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Abstract
Electronic health records (EHRs) capture detailed, longitudinal pa-
tient data essential for healthcare. While large language models
(LLMs) offer strong language understanding, their use in clinical ap-
plications with EHRs remains limited due to two key challenges: (1)
the excessive input lengths of EHRs, which often exceed the context
windows of even long-context LLMs; and (2) the high prevalence
of domain-specific or out-of-distribution tokens in clinical text. To
address these issues, we propose Medical Token-Pair Encod-
ing (MedTPE), a lightweight, domain-adaptive token compression
method built on top of the Byte Pair Encoding (BPE) framework.
MedTPE identifies frequently co-occurring token patterns in real-
world EHR corpora and replaces themwith medically coherent com-
posite tokens, without increasing the vocabulary size or embedding
parameters. Crucially, MedTPE modifies only 3.3% of the original
BPE vocabulary using a dependency-aware replacement strategy,
making it both efficient and compatible with existing pretrained
models. Without requiring additional labels, MedTPE achieves up to
49% reduction in token sequence length on two clinical prediction
tasks, while maintaining predictive performance across all evalu-
ated settings. Our method offers a scalable solution for compressing
EHR inputs, substantially enhancing the practicality of LLMs in
clinical environments.

1 Introduction
Electronic health records (EHRs) contain comprehensive, longi-
tudinal information about patient care, encompassing diagnoses,
laboratory tests, medications, and procedures. Leveraging these
multi-modal and temporally structured data sources is crucial for
advancing predictive modelling and clinical decision support in
healthcare systems [16, 22]. Especially, recent work has demon-
strated that large language models (LLMs) can effectively perform a
range of clinical prediction tasks in zero-shot and few-shot settings
by representing EHRs as token sequences and learning patterns
across patient timelines [7, 23]. The common paradigm involves
converting structured EHR events into text and giving instructions
for downstream tasks, as shown in Figure 1. In addition to the
zero-shot predictive capability, LLMs are capable of generating
human-readable explanations for clinical decisions [29].

To support reliable clinical predictions, LLMsmust process exten-
sive and complex patient histories. However, EHRs for a few days
can lead to tokenised sequences over 64,000 tokens, far surpassing
the context window of most existing LLM families [9, 27, 30]. This

Static Varaiables:
Gender: Male.
Age: 61.
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Diastolic blood pressure is 52.0 mmHg.
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Oxygen saturation is 99.0 %.
Norepinephrine Injection Starts.
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Figure 1: Illustration of LLM-based clinical prediction with
EHR data. Structured EHRs are first converted into event
streams and then translated into natural language, incorpo-
rating both static patient characteristics and time-stamped
clinical events. The resulting text is concatenated with a
prompt describing the prediction task. The combined text
and prompt are tokenised and fed into the LLM, which gener-
ates output that is interpreted as both a structured prediction
and a free-text explanation.

results in significant computational overhead and can reduce infer-
ence efficiency. A key contributing factor to this inefficiency lies
in the subword tokenisation algorithms (e.g., Byte-Pair Encoding,
WordPiece, and SentencePiece [15, 24, 25]). While these algorithms
are effective for general-purpose language modelling, they are not
optimised for the long and specialised medical terms commonly
found in EHRs. As a result, compound clinical phrases are frequently
fragmented into multiple short subword tokens, which unnecessar-
ily elongates input sequences and increases computation [33].

One potential solution is to retrain a domain-specific tokeniser
on medical corpora, which can yield more compact representa-
tions [4, 14, 23]. However, this approach often requires re-training
or continuing pre-training from a base model to accommodate the
new vocabulary, making it prohibitively resource-intensive. In ad-
dition, the retraining can destroy LLMs’ core capabilities, such as
instruction following and reasoning, that are already embedded in
the pre-trained weights. Recent efforts modify the existing vocabu-
laries through token remapping or adapter layers to avoid model
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retraining but introduce additional computational cost and integra-
tion complexity [10, 19]. Overall, current approaches in medical
applications face significant challenges of resource demands, com-
patibility, and computational efficiency. There remains a pressing
need for a medical-specific tokenisation approach that reduces se-
quence length while preserving compatibility with existing LLMs
and maintaining inference efficiency.

To address these challenges, we propose MedTPE, an efficient
tokenisation method built on top of any existing BPE tokeniser. In-
stead of discarding the pre-trained tokeniser, MedTPE improves it
by merging frequently co-occurring BPE token pairs from real EHR
corpora into new composite tokens. Unlike methods that simply
add new tokens, MedTPE uses a dependency-aware replacement
strategy to substitute a small portion of the original BPE tokens
with the most informative new tokens. This enables significant
compression without increasing the vocabulary size or embedding
layer parameters. With only minimal fine-tuning of the newly intro-
duced embeddings, MedTPE significantly reduces the length of the
token sequence while maintaining, and sometimes even improving,
predictive performance. Our main contributions are as follows:
• Substantial token savings with near-zero performance
drop. MedTPE reduces input sequence lengths by up to 49%
across two clinical prediction tasks in the publicly available
MIMIC-IV dataset [13], with marginal degradation and even
improvement in predictive performance.

• Label-free adaptation.MedTPE introduces a light-weighted
token compression scheme that modifies only the embedding
layer, requiring no labelled data and no re-training or fine-tuning
of the full LLM. The embeddings for new tokens are initialised
and adapted via lightweight self-supervised learning.

• Efficient and compatible design.MedTPE uses a dependency-
aware replacement algorithm that replaces only 3.3% of original
tokens without altering the vocabulary size or embedding matrix.
This algorithm preserves the encoding mechanism of the BPE,
making MedTPE fully compatible with any BPE framework and
thus enabling seamless integration with pre-trained LLMs.

Overall, MedTPE offers a practical and scalable approach to using
LLMs in real-world clinical environments, where efficiency and
compatibility with existing models are critical.

