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Abstract
Transformers have gained prominence in the time series forecast-
ing domain, with the patch time series Transformer (PatchTST)
achieving state-of-the-art forecasting performance on a variety of
tasks, outperforming older LSTM and RNN models and remaining
competitive with the newer MLP and LLM based models. With the
vast amount of times series data being generated daily, time series
forecasting is becoming more resource intensive and less energy
efficient. To improve its efficiency, we combine parallel training
and quantization. By applying learning rate scaling and gradient
clipping, we achieved full precision floating-point 32-bit (FP32)
training of PatchTST across 128 GPUs, leading to an 81× speedup
in training latency compared to single-GPU training, with no MSE
degradation. We then quantize PatchTST to 8 bits (INT8) and 4
bits (INT4) per parameter and introduce the Square Root 2 (Sqrt2)
Scaling Rule, which, in conjunction with gradient clipping, allowed
us to effectively scale INT8 and INT4 quantization-aware training
(QAT) across 128 and 80 GPUs respectively, achieving a 96× and
a 65× reduction in training latency, with the INT8 model main-
taining MSE and the INT4 model experiencing a 2.6% degradation
in MSE compared to the baseline. Sqrt2 Scaling Rule also led to
additional training stability and more consistent MSE performance
when used to train our FP32 model. Our INT8 and INT4 models
theoretically achieve a 74% and 87% reduction in model size, respec-
tively, translating to a 3.9× and 7.5× compression compared to the
FP32 model.
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1 Introduction
Pre-trained transformer models have grown exponentially in size,
posing challenges for deployment in resource-constrained envi-
ronments. Recent research focuses on reducing model size and
computational requirements to enable efficient use on resource-
limited hardware. For instance, the Artificial Intelligence Unit (AIU)
family of accelerators [24], developed by IBM, showcases hardware
designed for high-performance AI workloads with an emphasis on
energy efficiency. Similarly, companies such as NVIDIA, Google
(TPU), Intel (Habana Labs), Graphcore, and Cerebras Systems are
developing custom AI chips tailored for specific use cases. These
innovations focus not only on improving performance but also
on scalability and energy efficiency through techniques such as
low-precision computation, hardware-software co-design, archi-
tectural specialization, and advanced cooling solutions. These ad-
vancements are pivotal for sustainable AI scaling and deploying
models in real-world applications.

Recently, the Transformer architecture has expanded its reach
into the time series forecasting domain [15, 27, 31, 34]. However,
Zeng et al. [30] revealed several limitations of transformers when
applied to time series data and showed that a simple linear model
outperformed existing transformer models. Inspired by the patch-
ing techniques used in Vision Transformers (ViT) [8] and other
works such as BEiT [2], Nie et al. [19] developed the Patch Time
Series Transformer (PatchTST). Their simple patching technique
successfully addressed the limitations of time series transformers de-
scribed in [30], achieving SOTA performance. PatchTST has proven
effective for many time series forecasting tasks, including predict-
ing electricity consumption, electricity transformer temperatures,
weather and traffic conditions, and disease infection rates [19]. The
model can also be used for anomaly detection, predicting simulation
completion time in high-performance (HPC) environments, and
routing decisions in HPC networks. In edge scenarios, PatchTST
can be utilized for predictive maintenance in IoT-connected devices,
real-time monitoring of industrial equipment, energy optimization
in smart grids, and adaptive control in autonomous systems. Com-
pressing PatchTST will enable these predictive capabilities to be
deployed on the resource-constrained hardware and in complex
HPC environments, aligning with our ultimate goal.

With the vast amount of times series data being generated daily,
time series forecasting is becoming more resource intensive and
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less energy efficient. Quantization and reduced precision are in-
creasingly popular techniques for compressing transformer models.
These methods are widely used to speed up deep neural networks
on GPUs and other AI hardware platforms [1] and [25]. This work
explores the nascent fields of time series transformer quantization
and parallelizing both full precision floating-point 32-bit (FP32) and
quantization-aware (QAT) training of a time series transformer for
efficient time series forecasting. Specifically, we combine scaling
and quantization of PatchTST, quantizing it down to 4 bits per pa-
rameter, using common quantization techniques, and scaling QAT
over multiple GPUs, enabling substantial model compression and
improved training while maintaining competitive mean-squared er-
ror (MSE) performance. Our study provides insights into the effects
of quantization on both model size and inference accuracy, advanc-
ing the understanding of quantization in time series forecasting
transformers. A key challenge we addressed is the computational
cost of training large PatchTST models, which necessitated par-
allelization across multiple GPUs. However, we discovered that
standard data-parallel training led to a significant degradation in
model accuracy. To overcome this, we used a combination of tech-
niques including gradient clipping and learning rate scaling. These
techniques not only mitigate the accuracy degradation in parallel
training but also enhance the accuracy of the FP32 and quantized
PatchTST (QPatchTST) models. To the best of our knowledge, this
work provides the first comprehensive scaling analysis of a time se-
ries transformer and its quantized variants. We make the following
contributions:

(1) We first analyze the performance of FP32 PatchTST to multi-
GPU training, analyzing the effects of the linear, square root,
and no learning rate scaling on inference accuracy. Initially,
we observed varying rates of MSE degradation as we in-
creased the number of GPUs. Utilizing gradient clipping and
learning rate scaling, we stabilize training which allowed
successful scaling over 128 GPUs with no degradation in
MSE, yielding a speedup of 81× over single-GPU training.

