeTEA on

a business dataset collected from a cloud-service platform.
2
The

dataset is divided into two settings due to configuration changes.

The statistics of the two settings are shown in Table 1. The seven

metrics include CPU utilization, memory utilization, network met-

rics for bytes transmitted and received, the number of bytes written

to and read from storage, and utilization of ephemeral storage. Log

files include event types, log templates, and log messages. The total

number of log event types is 3,416. Only one anomaly was detected

in both settings.

5.1.2 Hyperparameter Settings: Two tuning parameters, 𝛼 and 𝛽 ,

were set to 1. The Adam optimizer was used to optimize the cross-

joint VAE. The learning rate was set to 0.001. The batch size was

set to 8. The dimension of the latent variable, 𝑑 , was set to 32. The

sequence length 𝑇 was set to 30 minutes. Majority voting was used

to ensemble the results.

5.1.3 ComparisonMethods and EvaluationMetrics: Two time series

detectors, LSTM [12] and POT [26], and two log detectors, PCA [10]

and DeepLog [9], were used for performance comparison. Three

evaluation metrics were used to assess model performance: True

Alarm (i.e., True Positive), which occurs when a model correctly

detects an actual anomaly; False Alarm (i.e., False Positive), which
occurs when a model incorrectly classifies a normal event as an

anomaly; and Missing Alarm (i.e., False Negative), which occurs

when a model fails to detect an actual anomaly.

Setting A Metrics Log Ours

Methods LSTM POT DeepLog PCA ICeTEA

True Alarm ↑ 0 1 1 1 1

False Alarm ↓ 3 4 13 17 5

Missing Alarm ↓ 1 0 0 0 0

Setting B Metrics Log Ours

Methods LSTM POT DeepLog PCA ICeTEA

True Alarm ↑ 0 0 0 1 1

False Alarm ↓ 2 6 5 19 9

Missing Alarm ↓ 1 1 1 0 0

Table 2: Performance of all methods: the ICeTEA captures
true anomalies while minimizing false alarms.

2
Some details are omitted due to commercial confidentiality here and below.

5.2 Experimental Results
Table 2 illustrates that our proposed ICeTEA framework consis-

tently detects all true anomalies in both settings A and B, while

maintaining a moderate false alarm rate and zero missed anomalies.

In contrast, LSTM has the lowest false alarm rate but fails to detect

any true anomalies, making it unreliable despite its low false alarm

rate. POT shows a good balance with relatively low false alarms but

misses one anomaly in setting B. DeepLog performs well in setting

A with one true alarm and 13 false alarms, but it performs poorly

in setting B, missing one true anomaly while generating five false

alarms. PCA detects true anomalies in both settings, but its high

false alarm rate significantly reduces its effectiveness.

6 Conclusion
Leveraging cross-modal information from both metrics and logs is

crucial for enhancing the accuracy and robustness of web server

anomaly detection. In this paper, we propose ICeTEA, a novel

ensemble-based system that combines a multimodal VAE to model

metric-log interactions with standalone metric-only and log-only

detectors. A case study demonstrates two core capabilities of ICeTEA:

anomaly visualization and attribution of anomaly scores to con-

tributing factors. Experimental results show that ICeTEA accurately

detects true anomalies while significantly reducing false positives.

For future work, we plan to enhance ICeTEA by incorporating

Large Language Models (LLMs) for automated log analysis and

conducting more comprehensive evaluations.
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