2 Related Work
2.1 LLM-based Prediction on EHR
Recent studies have begun to exploit LLMs for clinical prediction
from EHRs, evolved from time series models [6, 9, 21, 31]. Niu et al.
[21] extract a targeted subset of medical events and laboratory
results from EHR databases, rendering them as concise, narrative-
style summaries for LLM input. Chen et al. [6] convert diagnosis,
procedure, and medication codes into full descriptive sentences
to enrich the clinical context of the model. In contrast, Fleming
et al. [9] serialises the patient’s entire event history into an XML-
formatted text for direct ingestion. Similarly, Wu et al. [31] lin-
earises all EHR events into a continuous text sequence and then
adopts ClinicalBERT [1] to embed the events before feeding them
into the LLM. Despite their success, these methods struggle with
overly long token sequences. Niu et al. and Chen et al. reduce length
by selecting a hand-picked subset of events, risking the omission of

important history [6, 21]. Wu et al. employs per-event compression
models to shorten descriptions, adding computational overhead
[31]. Fleming et al. simply truncates the event stream, which speeds
up inference, but discards a lot of the patient record [9]. In contrast,
our method addresses the sequence length at the tokenisation level.
By merging frequently co-occurring token pairs into single, medical
tokens, we preserve the patient trajectory within the hospital while
substantially reducing input length and inference cost.

2.2 Tokenisation
Modern LLMs employ subword tokenisation to strike a balance
between a fixed-size vocabulary and the need to represent rare or
out-of-vocabulary words. BPE begins with a base vocabulary of in-
dividual characters and repeatedly merges the most frequent pairs
of adjacent characters into new sub-word units [24]. WordPiece
extends this idea by scoring candidate merges according to their
impact on the overall likelihood of a language model, resulting
in a vocabulary that maximises predictability at the token level
[25]. In contrast, SentencePiece treats tokenisation as inference
under a probabilistic finite vocabulary: it starts from a large seed
vocabulary and removes low-probability tokens iteratively, optimis-
ing for both coverage and compression without relying on explicit
merge operations [15]. These general-purpose tokenisers excel on
everyday text, but can over-segment specialised terminology. In
the medical domain, long drug names and ontological identifiers
can be split into dozens of sub-words, increasing the length of the
sequence, computing the cost, and affecting the semantic cohe-
sion [12]. Whereas conventional approaches map text to tokens,
we reverse the lens: TPE merges high-utility token pairs from the
medical corpus into single domain-specific units. This compresses
trajectories without discarding the mature BPE vocabulary or the
checkpoints that depend on it.

2.3 Domain-specific Vocabulary
The choice of vocabulary directly shapes the embedding space of
an LLM and drives the inference costs. Therefore, a lot of work
has been done to develop a domain-specific vocabulary. Bolton
et al. [4] introduce a custom BPE tokeniser tailored to a biomedical
corpus to preserve healthcare-specific terms as single tokens. Kim
et al. [14] similarly design a customised tokeniser for mental health
records. Renc et al. [23] construct an EHR-event vocabulary that
takes medical events as words to facilitate the encoding of clinical
events. Although these domain-specific vocabularies enhance token
efficiency, they require training on a specialised corpus from scratch,
thereby forfeiting the advantages of pre-trained general-purpose
LLMs. In contrast, our method augments existing BPE vocabularies,
preserving all pre-trained embeddings and model parameters, while
markedly reducing the sequence length in clinical prediction.

Recently, vocabulary adaptation methods emerged to enable
domain-specific vocabulary integration to pre-trained LLMs. Han
et al. [10] propose appending new tokens to the original vocabulary
and adapting embeddings via an additional adapter module. How-
ever, this approach increases the vocabulary size and the number
of model parameters. Nakash et al. [19] instead replace less useful
original tokens with domain-specific ones, yet require dynamic to-
ken merging during inference, which increases the computational
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Figure 2: Illustration of the MedTPE tokenisation and encoding process. Raw EHR data and clinical prompts are first tokenised
into subwords using the original BPE tokeniser, as well as passing through the TPE Tokeniser. The latter consists of the TPE
Merges mechanism and the Byte and Token-Pair (B&TP) vocabulary. The TPE tokeniser then applies a domain-specific merge
table to combine frequent adjacent BPE tokens into composite medical tokens (e.g., Spirometry). The resulting TPE-encoded
sequence is passed to the LLM for efficient clinical prediction. Embeddings for new TPE tokens are initialised based on their
BPE constituents and further fine-tuned via self-supervised fine-tuning, aligning the compressed vocabulary with the original
LLM outputs without requiring human labels.

complexity of tokenisation. In contrast, our method neither in-
creases vocabulary size nor model parameters, while maintaining
tokenisation efficiency comparable to the original BPE approach.

3 Preliminaries
We represent the EHR of a patient 𝑖 ∈ {1, . . . , 𝑁 } as a sequence of
timestamped clinical events:

E(𝑖 ) = {𝑒 (𝑖 )1 , 𝑒
(𝑖 )
2 , . . . , 𝑒

(𝑖 )
𝑇 (𝑖 ) }, (1)

where each event 𝑒 (𝑖 )
𝑗

= (𝑐 (𝑖 )
𝑗

, 𝑜
(𝑖 )
𝑗

, 𝑡
(𝑖 )
𝑗

) consists of a clinical con-
cept 𝑐 (𝑖 )

𝑗
(e.g., diagnosis, lab test, medication), an observation value

𝑜
(𝑖 )
𝑗

(e.g., blood glucose level or test result), and a timestamp 𝑡 (𝑖 )
𝑗

.
𝑇 (𝑖 ) denotes the number of clinical events for patient 𝑖 . Events
are chronologically ordered, though multiple events may share the
same timestamp.

Each structured event is converted into a natural language frag-
ment using a data-to-text generation module:

𝑠
(𝑖 )
𝑗

= 𝜙 (𝑒 (𝑖 )
𝑗

), (2)

where 𝜙 : C × O × R → S maps structured tuples into human-
readable text. This yields an ordered sequence {𝑠 (𝑖 )1 , 𝑠

(𝑖 )
2 , . . . , 𝑠

(𝑖 )
𝑇 (𝑖 ) },

representing the patient’s trajectory in natural language.

The text fragments are first concatenated to form a single text
𝑠 (𝑖 ) ∈ S for each patient:

𝑠 (𝑖 ) = 𝑠
(𝑖 )
1 ⊕ 𝑠

(𝑖 )
2 ⊕ . . . ⊕ 𝑠

(𝑖 )
𝑇 (𝑖 ) , (3)

where ⊕ denotes concatenation.
This sequence is then tokenised using a subword tokeniser 𝜏 :

S → V , yielding a token sequence:

X (𝑖 ) = {𝑥 (𝑖 )1 , 𝑥
(𝑖 )
2 , . . . , 𝑥

(𝑖 )
𝐿 (𝑖 ) }, 𝑥

(𝑖 )
𝑛 ∈ V, (4)

where V is the subword vocabulary and 𝐿 (𝑖 ) is the length of the
token sequence for patient 𝑖 .