(2) We quantize PatchTST down to 8 bits (INT8) and 4 bits
(INT4). When trained on a single GPU, INT8 QPatchTST
maintained ISO MSE compared to the FP32 model, while
INT4 QPatchTST suffered a marginal 1.7% degradation in
MSE.

(3) We devise a new learning rate scaling rule, Square Root 2
(Sqrt2) Scaling Rule, by modifying the Square Root (Sqrt) Scal-
ing Rule, to aid QAT scaling. Using Sqrt2 Scaling Rule we suc-
cessfully scale training of INT8 QPatchTST over 128 GPUs,
resulting in a 96× speedup with no degradation in MSE com-
pared to both the single-GPU trained FP32 and INT8 models.
Additionally, we achieve successful INT4 QAT scaling over
80 GPUs, resulting in a 65× speedup in training latency, with
a minimal 2.6% and 0.9% degradation in MSE compared to
the single-GPU trained FP32 and INT4 QPatchTST models,
respectively. Sqrt2 Scaling Rule also led to additional training
stability and more consistent MSE performance when used
to train our FP32 model.

(4) Our QPatchTST models demonstrate significant memory
efficiency, with the INT8 variant reducing model size by 74%

Figure 1: Transformer Backbone (Supervised). Each univari-
ate series is passed through instance normalization operator
and segmented into patches, which are used as Transformer
input tokens.

(3.9× compression) and the INT4 variant achieving an 87%
reduction (7.5× compression).

2 Background
2.1 PatchTST Model
PatchTST is a state-of-the-art (SOTA) transformer-based model for
multivariate time series forecasting and representation learning
[19]. Given a collection of multivariate time series samples with
look-back window 𝐿 : (𝑥1, ..., 𝑥𝐿), where each 𝑥𝑡 at time step 𝑡 is
a vector of dimension 𝑀 , we attempt to forecast 𝑇 future values
(𝑥𝐿+1, ..., 𝑥𝐿+𝑇 ). Figure 1 gives an overview of PatchTST, where the
vanilla Transformer encoder forms its core architecture. As illus-
trated in Figure 1, the model makes use of the vanilla Transformer
encoder as its core architecture. A multivariate time series is first
divided into a set of univariate time series which share weights
and embedding. The univariate time series are then divided into
(possibly overlapping) patches, which are fed into an embedding
layer followed by a transformer encoder. Patching reduces the
number of input tokens from 𝐿 to approximately 𝐿/𝑆 , where 𝑆 is
the stride, i.e., the non-overlapping regions between consecutive
patches. Patching retains local semantic information in the embed-
ding, yet quadratically reduces computation and memory usage
of the attention maps given the same look-back window, which
enables the use of longer history at the same computational cost.

We study PatchTST/64 (Supervised) [19] (referred to as PatchTST
throughout the remainder of this study), which uses 64 patches
with a look-back window 𝐿 = 512. We set patch length 𝑃 = 16
and stride 𝑆 = 8. We use the default architecture for the three
largest datasets studied in [19], consisting of three encoder layers,
each with 𝐻 = 16 heads and latent space of dimension 𝐷 = 128.
In the feed-forward network, one linear layer projects the hidden
representation𝐷 = 128 to a new dimension 𝐹 = 256. Another linear
layer then projects it back to 𝐷 = 128. PatchTST also achieved
SOTA performance in time series representation learning. We focus
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exclusively on the model’s supervised learning capabilities given
that our target applications will rely on supervised learning.

3 Data Distributed Parallel for Efficient
Training

In order to improve both FP32 and QAT training efficiency, we paral-
lelize our models and train over multiple GPUs using Pytorch’s Data
Distributed Parallel (DDP) library [16]. DDP splits the training data
into batches that are distributed across GPUs. After each forward
pass of training, DDP gathers the losses and gradients from each
GPU onto a single GPU, which is used to perform the backward
pass. During the backward pass, DDP synchronizes gradients across
the GPUs (processes) to ensure consistent model updates. Using
the synchronized gradients, each GPU/process independently up-
dates its local model parameters, during the optimization step. The
effective batch size (𝑒𝑏𝑠) for the entire GPU ensemble is given by
𝑒𝑏𝑠 = 𝑏 × 𝑔, where 𝑏 is the per GPU batch size and 𝑔 is the number
of GPUs. Because PatchTST is small enough to fit comfortably on
one of our GPUs, DDP is a convenient way to parallelize training,
and more aggressive model-parallel approaches are not required.

3.1 Learning Rate Scaling
As mentioned above, in DDP training, each GPU processes a por-
tion of the overall batch (𝑒𝑏𝑠). As such, it requires scaling of the
learning rate to achieve convergence similar to that expected for
training on a single GPU. Goyal et. al. [10] suggested a hyperparam-
eter free Linear Scaling Rule, which allowed effective data parallel
training without reducing the per GPU workload. This rule scales
the learning rate by:

𝜂𝑛𝑒𝑤 = 𝜂 · 𝑔, (1)

where 𝜂 and 𝜂𝑛𝑒𝑤 are the initial and new (scaled) learning rates,
respectively, and 𝑔 is the total number of GPUs. This scaling rule is
suitable for our work, as the goal is to improve training efficiency,
and maintaining per GPU workload results in reduced training
latency. With larger 𝑒𝑏𝑠 , data parallelism is also efficient, since
gradient synchronization occurs once.

Another learning rate scaling rule is the Square Root Scaling Rule
suggested by Krizhevsky et. al. [14] and updates the learning rate
by:

𝜂𝑛𝑒𝑤 = 𝜂 · √𝑔. (2)

This rule preserves the variance of the gradients computed on each
GPU. We compare the effectiveness of these scaling rules on model
training in Section 5.

3.2 Gradient Clipping
By itself, learning rate scaling is not sufficient to maintain baseline
performance. As such, we also use gradient clipping [32]. Gradient
clipping prevents the exploding gradients we would expect during
scaling by limiting the maximum magnitude of the gradients. We
use Clip-by-norm, which scales the entire gradient vector if its L2-
norm exceeds a given threshold 𝜃 . As we show in Section 5, when
combined with learning rate scaling, gradient clipping significantly
improves the generalizability of the multi-GPU trained model. In

DDP, gradient clipping occurs after gradient synchronization pro-
cess. During the optimization step, the optimizer uses the clipped
gradients to update the model parameters.

3.3 Modified Square Root Scaling
Our experiments revealed that Linear Scaling is not suited for INT4
QAT scaling (see Figure 6), and our INT8 QPatchTST model showed
some instability at higher GPU counts, 𝑔 ≥ 112, while the FP32
model exhibited marginal variability. On the other hand, we ob-
served that FP32 models trained using Square Root scaling main-
tained relatively consistent inference MSE with increasing GPUs
for all gradient clipping levels 𝜃 studied, although general inference
MSE increased with increasing GPUs and remained worse than
with Linear scaling. Based on this observation, we hypothesized
that the aggressive learning rate increase produced by Linear scal-
ing is essential for low MSE, while Square Root scaling is essential
to limit variability. We thus modified the Square Root Scaling Rule to
allow it to aggressively scale similar to the Linear Scaling Rule but
maintain its ability to limit variability. Our new scaling rule, Square
Root 2 Scaling Rule, scales the learning rate using the following:

𝜂𝑛𝑒𝑤 = 𝜂 ·
√︁
𝛾 · 𝑏 · 𝑔, (3)

where 𝛾 ≥ 1 is a scaling factor that controls the rate of growth. We
show the effectiveness of this new scaling rule in Section 5.4.

4 Quantization
4.1 Background
Quantization is a popular model compression technique that con-
verts weights and activation from high-precision, usually 32-bit
floating-point (FP32) or 16-bit floating-point (FP16), to a lower preci-
sion, like 8-bit (INT8) or 4-bits (INT4). In simple terms, quantization
maps a range of floating-point values to fixed-point values One
of the main benefits of quantization is the significant reduction in
model size. Quantized models require less memory and computa-
tional resources and may exhibit higher throughput/lower latency
for inference if implemented on hardware that supports efficient
arithmetic on the quantized numerical representation. Arithmetic
on integer formats are also more power efficient. However, quan-
tization typically reduces a model’s inference accuracy relative to
the full-precision representation due to rounding errors introduced
during quantization.

4.1.1 Linear Quantization. In this work, we focus exclusively on
linear (uniform) quantization and its variants. Linear quantization
can be symmetric or asymmetric and implies a fixed step size, Δ. In
symmetric linear quantization, the quantization range is symmetric
around 0. Given a floating-point tensor 𝑥 , the quantized tensor is
given by

𝑥 = 𝑟𝑜𝑢𝑛𝑑 (𝑥/Δ) · Δ, (4)

where Δ = 2 ·𝑚𝑎𝑥 |𝑥 |/2𝑘 − 1. 𝑘 is the number of bits. With asymmetric
quantization, the distribution of quantized values is not symmetric
around 0. The step size is given by Δ = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛/2𝑘 − 1, and the
quantized version of 𝑥 is given by

𝑥 = 𝑟𝑜𝑢𝑛𝑑 (𝑥/Δ − 𝑧) · Δ + 𝑧, (5)
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where 𝑧 is the zero point, i.e., the integer value that corresponds to
the floating-point zero.