To perform clinical prediction, a natural language prompt 𝑠prt
(e.g., “What is the most likely discharge diagnosis?”) is appended
and tokenised to𝑀 tokens:

P = {𝑝1, 𝑝2, . . . , 𝑝𝑀 }, 𝑝𝑚 ∈ V . (5)

The complete tokenised model input becomes:

X′(𝑖 ) = {𝑥 (𝑖 )1 , . . . , 𝑥
(𝑖 )
𝐿 (𝑖 ) , 𝑝1, . . . , 𝑝𝑀 }. (6)

A pretrained autoregressive language model 𝑓 with parameters
𝜃 defines a conditional distribution over output sequences:

G (𝑖 ) = 𝑓 (X′(𝑖 ) ;𝜃 ) =
𝐾 (𝑖 )∏
𝑘=1

𝑝 (𝑔 (𝑖 )
𝑘

| X′(𝑖 ) , 𝑔 (𝑖 )
<𝑘

;𝜃 ), (7)
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where G (𝑖 ) = {𝑔 (𝑖 )1 , 𝑔
(𝑖 )
2 , . . . , 𝑔

(𝑖 )
𝐾 (𝑖 ) }, G (𝑖 ) ⊂ V denotes the gener-

ated output tokens, and 𝑘 indexes positions in the output sequence.
Finally, a task-specific extraction function ext : V → Y maps

the model output to a structured prediction:

𝑦 (𝑖 ) = ext (𝐺 (𝑖 ) ), (8)

where 𝑦 (𝑖 ) denotes the clinical prediction (e.g., diagnostic codes,
binary outcomes, or treatment recommendations).

For clarity, we use 𝑥 𝑗 to denote tokens in the subsequent sections.

4 Methodology
This section details the MedTPE framework designed to efficiently
compress medical token sequences for pre-trained language models
(LLMs). As illustrated in Fig. 2, we first identify frequent medical-
specific tokens from tokenised medical corpora and construct a
TPE vocabulary and tokeniser (Section 4.1). To incorporate these
newly defined tokens without increasing the size of the vocabulary
and embedding matrix, we employ a dependency-aware vocabulary
replacement mechanism (Section 4.2). The embeddings for the new
TPE tokens are then initialised to integrate into the pre-drilled
embedding space (Section 4.3). Finally, we use self-supervised fine-
tuning (SSFT), optimising only the new embeddings to preserve
the general knowledge captured by the pre-trained LLM while
benefiting from the domain-specific tokenisation (Section 4.4).

4.1 Token–Pair Encoding
TPE is built upon a pre-trained BPE tokeniser, treating complete
BPE tokens as its fundamental units. It identifies and merges fre-
quently co-occurring sequences of 𝑛 ≥ 2 tokens into domain-
specific 𝑛-gram symbols. For any contiguous span of length 𝑛 𝑗 ∈
{2, . . . , 𝑛max}, a composite TPE token is constructed as:

𝑑 𝑗 = 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑛 𝑗
, 𝑥𝑖 ∈ V, 𝑑 𝑗 ∈ VTPE (9)

where VTPE denotes the TPE vocabulary.
For each composite token 𝑑 𝑗 , a corresponding merge rule is

defined and added to a token-pair merge table, which is ordered by
the frequency of each token in the medical corpus. To define the
merge process for 𝑑 𝑗 , we traverse its constituent sub-tokens from
left to right to construct the merge path 𝑀𝑃 (𝑑 𝑗 ):

𝑀𝑃 (𝑑 𝑗 ) =
[
(𝑥1, 𝑥2), (𝑥1𝑥2, 𝑥3),

. . . , (𝑥1 . . . 𝑥𝑛 𝑗−1 , 𝑥𝑛 𝑗
)
]
.

(10)

The merge path for each candidate token is appended to a unified
token-pair merge table, with duplicate entries omitted. The final
TPE merge table is constructed by concatenating the merge paths
of all candidate tokens:

MTPE =
[
𝑀𝑃 (𝑑1)∥𝑀𝑃 (𝑑2)∥ . . . ∥𝑀𝑃 (𝑑 𝐽 )

]
, (11)

where ∥ denotes list concatenation with duplicate removal. The
resulting merge table, together with the defined composite tokens,
constitutes the TPE vocabulary VTPE.

The TPE tokenisation 𝜏★ operates in two steps: the input text
is first tokenised using the original BPE tokenizer to produce an
intermediate BPE token sequence, and subsequently, the TPE tok-
enizer applies the constructed merge table MTPE to further merge
frequent adjacent BPE tokens into more efficient, domain-specific

TPE tokens. This layered tokenisation provides substantial com-
pression of medical token sequences while maintaining the same
computational complexity as standard BPE tokenisation, i.e., O(𝑁 ),
where 𝑁 is the length of the input token sequence.

4.2 Dependency-Aware Token Replacement
To integrate the new TPE vocabulary with the BPE vocabulary of
the pre-trained LLM, it is necessary to combine these into a unified
set. A straightforward solution, taking their unionV∪VTPE, would
increase the size of the embedding matrix and diminish efficiency.
Instead, we propose to maintain the original vocabulary size by
replacing the least useful BPE tokens with the most beneficial TPE
tokens. Specifically, we employ a length-aware frequency score,
which rewards tokens that both occur frequently and significantly
compress sequences:

score(𝑑 𝑗 ) = freq(𝑑 𝑗 ) · |𝑑 𝑗 |BPE, (12)

where freq(𝑑 𝑗 ) is the raw corpus frequency of token 𝑑 𝑗 , and |𝑑 𝑗 |BPE
is the number of composited BPE tokens.