4.1.2 Quantization-Aware Training (QAT). Quantization can be
done by post-training quantization (PTQ) or quantization-aware
training (QAT). With PTQ, a trained floating-point model is quan-
tized to a lower-precision fixed-point integer model for inference
without retraining or fine-tuning. Since PTQ is applied to a fully
trained model, only a limited amount of training data is required
for calibration, making PTQ fast and convenient. However, PTQ
leads to accuracy degradation, which can be mitigated by further
refining of the quantized model using QAT.

When performing QAT, quantized weights and activations are
incorporated during the training process to simulate low-precision
training in the forward pass, while the backward pass remains in
full-precision. This allows the optimization process to minimize
the loss and quantization error. Usually, QAT is initialized from an
existing trained full-precision model for a small number of epochs
to allow the model to adjust to the quantized weights. This method
improves the accuracy of the quantized model. A more challeng-
ing quantization initialization method is from scratch—QAT is per-
formed on an untrained full-precision model. QAT from scratch
is the main focus of this study, as we aim to show that a lower-
precision PatchTST model can be used as a surrogate model for
many HPC tasks without the need for a full-precision checkpoint.
As a result, developers can focus exclusively on training their low-
precision models, thus reducing resource and energy requirements.
We discuss our quantization methods in the next section.

4.2 Quantized PatchTST (QPatchTST)
We quantize the weights and activations of the linear layers in the
Transformer Encoder and Flatten + Linear Head, using the methods
described in Sections 4.2.1 and 4.2.2. Figure 2 shows the layers and
operations that are quantized. When quantizing ML models, it is
customary to leave the first and last layers in a higher precision,
i.e., FP32 or FP16, because of their high impact on accuracy and
negligible contribution to the overall model size. However, we only
ignore PatchTST’s first layer, the Projection-Position Embedding.
Due to PatchTST’s design, its last layer, the Flatten+Linear Head,
contributes the majority of the total model parameters. We quantize
this layer to achieve further memory savings. We show our quan-
tization results in Section 5.3 and give more details on theoretical
memory and computation savings in Section 5.5.

4.2.1 Weight Quantization. We use SAWB+ for weight quantiza-
tion [26]. SAWB+ is an enhancement of the SAWB (statistics-aware
weight binning) quantizer [5], which exploits the first and second
moments of the weight distribution to minimize the quantization
error. SAWB clamps sufficiently large weights, which can cause
instability in training because their gradient information is lost;
SAWB+ allows the gradients of the clipped weights to propagate
through the backward pass, while the forward pass remains un-
changed. For SAWB+, we used the coefficients from [26].

As in [26], we use Zero alignment to ensure that floating-point
zeros from inputs are represented by fixed-point zeros. This is done
by utilizing one less than the full precision range, i.e., 2𝑘 − 1 levels
instead of the full 2𝑘 levels. Zero alignment keeps the distribution

Figure 2: Quantized PatchTST model, showing INT4 quanti-
zation. The Transformer encoder block consists of linear and
MatMul modules. All linear modules—QKV layers, two feed
forward layers, and an output projection layer—and MatMul
(BMM)modules are quantized. The 2ndMatMulmodule, Mat-
Mul2 (BMM2) is quantized to 8-bits for both INT8 and INT4
quantization.

symmetric around zero. Zero alignment is desirable for eventual
deployment of the quantized model because it permits easy hard-
ware implementation with simplified multiply-accumulate (MAC)
design and efficient data-flow [13].

4.2.2 Activation Quantization. For activation quantization, we use
the PACT+ quantizer [11]. PACT+ is an extension of the PACT2
quantizer [26]. We use PACT2 to quantize BMM operations, and
theMinMax quantizer to quantize the positively bounded BMM2
operation. For the PACT quantizers, 𝛼 and 𝛼𝑛 define the dynamic
range. They are parameterized and dynamically adjusted by gradi-
ent descent-based training, and the clamped activation output is
uniformly quantized to 𝑘 bits for dot-product computation. They
are initialized by sampling 5 batches of the dataset of each layer
based on a given percentile of the observed activation distribu-
tion [5]. PACT+ differs from PACT2 in that it scales the gradients
by a factor 𝜂 = (𝑧−𝑟𝑜𝑢𝑛𝑑 (𝑧 ) )/(2𝑘−1), where 𝑧 = 𝑥−𝛼𝑛/Δ is the zero
point, Δ is the step size, and 𝑘 is the number of bits. For the MinMax
quantizer,𝛼 and 𝛼𝑛 take the min and max of the tensors. We also
use zero alignment to preserve zero-value activations; however,
unlike for weights, we utilize the full 2𝑘 levels as in [26].
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5 Experimental Setup and Results
5.1 Overview
5.1.1 Dataset. We evaluate the scaling performance of FP32 train-
ing and QAT of PatchTST on the Traffic1 dataset. This dataset is
one of the multivariate datasets commonly used for benchmarking
time series forecasting tasks [27]. It provides the road occupancy
rates from different sensors on San Francisco freeways and was the
largest studied in [19]. With 862 features and over 17544 time steps,
it is less prone to overfitting and requires significant computational
resources to train, thus making it suitable for our study. We use
a {70, 10, 20} % split for training, validation, and test sets for all
experiments.

5.1.2 Training Settings and Baselines. We perform multivariate
long-term forecasting over prediction length 𝑇 = 96 and calculate
the mean-squared error (MSE) as our evaluation metric. A decrease
in MSE indicates an improvement in accuracy, while an increase
indicates a degradation in accuracy. We evaluate the performance of
our FP32 training of PatchTST over multiple GPUs, comparing the
learning rate scaling rules described in Section 3 and the default case
where no LR scaling is used. Additionally, we combine LR scaling
with gradient clipping and compare the performance with different
norm clip values, 𝜃 . We compare these results to the inference
(test) MSE of a single-GPU trained model. For quantization and
QAT scaling, we compare performance to the FP32 model and the
single-GPU trained quantized models.

For FP32 training, we use the default training settings from [19].
We use the Adam optimizer with learning rate of 1 × 10−4 and a
One-cycle learning rate (OCLR) schedule with a percentage start
of 0.22. We train for a total of 100 epochs, which was sufficient
to achieve convergence, and a dropout rate of 0.2. For QAT, we
also use Adam optimizer with learning rate of 1 × 10−4 but with a
Cosine annealing learning rate (CALR) schedule, and all quantized
models—INT8 and INT4—were initialized from “scratch”. For the
PACT+ quantizer, we use a learning rate (𝛼 _𝑙𝑟 ) of 1 × 10−4, with
L2 decay (𝛼𝑑𝑒𝑐𝑎𝑦 ) of 5 × 10−5, and initialize 𝛼 and 𝛼𝑛 from the
99.9 percentile. Because our NVIDIA V100 GPUs lack low-precision
capabilities, we must perform QAT and quantized inference in
emulation. This adds additional parameters during training and
inference, thus limiting the maximum batch size, 𝑏. To get a fair
comparison between our FP32 and QPatchTST models, we use the
highest allowable batch size, 𝑏 = 6, for FP32 and quantized training
and inference.

5.1.3 Implementation Details. We adapted and modified the code
base from [19], which is publicly available on GitHub, to support
DDP training on our computing platform, Artificial Intelligence
Multiprocessing Optimized System (AiMOS3). We implemented
QPatchTST using IBM’s Foundation Model Stack package [11]. All
experiments were performed onAiMOS’ NPL cluster which consists
of 40 compute nodes interconnected with dual 100Gb/s Infiniband
links configured in a Fat-Tree network topology. Each compute
node has 768 GB of DRAM, 2 20-core, 2.5 GHz Intel Xeon Gold
6248 processors, and 8 NVIDIA Tesla V100 GPUs with 32 GiB High

1https://pems.dot.ca.gov/
2The percentage of total epochs the scheduler spends increasing the learning rate.
3https://cci.rpi.edu/aimos

Figure 3: Multivariate long-term forecasting results for FP32
training of PatchTST scaled over up to 128 GPUs using Linear
Scaling Rule (1), Square Root Scaling Rule (2), and no Scaling
Rule (Default) without gradient clipping. We evaluate on the
Traffic dataset for prediction length 𝑇 = 96.

Bandwidth Memory (HBM). Both FP32 training and QAT were
performed on one or more GPUs, while inference is performed on
one GPU. All experiments were the average of three runs, unless
otherwise stated.

5.2 Scaling FP32 Training of PatchTST
We first analyze the robustness of FP32 PatchTST trained over mul-
tiple GPUs. Figure 3 compares the scaling performance of PatchTST
with the learning rate scaling rules described in 3, and no LR scal-
ing (Default) without gradient clipping. As shown, training with
Linear Scaling Rule performed best up to 40 GPUs, after which
our model became unstable and showed poor inference perfor-
mance. To remedy this, we incorporate gradient clipping. Figure 4
show the performance of our model trained over multiple GPUs
using learning rate scaling combined with gradient clipping with
𝜃 ∈ {1.0, 0.5, 0.1}. These results show that gradient clipping with
Linear scaling, (1), significantly improves MSE performance of the
FP32 model trained on increasing number of GPUs and that decreas-
ing 𝜃 stabilizes training. It is also worth noting that models trained
with Square Root scaling and gradient clipping showed minimal
variability with changing number of GPUs. We show the inference
MSEs of multi-GPU training of the learning rate scaling rules and
gradient clipping with 𝜃 = 0.1 in Table 1.