We select the top-𝑀 TPE tokens ranked by this score to form
the insertion set I. However, directly replacing BPE tokens with
TPE tokens can disrupt the underlying BPE merge paths needed
for consistent tokenisation. Each TPE token 𝑐 ∈ I depends on a
BPE merge path𝑀𝑃 (𝑑 𝑗 ) resolving recursively to byte-level tokens.
Thus, to ensure deterministic tokenisation, we must retain all BPE
tokens involved in these paths, including any recursively required
tokens. We explicitly define this dependent set D as:

D =

 𝑥
�������

∃𝑑 𝑗 ∈ I such that 𝑥 ∈ 𝑀𝑃 (𝑑 𝑗 ),
or
∃ 𝑥 ′ ∈ 𝑀𝑃 (𝑑 𝑗 ) such that 𝑥 ∈ 𝑀𝑃 (𝑥 ′)

 . (13)

Given the dependent set D, we identify tokens eligible for re-
placement by forming the unprotected set U = V \ D. We then
select the 𝑀 least frequent tokens from U according to corpus
frequency, forming the eviction set E ⊆ U. Combining removals
and insertions gives the B&TP vocabulary:

V★ = (V \ E) ∪ I, with |I | = |E | = 𝑀. (14)

By explicitly protecting all dependent tokens in P, the merge paths
from the original BPE merge tableMBPE and the new TPE merge
tableMTPE remain valid. This procedure ensures deterministic to-
kenisation, introduces only minor modifications to the pre-trained
LLM’s embedding matrix.

4.3 TPE Embedding Initialisation
Each new TPE token requires an embedding vector that is com-
patible with the pre-trained embedding space of the original LLM.
For a given TPE token 𝑑 𝑗 composed of 𝑛 𝑗 constituent BPE tokens,
we initialise its embedding vector e𝑑 𝑗 by computing the arithmetic
mean of the pre-trained embeddings of its constituent tokens:

ẽ𝑑 𝑗 =
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

e𝑥𝑖 . (15)

To maintain numerical stability and prevent excessively strong ini-
tial embeddings, we further normalise this vector to half of the
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average embedding norm of the pre-trained BPE vocabulary. Specif-
ically, the initial embedding is given by:

e𝑑 𝑗 = 0.5 𝜇
ẽ𝑑 𝑗
∥ẽ𝑑 𝑗 ∥

, 𝜇 =
1
|V|

∑︁
𝑥∈V

∥e𝑥 ∥, (16)

where 𝜇 denotes the average embedding norm across the original
BPE vocabularyV .

This embedding initialisation method places new TPE tokens
within the pre-trained embedding distribution, enabling quick adap-
tation during the subsequent fine-tuning. It introduces only𝑀 addi-
tional embedding rows, preserving the structure of the pre-trained
model and the efficiency of the parameters.

4.4 Self-Supervised Fine-tuning
After introducing new TPE tokens, we propose SSFT to optimise
their embeddings for the medical domain, without requiring any
human-annotated labels. Specifically, we leverage the pretrained
LLM to generate supervision as follows: Given a medical text 𝑠 (𝑖 )
and LLM 𝑓 with BPE tokeniser 𝜏 , we train the LLM’s parameters
𝜃★ with TPE tokeniser 𝜏★ to minimise the cross-entropy loss:

Yssft = 𝑓

(
𝜏 (𝑠 (𝑖 ) );𝜃

)
,

Lssft = −
𝑇∑︁
𝑡=1

Yssft log 𝑓
(
𝜏★(𝑠 (𝑖 ) );𝜃★

)
.

(17)

To maintain the efficiency and integrity of the pre-trained LLM,
we freeze all original model parameters and update only the embed-
dings corresponding to the newly added TPE tokens. We implement
a dedicated embedding split module (see Appendix A) to ensure
that gradients are computed exclusively for the new embeddings,
avoiding unnecessary memory usage and computation. By aligning
the new TPE embeddings with the outputs of the pretrained model,
this self-supervised approach preserves the LLM’s original capa-
bility while enabling efficient adaptation to the domain-specific
tokenisation, without any labelled clinical data.

5 Experiments and Discussion
5.1 Experiment Settings
5.1.1 Dataset & Processing. To evaluate the effectiveness ofMedTPE,
we conducted experiments on MIMIC-IV [13], a large-scale EHR
dataset collected fromBeth Israel DeaconessMedical Centre.MIMIC-
IV includes detailed records for patients admitted to intensive care
units, including diagnoses, procedures, medications, laboratory
results, and demographic information. This diverse and compre-
hensive dataset enables the assessment of clinical prediction tasks.
For feature modelling, we transform the raw EHR data into struc-
tured event streams following the Medical Event Data Standard
(MEDS) [3]. The patient’s record is represented as a chronologi-
cally ordered sequence of events, each consisting of a timestamp
and a clinical measurement. The dataset is divided at the patient
level into training, validation, and test sets in an 8:1:1 ratio. The
implementation is available via an anonymous link1.

1https://anonymous.4open.science/r/MedTPE-DA2E/README.md

5.1.2 Tasks & Metrics. We evaluated model performance on two
standard clinical prediction tasks in line with established bench-
marks [11]: (1) ICU Mortality, a binary classification task that
predicts whether a patient will die during their ICU stay based
on the first 24 hours of data after admission to the ICU; and (2)
Phenotyping, a multi-label classification task that predicts the
presence of 25 clinical phenotypes for each patient using the 24
hours of data after admission to the ICU.

We evaluate LLMs on three key capabilities:

• Prediction Capability: We assess predictive performance of the
model using the F1 score, following standard practice in LLM-
based healthcare benchmarks [5, 17]. For ICUmortality, we report
the binary F1 score; for phenotyping, we use the macro-F1 score.

• Format-Compliance Capability: This metric evaluates how of-
ten the model produces outputs in the required format. We report
the Format Compliance Rate (FCR) [20], defined as the proportion
of outputs that strictly match the expected format. Outputs that
do not meet this criterion are considered uninterpretable and are
treated as incorrect predictions.

• Inference Efficiency: To quantify efficiency, we report both the
input token count for EHR and medical text, and the model’s
average inference time.

5.2 Evaluation of LLMs with MedTPE
This experiment assesses whether MedTPE can compress input
sequences without compromising predictive performance in clin-
ical prediction tasks and its contribution to improving inference
efficiency. We set the maximum sequence length to 8,192 tokens
(6,144 for input and 2,048 for output). Both standard prompting and
Chain of Thought (CoT) prompting [28] are compared using the
baseline BPE tokeniser and MedTPE. To evaluate the effect of self-
supervised fine-tuning (SSFT), we also report results for MedTPE
without SSFT. Table 1 presents the F1 scores, format compliance
rate (FCR), and inference time for all evaluated settings.