With 𝜃 = 0.1, we successfully scale FP32 training over 128 GPUs
with no degradation in MSE compared to the single-GPU trained
model, leading to an≈ 81x speedup.We show the change in training
latencies with increasing GPUs in Figure 5 and Table 3. We measure
training latency as the end-to-end latency including training and
validation data loading over 100 epochs. We average the training
latencies for training with linear LR scaling with no gradient clip-
ping and gradient clipping with 𝜃 ∈ {1.0, 0.5, 0.1}. As is evident,
training latency decreases exponentially with increasing number
of GPUs, with the largest rate of decrease occurring moving from
1 to 2 GPUs. The rate of decrease drops with increasing number

https://github.com/yuqinie98/PatchTST


KDD MILETS Workshop 2025, August 4, 2025, Toronto, ON, Canada Blair et al.

(a) Gradient clip-by-norm 𝜃 = 1.0 (b) Gradient clip-by-norm 𝜃 = 0.5 (c) Gradient clip-by-norm 𝜃 = 0.1

Figure 4: Multivariate long-term forecasting results for full precision training of PatchTST scaled over up to 128 GPUs using
Linear Scaling Rule (1) and gradient clipping with (a) 𝜃 = 1.0, (b) 𝜃 = 0.5, and (c) 𝜃 = 0.1. We evaluate on the Traffic dataset for
prediction length 𝑇 = 96.

Table 1: Multivariate long-term forecasting results of FP32
PatchTST trained on multiple GPUs with Linear (1) and
Square Root (2) Scaling Rules, and no learning rate scaling
(Default) and gradient clipping with 𝜃 = 0.1.

Nodes GPUs/
node

Total
GPUs Default Linear Square

Root
1 1 1 0.349 0.349 0.349
1 2 2 0.353 0.347 0.350
1 4 4 0.357 0.347 0.350
1 8 8 0.363 0.346 0.351
2 8 16 0.371 0.348 0.351
3 8 24 0.374 0.352 0.352
4 8 32 0.375 0.347 0.352
5 8 40 0.375 0.347 0.353
6 8 48 0.376 0.351 0.354
7 8 56 0.377 0.345 0.354
8 8 64 0.377 0.347 0.354
9 8 72 0.378 0.348 0.355
10 8 80 0.378 0.348 0.356
11 8 88 0.378 0.350 0.357
12 8 96 0.379 0.350 0.358
13 8 104 0.379 0.347 0.358
14 8 112 0.379 0.348 0.358
15 8 120 0.380 0.351 0.360
16 8 128 0.380 0.349 0.359

of GPUs. This can be attributed to the increase in communication
overheads, especially with increasing compute nodes. We will study
the cause of the bottlenecks in future studies.

5.3 Quantized PatchTST and QAT Scaling
We evaluate the viability of PatchTST under 8- and 4-bit quanti-
zation. We quantize PatchTST using SAWB+ for weights, PACT+
for activations, PACT2 for BMM operations, and MinMax for the
positively bounded BMM2 operation (see Section 4.2). We com-
pare inference MSE to the FP32 model. We also scale QAT of our
QPatchTSTmodels over multiple GPUs and compare inferenceMSE
to the single-GPU trained FP32 and quantized models. For scaled

Figure 5: Training latency with increasing GPUs of (a) FP32
and (b) INT8 QAT. We measure end-to-end training latency,
including training and validation dataset loading, over 100
epochs.

QAT, we use Linear Scaling Rule and gradient clipping with 𝜃 = 0.1.
In Section 5.4, we show how our modified Square Root 2 Scaling Rule
improves stability of our multi-GPU trained QPatchTST models.

We show our results in Figure 6. When trained on a single GPU,
INT8 QPatchTST maintained ISO MSE compared to the FP32 model.
For multi-GPU training, INT8 QPatchTST maintained ISO up to 104
GPUs, with a < 2% degradation in MSE compared to the FP32 model
trained on the same number of GPUs (104), and a < %1 degradation
in MSE compared to single-GPU trained FP32 and INT8 models.
With 104 GPUs, we achieved QAT speedup of ≈ 82× over training
on a single GPU.

When trained on a single GPU with default QAT settings, INT4
QPatchTST suffered an ≈ 5% degradation in MSE compared to the
single-GPU trained FP32 model and experienced poor scaling per-
formance with increasing GPUs. By increasing the PACT+ quantizer
learning rate (𝛼𝑙𝑟 ) to 6×10−4, we successfully recovered MSE of the
single-GPU INT4 model to ≈ 1.7% of the single-GPU trained FP32
model. However, this did not improve the scaling performance of
the model, with the model performing ≈ 3.1% worse when trained
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Figure 6: Multivariate long-term forecasting results for QAT
scaling over up to 128GPUs using Linear learning rate scaling
and gradient clipping with 𝜃 = 0.1. For INT4 QAT, we use
𝛼𝑙𝑟 = 1 × 10−4 (INT4-df) and 𝛼𝑙𝑟 = 6 × 10−4 (INT4-palr). We
train on the Traffic dataset for prediction length 𝑇 = 96.

on 𝑔 = 128 GPUs compared to the default settings. We show im-
provements in INT4 QAT scaling using Sqrt2 Scaling Rule instead
of Linear Scaling Rule for learning rate scaling in Section 5.4.

5.4 Square Root 2 Scaling Rule for Improved
Multi-GPU Training

To improve scaling performance of our INT4 QPatchTST model,
we perform QAT using our modified Square Root 2 (Sqrt2) Scaling
Rule (3) with 𝛼𝑙𝑟 = 6 × 10−4 and 𝛾 = 2. As seen in Figure 7, these
adjustments allowed successful scaling of INT4 QAT over up to
80 GPUs with only a 2.6% and 0.8% degradation in MSE compared
to the single-GPU trained FP32 and INT4 models, respectively.
With 80 GPUs, we achieve a 65× speedup in training latency over
single-GPU training. Sqrt2 learning rate scaling also improved the
stability of multi-GPU FP32 and INT8 (QAT) training, eliminating
the instability in our INT8 model trained on 𝑔 ≥ 112. As a result,
we achieve INT8 QAT on 𝑔 = 128 GPUs with no degradation in
MSE, leading to a 96× speedup in training latency4. Both the FP32
and INT8 models show more consistency with increasing GPUs,
maintaining inference MSE at ≤ 0.349. Table 2 show the inference
MSE of our FP32 and QPatchTST models trained on multiple GPUs
using Sqrt2 learning rate scaling and gradient clipping with 𝜃 = 0.1.
For INT4 QAT, 𝛼𝑙𝑟 = 6 × 10−4.

Figure 8 and Table 3 show the change in training latency with
increasing GPUs for QAT. We average the training latency of both
INT8 and INT4 QAT, since both are emulated using the same loaded
quantization parameters. As such, training latency for both are
generally the same, with small variations. Like FP32 scaling, training
latency decreases exponentially with increasing GPUs. It is worth
noting the increase in training latency for QAT compared to the
FP32 training. This is because our V100 GPUs do not support low-
precision arithmetic, as explained in Section 5.1.2. As such, QAT and
4The speedup is due to training on increasing number of GPUs rather than quantization,
since the V100s do not support low-precision arithmetic

Figure 7: Multivariate long-term forecasting results for FP32
training and INT8 and INT4 QAT scaled over up to 128 GPUs
using Square Root 2 Scaling Rule(3) with gradient clipping
𝜃 = 0.1. We train on the Traffic dataset for prediction length
𝑇 = 96.

Table 2: Multivariate long-term forecasting results of our
FP32 and QPatchTSTmodels trained onmultiple GPUs using
Square Root 2 (Sqrt2) Scaling Rule and gradient clipping with
𝜃 = 0.1. INT4 QPatchTST is trained with 𝛼𝑙𝑟 = 6 × 10−4.

Nodes GPUs/
node

Total
GPUs

FP32
Sqrt2

INT8
Sqrt2

INT4
Sqrt2

1 1 1 0.349 0.349 0.355
1 2 2 0.347 0.349 0.360
1 4 4 0.348 0.351 0.353
1 8 8 0.347 0.348 0.357
2 8 16 0.345 0.348 0.355
3 8 24 0.345 0.349 0.356
4 8 32 0.346 0.345 0.355
5 8 40 0.346 0.346 0.354
6 8 48 0.347 0.343 0.358
7 8 56 0.345 0.344 0.357
8 8 64 0.346 0.343 0.359
9 8 72 0.346 0.344 0.357
10 8 80 0.347 0.345 0.358
11 8 88 0.347 0.346 0.362
12 8 96 0.346 0.347 0.360
13 8 104 0.346 0.347 0.360
14 8 112 0.347 0.347 0.359
15 8 120 0.346 0.349 0.361
16 8 128 0.347 0.347 0.363

quantized inference were emulated and the additional parameters
needed increased latency. We expect to see improved (reduced)
training and inference latencies when experimenting on hardware
with low-precision support in future iterations of this work.
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Figure 8: Training latency with increasing GPUs of QAT. We
measure end-to-end training latency, including training and
validation dataset loading, over 100 epochs.

Table 3: Training latency with increasing number of GPUs.

FP32 QAT

Nodes
GPUs/
node

Total
GPUs

Latency
(min)

SpUp
(×)

Latency
(min)

SpUp
(×)

1 1 1 1042.92 - 2997.26 -
1 2 2 555.93 1.88 1513.42 1.98
1 4 4 322.66 3.23 876.31 3.42
1 8 8 166.10 6.28 407.87 7.35
2 8 16 85.64 12.18 203.27 14.75
3 8 24 58.18 17.93 137.78 21.75
4 8 32 44.24 23.57 104.64 28.64
5 8 40 37.40 27.89 85.45 35.08
6 8 48 30.17 34.57 75.59 39.65
7 8 56 27.56 37.84 62.88 47.67
8 8 64 23.86 43.71 55.9 53.62
9 8 72 22.06 47.28 50.24 59.66
10 8 80 18.88 55.24 46.06 65.07
11 8 88 17.97 58.04 42.49 70.54
12 8 96 16.53 63.09 39.22 76.42
13 8 104 15.73 66.30 36.65 81.78
14 8 112 14.36 72.63 34.63 86.55
15 8 120 13.52 77.14 32.68 91.72
16 8 128 12.83 81.29 31.20 96.07