The results show that MedTPE maintains or even improves pre-
dictive performance compared to the original LLMwith BPE tokeni-
sation. For standard prompting, MedTPE preserves F1 and macro-F1
scores while reducing inference time by 69.3% for phenotyping. In
the CoT setting, MedTPE significantly improved F1 scores and FCR
for both clinical prediction tasks. Inference latency is also sharply
reduced, with a 95.9% decrease for the prediction of ICU mortality.

These findings demonstrate that MedTPE substantially improves
LLM inference efficiency without compromising predictive perfor-
mance. Furthermore, SSFT enables the model to understand the
new tokens. Without SSFT, both predictive performance and format
compliance collapse, as the model cannot interpret the new TPE
tokens that frequently appear in clinical inputs. This also results
in increased inference time, as the LLM, unable to understand the
input, generates more tokens in an attempt to resolve the prompt,
which leads to significantly longer inference durations [18]. Overall,
these results highlight the necessity of adapting the embedding
when introducing domain-specific tokens.

Interestingly, we observe that small languagemodels like Qwen2.5-
1.5B[32] struggle with CoT prompting when input sequences are
long (6K), resulting in poor format compliance and low F1 scores.
This is likely due to their limited attention span, causing them to

https://anonymous.4open.science/r/MedTPE-DA2E/README.md
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Table 1: Assessment of Prediction, Format Compliance, and Inference Efficiency of LLMs with MedTPE. Mean and standard
deviation of F1 scores are reported, calculated by bootstrapping the test set 1,000 times. Time is reported in minutes, and
percentage change is calculated relative to the inference time of the original LLM without MedTPE.

LLM (Prompting) ICU Mortality Phenotyping
F1 (std)↑ FCR↑ Time (Changed %)↓ macro-F1 (std)↑ FCR↑ Time (Changed %)↓

Qwen2.5-1.5B (-) 0.123 (0.006) 0.997 43.483 (-) 0.178 (0.004) 0.972 41.491 (-)
Qwen2.5-1.5B (-) + MedTPE 0.122 (0.006) 1.0 18.306 (-57.9%) 0.174 (0.004) 0.997 12.717 (-69.3%)
Qwen2.5-1.5B (-) + MedTPE w.o SSFT 0.001 (0.0) 0.041 59.369 (+36.5%) 0.004 (0.001) 0.055 85.283 (+105.5%)
Qwen2.5-1.5B (CoT) 0.061 (0.005) 0.603 484.411 (-) 0.039 (0.002) 0.581 303.230 (-)
Qwen2.5-1.5B (CoT) + MedTPE 0.122 (0.006) 0.999 19.729 (-95.9%) 0.127 (0.004) 0.775 62.94 (-79.2%)
Qwen2.5-1.5B (CoT) + MedTPE w.o SSFT 0.001 (0.001) 0.036 129.389 (-73.3%) 0.001 (0.0) 0.018 161.145(-46.9%)

lose track of task instructions and prediction targets[2]. By com-
pressing input sequences, MedTPE alleviates this limitation, helping
LLMs retain essential information and consistently produce outputs
in the required format. As a result, even small models benefit from
CoT prompting when equipped with MedTPE, showing clear im-
provements in both accuracy and instruction-following capability.

5.3 Token Compression Analysis
This experiment assesses the effectiveness of MedTPE in compress-
ing model input sequences for clinical prediction. We analysed
patient cohorts for ICU mortality and MIMIC-IV phenotyping tasks,
focusing on the first 24 hours of each patient’s stay in the ICU.
For each case, the input sequences were tokenised using both the
Qwen2.5 BPE tokeniser[32] and our proposed MedTPE tokeniser.
We then compared the resulting token counts across the test set, re-
porting the median and interquartile range to illustrate the distribu-
tion and magnitude of compression achieved. Figure 3(a) illustrates
that, for the ICU mortality cohort, MedTPE reduces the median
token count by 49.1% compared to the baseline BPE tokeniser. Sim-
ilarly, MedTPE achieves a reduction of 49.0% in the phenotyping
cohort. These substantial reductions in input sequence length are
achieved without increasing the size of the vocabulary or expand-
ing the embedding layer of the LLM. MedTPE accomplishes this by
employing a dependency-aware token replacement strategy, which
ensures that high-utility TPE tokens replace only the least useful
BPE tokens, while strictly preserving all necessary dependencies
required for deterministic tokenisation. As a result, MedTPE deliv-
ers efficient compression while maintaining the fixed vocabulary
budget and parameter count of the pre-trained language model.

5.4 Analysis of Token Replacement Budget
This experiment investigates how the replacement budget, defined
as the number of BPE tokens substituted with TPE tokens, affects
the compression of the sequence in MedTPE. We vary the replace-
ment budget𝑀 andmeasure the resulting token counts by encoding
the first 24 hours of ICU stay in the MIMIC-IV test set. The resulting
token sequence lengths are evaluated across both the ICU mortality
and phenotyping cohorts, with the median and interquartile ranges
reported. The results, as illustrated in Figure 3(b), reveal a clear
trend: As the replacement budget increases from 100 to 2,000 tokens,
the median token count in the test set decreases rapidly, indicat-
ing substantial compression gains. Beyond 2,000 replacements, the
improvements become more gradual, and after 5,000 tokens have
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Figure 3: Assessment of MedTPE’s token sequence compres-
sion. The first 24 hours of ICU stay from the MIMIC-IV test
set are used, with the tokeniser of Qwen2.5 [32]. (a) MedTPE
achieves approximately 49% compression in token count for
both the phenotyping and ICU mortality cohorts. The solid
line shows the median, while the shaded region represents
the interquartile range (25th to 75th percentiles) across the
test set. (b) Analysis of the token replacement budget: theme-
dian value of reduced token size increases sharply as the num-
ber of replaced tokens increases from 100 to 2,000, with only
marginal improvement beyond 5,000 replacements. Points
indicatemedians, and error bars show the interquartile range
across the test set.

been replaced, further compression gains are minimal. These obser-
vations are consistent across both cohorts. These findings suggest
that a replacement budget of 5000, which is 3.3% compared to the
original Qwen2.5 vocabulary, offers an effective trade-off between
sequence compression and vocabulary management in MedTPE.
This setting achieves near-optimal token reduction while avoiding
unnecessary increases in the risk of discarding potentially useful
subwords from the original BPE vocabulary. As such, 5,000 replaced
tokens are adopted as the default budget, balancing compression
capability and efficiency in further fine-tuning.

6 Conclusion
In this work, we introduced MedTPE, an efficient two-level to-
kenisation method for compressing EHR token sequences for clini-
cal prediction with pre-trained LLMs. MedTPE augments the BPE
vocabulary with carefully selected domain-specific token pairs,
achieving up to 49% sequence compression without compromising
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predictive performance. Our dependency-aware replacement algo-
rithm ensures deterministic tokenisation and compatibility with
existing models. Furthermore, we show that SSFT is essential for
enabling the model to utilise the new tokens. Together, MedTPE
addresses the challenges of long EHR trajectories, making LLMs
more practical and efficient for healthcare applications.

Despite these benefits, there are still areas for further improve-
ment. Although this study focuses on sequence compression and
predictive performance, a more comprehensive evaluation of differ-
ent embedding initialisation strategies could further enhance the
adaptability of MedTPE, especially for rapid fine-tuning. Addition-
ally, MedTPE is currently implemented as an offline pre-processing
step and can not dynamically adapt to new or evolving clinical
terms that may arise post-deployment. In future work, we plan
to extend MedTPE to support test-time training [26], allowing dy-
namic vocabulary updates in response to novel medical terms and
enabling personalised vocabulary learning for individual patients.

References
[1] Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan

Naumann, and Matthew McDermott. 2019. Publicly Available Clinical. In Pro-
ceedings of the 2nd Clinical Natural Language Processing Workshop. Association
for Computational Linguistics.

[2] Chenxin An, Jun Zhang, Ming Zhong, Lei Li, Shansan Gong, Yao Luo, Jingjing
Xu, and Lingpeng Kong. 2024. Why Does the Effective Context Length of LLMs
Fall Short? arXiv preprint arXiv:2410.18745 (2024).

[3] Bert Arnrich, Edward Choi, Jason Alan Fries, Matthew BA McDermott, Jungwoo
Oh, Tom Pollard, Nigam Shah, Ethan Steinberg, Michael Wornow, and Robin
van de Water. 2024. Medical event data standard (MEDS): Facilitating machine
learning for health. In ICLR 2024 Workshop on Learning from Time Series For
Health. 03–08.

[4] Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong,
Tony Lee, Roxana Daneshjou, Jonathan Frankle, Percy Liang, Michael Carbin,
et al. 2024. Biomedlm: A 2.7 b parameter language model trained on biomedical
text. arXiv preprint arXiv:2403.18421 (2024).

[5] Yan Cai, Linlin Wang, Ye Wang, Gerard de Melo, Ya Zhang, Yanfeng Wang,
and Liang He. 2024. Medbench: A large-scale chinese benchmark for evaluating
medical large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 17709–17717.

[6] Canyu Chen, Jian Yu, Shan Chen, Che Liu, Zhongwei Wan, Danielle Bitterman,
Fei Wang, and Kai Shu. 2024. ClinicalBench: Can LLMs Beat Traditional ML
Models in Clinical Prediction? arXiv preprint arXiv:2411.06469 (2024).

[7] Hejie Cui, Zhuocheng Shen, Jieyu Zhang, Hui Shao, Lianhui Qin, Joyce C Ho,
and Carl Yang. 2025. Llms-based few-shot disease predictions using ehr: A novel
approach combining predictive agent reasoning and critical agent instruction. In
AMIA Annual Symposium Proceedings, Vol. 2024. 319.

[8] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 2022. 8-bit
Optimizers via Block-wise Quantization. In International Conference on Learning
Representations. https://openreview.net/forum?id=shpkpVXzo3h

[9] Scott L Fleming, Alejandro Lozano, William J Haberkorn, Jenelle A Jindal, Ed-
uardo Reis, Rahul Thapa, Louis Blankemeier, Julian Z Genkins, Ethan Steinberg,
Ashwin Nayak, et al. 2024. Medalign: A clinician-generated dataset for instruction
following with electronic medical records. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 38. 22021–22030.

[10] HyoJung Han, Akiko Eriguchi, Haoran Xu, Hieu Hoang, Marine Carpuat, and
Huda Khayrallah. 2025. Adapters for Altering LLM Vocabularies: What Lan-
guages Benefit the Most?. In The Thirteenth International Conference on Learning
Representations.

[11] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram
Galstyan. 2019. Multitask learning and benchmarking with clinical time series
data. Scientific data 6, 1 (2019), 96.

[12] Abul Hasan, Jinge Wu, Quang Ngoc Nguyen, Salomé Andres, Imane Guellil,
Huayu Zhang, Arlene Casey, Beatrice Alex, Bruce Guthrie, and Honghan Wu.
2024. Infusing clinical knowledge into tokenisers for language models. arXiv
preprint arXiv:2406.14312 (2024).

[13] Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout,
Steven Horng, Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al.
2023. MIMIC-IV, a freely accessible electronic health record dataset. Scientific
data 10, 1 (2023), 1.

[14] Dae-young Kim, Rebecca Hwa, and Muhammad Mahbubur Rahman. 2024.
mhGPT: A lightweight generative pre-trained transformer for mental health

text analysis. arXiv preprint arXiv:2408.08261 (2024).
[15] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language

independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. 66–71.

[16] Terrence C Lee, Neil U Shah, Alyssa Haack, and Sally L Baxter. 2020. Clinical
implementation of predictive models embedded within electronic health record
systems: a systematic review. In Informatics, Vol. 7. MDPI, 25.

[17] Jin Li, Yiyan Deng, Qi Sun, Junjie Zhu, Yu Tian, Jingsong Li, and Tingting Zhu.
2024. Benchmarking large language models in evidence-based medicine. IEEE
Journal of Biomedical and Health Informatics (2024).

[18] Yufei Li, Zexin Li, Wei Yang, and Cong Liu. 2023. RT-LM: Uncertainty-Aware
Resource Management for Real-Time Inference of Language Models. In 2023 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 158–171.