5.5 Memory and Computation Savings of
QPatchTST Models

The PatchTST model studied (PatchTST with prediction length
𝑇 = 96) consists of ≈ 1.2 million parameters and consumes 38.22
MB of memory. The Transformer Encoder and the Flatten + Linear

Head make up ≈ 99.3% of the total number of parameters. INT8
quantization reduces model size to 9.84MB, a 74.3% reduction (3.9×
compression) compared to the FP32model. Additionally, INT4 quan-
tization reduces model size by 86.6% to 5.11MB, a 7.5× compression
compared to the FP32 model.

In relation to computation savings, PatchTST consists of≈ 625.85
million multiply-accumulate (MAC) operations, with the Trans-
former Encoder accounting for nearly 86%. Performing these op-
erations in lower bit-width, fixed-point arithmetic would yield
significant computation savings provided they are natively sup-
ported in hardware. Since we emulated quantization, our savings
are theoretical. We intend to perform hardware evaluation of our
QPatchTST models in future studies to confirm these savings.

6 Related Work
Transformer models have been successfully quantized using a vari-
ety of techniques, including post-training quantization (PTQ) [18],
QAT [6], and quantizers, such as PACT [6], SAWB [5], and SAWB+
and PACT+ [26]. For NLP, FullyQT [21] and [3] developed an 8-
bit transformer for machine translation. Q8BERT [29] quantized
BERT [12] model to 8-bits. ZeroQuant [28] quantized the weights of
BERT down to 4-bits, but kept activations in 8-bits. Weight quantiza-
tion was pushed even lower with TernaryBERT [33] achieving 3-bit
quantization, and BiBERT [22] achieving 2-bit quantization. These
studies kept activations in 8-bits. Other Transformer models have
also been quantized. Liu et al. [18] quantized Vision Transformers
down to 8-bits using PTQ. Bie et al. [4] applied 8-bit weight quanti-
zation to a simplified encoder-decoder transformer for end-to-end
ASR task. In addition, Wang et al. [26] achieved 4-bit weight and
activation quantization on NLP, Vision, and Speech transformers.

Despite the abundance of work related to the quantization of
LLMs, the quantization of time series transformers has been rela-
tively unexplored. Ling et al. [17] proposed a quantization scheme
that dynamically selects between symmetric and asymmetric quan-
tization to quantize a time series transformer model for FPGAs.
They performed mixed-precision quantization, with the output
layer (last layer) quantized to 8-bits while the other layers were
quantized to 4-bits. In addition, their work supports only single-
step-ahead time series forecasting. On the contrary, we quantize
all layers except the Projection + Position Embedding to 8 or 4
bits and perform multivariate time series forecasting for up to 96
future steps. Other works like Works like VQ-TR [23] use vector
quantization (VQ) on time series transformers for forecasting. VQ
involves mapping continuous values to discrete values and storing
them in a code book represented in higher bits, e.g., 32-bits, making
it a different kind of model compression than what we are pursuing.
We are focused on compression that targets the architectural fea-
tures (low bit-width integers and arithmetic) of the target hardware,
rather than reducing the number of distinct coefficients.

7 Conclusion and Future Work
With the continuous growth of time series data, the computational
and memory requirements needed to train time series forecasting
models will only continue to grow. We investigated the robustness
of PatchTST and quantized PatchTST (QPatchTST) to paralleliza-
tion. Our work demonstrated the successful scaling of FP32 training
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over 128 GPUs, leading to significant reduction in training latency.
We introduce a new learning rate scaling rule, Square Root 2 Scal-
ing Rule, that enables successful QAT scaling of INT8 and INT4
QPatchTST over 128 and 80 GPUs, respectively, with no MSE degra-
dation for INT8 QPatchTST and only minimal MSE degradation for
INT4 QPatchTST. Our QPatchTST models are considerably smaller
in size than the FP32 model, resulting in significant memory sav-
ings. The simultaneous compression and parallelization results in
improved training efficiency. We will verify these savings with fu-
ture investigation into the scaling of QPatchTST QAT over multiple
GPUs with low-precision capabilities, specifically the Empire AI5
computing platform. We will identify larger and more complex
datasets, for e.g., datasets generated by the DOE’s Co-Design of
Exascale Storage Architectures (CODES) parallel simulation frame-
work [7] and Deep Underground Neutrino Experiment (DUNE)
workflows [20], to support expanding QPatchTST training beyond
128 GPUs. This analysis will be valuable for the development of al-
gorithms for improved QAT scaling performance where applicable.
Finally, we will extend our work to the newer Tiny Time Mixers [9]
time series forecasting models in the future.
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