[19] Itay Nakash, Nitay Calderon, Eyal Ben David, Elad Hoffer, and Roi Reichart.
2025. AdaptiVocab: Enhancing LLM Efficiency in Focused Domains through
Lightweight Vocabulary Adaptation. arXiv preprint arXiv:2503.19693 (2025).

[20] Minheng Ni, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Kevin Lin, Wangmeng
Zuo, and Lijuan Wang. 2025. Point-RFT: Improving Multimodal Reasoning with
Visually Grounded Reinforcement Finetuning. arXiv preprint arXiv:2505.19702
(2025).

[21] Shuai Niu, Jing Ma, Liang Bai, Zhihua Wang, Li Guo, and Xian Yang. 2024.
EHR-KnowGen: Knowledge-enhanced multimodal learning for disease diagnosis
generation. Information Fusion 102 (2024), 102069.

[22] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj, Michaela
Hardt, Peter J Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, et al. 2018. Scalable and
accurate deep learning with electronic health records. NPJ digital medicine 1, 1
(2018), 18.

[23] Pawel Renc, Yugang Jia, Anthony E Samir, JaroslawWas, Quanzheng Li, David W
Bates, and Arkadiusz Sitek. 2024. Zero shot health trajectory prediction using
transformer. NPJ Digital Medicine 7, 1 (2024), 256.

[24] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1715–1725.

[25] Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou. 2021.
Fast WordPiece Tokenization. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. 2089–2103.

[26] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz
Hardt. 2020. Test-time training with self-supervision for generalization under
distribution shifts. In International conference on machine learning. PMLR, 9229–
9248.

[27] Ryan Synk, Monte Hoover, John Kirchenbauer, Neel Jain, Alex Stein, Manli
Shu, Josue Melendez Sanchez, Ramani Duraiswami, and Tom Goldstein. 2025.
Exploiting Sparsity for Long Context Inference: Million Token Contexts on
Commodity GPUs. arXiv preprint arXiv:2502.06766 (2025).

[28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[29] Christopher YK Williams, Brenda Y Miao, Aaron E Kornblith, and Atul J Butte.
2024. Evaluating the use of large language models to provide clinical recom-
mendations in the Emergency Department. Nature Communications 15, 1 (2024),
8236.

[30] Michael Wornow, Suhana Bedi, Miguel Angel Fuentes Hernandez, Ethan Stein-
berg, Jason Alan Fries, Christopher Re, Sanmi Koyejo, and Nigam Shah. 2025.
Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on
EHR Data. In The Thirteenth International Conference on Learning Representations.

[31] Zhenbang Wu, Anant Dadu, Michael Nalls, Faraz Faghri, and Jimeng Sun. 2024.
Instruction Tuning Large Language Models to Understand Electronic Health
Records. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

[32] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei,
Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Jun-
yang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu
Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and
Zhihao Fan. 2024. Qwen2 Technical Report. CoRR abs/2407.10671 (2024).
https://doi.org/10.48550/arXiv.2407.10671

[33] Min-Yung Yu. 2025. MedSeg: A Statistical Approach to Tokenization Assessment
in Medical NLP. Journal of Information Systems Engineering and Management 10
(04 2025), 698–704. https://doi.org/10.52783/jisem.v10i37s.6506

https://openreview.net/forum?id=shpkpVXzo3h
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.52783/jisem.v10i37s.6506


Conference’17, July 2017, Washington, DC, USA Mingcheng Zhu, Zhiyao Luo, Yu Liu, and Tingting Zhu

A Embedding Split Module
To enable supervised fine-tuning of only a subset of embedding
vectors, we introduce the embedding split module. Fine-tuning a
subset of embeddings within a single unified embedding matrix
can result in unnecessary gradient computation for the frozen em-
beddings, leading to increased memory usage and computational
overhead. Our module addresses this by explicitly partitioning the
embedding set into two disjoint subsets:

E = EBPE, fixed ∪ ETPE, trainable,

where EBPE, fixed denotes the pre-trained BPE embeddings, which
remain fixed, and ETPE, trainable is the embeddings of the newly
introduced TPE tokens, which are trainable.

During the forward pass, embeddings are retrieved by separately
indexing both subsets and concatenating the results to form the
complete embedding set E. During the backward pass, gradient
updates are restricted to the trainable subset ETPE, trainable, substan-
tially improving memory and computational efficiency.

B Training Details

Table 2: Hyperparameter Settings

Hyperparameter Value
Learning rate (LR) 5 × 10−5
Batch size 2
Number of training epochs 1
Maximum sequence length 4,096
Steps to accumulate gradients 2
Proportion of total steps for LR warmup 0.1
Maximum gradient norm for clipping 1.0

The fine-tuning was run on an A6000-Ada 48GB GPU. We train
using the 8-bit AdamW optimiser[8] to reduce memory consump-
tion. The optimiser is configured with default hyperparameters:
𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8. The learning rate schedule
consists of a linear warmup for the first 10% of total steps, followed
by a cosine decay for the remaining steps. To prevent gradient ex-
plosion, we apply gradient clipping by norm at each update. During
training, we evaluate the model’s validation loss every 1,000 steps.
An early stopping mechanism halts training if validation perfor-
mance does not improve for three consecutive evaluations. The
hyperparameters for fine-tuning are detailed in Table 2.

C Prompts
C.1 ICU Mortality Prompt

## Background
You are an ICU clinician with exceptional

expertise in analyzing Electronic Health
Records (EHR). Your task is to predict ICU
mortality for a patient based on their first
24 hours of ICU stay. The data provided
includes:

- ** Patient context **: Demographic and baseline
health information.

- ** Clinical events **: A chronological sequence of
events extracted from their EHR , such as

diagnoses , medications , procedures , vitals ,
and ICU interventions.

## Event Descriptions
Patient 's trajectory in hospital(s) is presented

by clinical events. The event types are as
follows:

1. HOSPITAL_ADMISSION: Admission to a hospital.
2. HOSPITAL_DISCHARGE: Discharge from a hospital.
3. DIAGNOSIS: A disease diagnosis for a patient.
4. MEDICATION: Administering or prescribing

medication to a patient.
5. GENDER: Recording a patient 's gender.
6. AGE: Recording a patient 's age.
7. RACE: Recording a patient 's race or ethnicity.
8. MEDS_BIRTH: Recording medications administered

at or present during the patient 's birth.
9. MEDS_DEATH: Recording medications administered

around the time of the patient 's death.
10. ICU_ADMISSION: Admission to an Intensive Care

Unit (ICU).
11. ICU_DISCHARGE: Discharge from an ICU.
12. LAB: Recording laboratory test results.
13. VITALS: Recording vital signs of a patient.
14. INFUSION: Administering an infusion to a

patient.
15. SUBJECT_WEIGHT_AT_INFUSION: Recording a

patient 's weight at the time of infusion.
16. ADMISSION_DIAGNOSIS: Primary diagnosis

recorded at the time of hospital admission.
17. CAREPLAN_GENERAL: Documenting general care

plans for patient management.
18. CAREPLAN_GOAL: Outlining specific goals in the

patient 's care plan.
19. CAREPLAN_EOL: Documenting end -of-life care

plans and directives.
20. CAREPLAN_INFECTIOUS_DISEASE: Care plans

specifically addressing infectious disease
management.

21. ALLERGY: Recording a patient 's known allergies
.

## Instructions
1. Review and Analyse Clinical Events:

Carefully examine the clinical events from the
EHR data to understand the patient 's
general health profile. Pay attention to
key events such as diagnoses , medications ,
procedures , lab tests , and vital signs.

Analyze the clinical events to identify
patterns or indicators that may predict ICU
mortality.

2. Make a Prediction:
Based on your analysis , predict the patient 's

outcome by selecting one of the following
options:

- A: Alive
- B: Death
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Provide your prediction in the specified format
by placing your answer (A or B) in json

format with the key of "answer ".
{" answer ": "Your Answer "}
For example , if your prediction is Alive , your

submission should be like this:
{" answer ": "A"}

C.2 Phenotyping Prompt

## Background
You are an ICU clinician with exceptional

expertise in analyzing Electronic Health
Records (EHR). Your task is to predict disease
phenotypes for a patient upon ICU discharge

based on their first 24 hours of ICU stay. The
data provided includes:

- ** Patient context **: Demographic and baseline
health information.

- ** Clinical events **: A chronological sequence of
events extracted from their EHR , such as

diagnoses , medications , procedures , vitals ,
and ICU interventions.

## Event Descriptions
Patient 's trajectory in hospital(s) is presented

by clinical events. The event types are as
follows:

1. ED_REGISTRATION: Registration to an emergency
department.

2. ED_OUT: Discharge or exit from the emergency
department.

3. HOSPITAL_ADMISSION: Admission to a hospital.
4. HOSPITAL_DISCHARGE: Discharge from a hospital.
5. DIAGNOSIS: A disease diagnosis for a patient.
6. DRG: Assigning a Diagnosis -Related Group (DRG)

code for billing and classification purposes.
7. MEDICATION: Administering or prescribing

medication to a patient.
8. HCPCS: Recording Healthcare Common Procedure

Coding System (HCPCS) codes for procedures and
services.

9. LAB: Recording laboratory test results.
10. OMR: Recording Objective Medical Records (OMR)

, such as structured clinical data.
11. GENDER: Recording a patient 's gender.
16. PROCEDURE: A medical procedure.
17. TRANSFER_TO: Transferring a patient to another

department or facility.
18. ICU_ADMISSION: Admission to an Intensive Care

Unit (ICU).
19. ICU_DISCHARGE: Discharge from an ICU.
20. VITALS: Recording vital signs of a patient.
21. INFUSION_START: Starting an infusion.
22. INFUSION_END: Ending an infusion.
23. SUBJECT_WEIGHT_AT_INFUSION: Recording a

patient 's weight at the time of infusion.
24. SUBJECT_FLUID_OUTPUT: Recording a patient 's

fluid output.

## Phenotype Options
A: Acute and unspecified renal failure

B: Acute cerebrovascular disease
C: Acute myocardial infarction
D: Cardiac dysrhythmias
E: Chronic kidney disease
F: Chronic obstructive pulmonary disease and

bronchiectasis
G: Complications of surgical procedures or medical

care
H: Conduction disorders
I: Congestive heart failure; nonhypertensive
J: Coronary atherosclerosis and other heart

disease
K: Diabetes mellitus with complications
L: Diabetes mellitus without complication
M: Disorders of lipid metabolism
N: Essential hypertension
O: Fluid and electrolyte disorders
P: Gastrointestinal hemorrhage
Q: Hypertension with complications and secondary

hypertension
R: Other liver diseases
S: Other lower respiratory disease
T: Other upper respiratory disease
U: Pleurisy; pneumothorax; pulmonary collapse
V: Pneumonia
W: Respiratory failure; insufficiency; arrest
X: Septicemia (except in labor)
Y: Shock

## Instructions
1. Review and Analyse Clinical Events:

Carefully examine the clinical events from the
EHR data to understand the patient 's health
status.

Analyze the events to identify indicators that
suggest specific disease phenotypes from
the available options.

2. Make Predictions:
Based on your analysis , predict which

phenotypes the patient will have upon
discharge by selecting from the available
options.

A patient may have zero , one , or multiple
phenotypes.

Provide your prediction in JSON format with:
- "answer ": A list of the selected option

letters (A, B, C, etc.)

Example format:
{" answer ": ["A", "C"]}

For instance , if you predict the patient will
have Pneumonia (V) and Septicemia (X), your
submission should look like:

{" answer ": ["V", "X"]}

Important:
- Only use the option letters (A, B, C, etc.)

in the "answer" list


	Abstract
	1 Introduction
	2 Related Work
	2.1 LLM-based Prediction on EHR
	2.2 Tokenisation
	2.3 Domain-specific Vocabulary

	3 Preliminaries
	4 Methodology
	4.1 Token–Pair Encoding
	4.2 Dependency-Aware Token Replacement
	4.3 TPE Embedding Initialisation
	4.4 Self-Supervised Fine-tuning

	5 Experiments and Discussion
	5.1 Experiment Settings
	5.2 Evaluation of LLMs with MedTPE
	5.3 Token Compression Analysis
	5.4 Analysis of Token Replacement Budget

	6 Conclusion
	References
	A Embedding Split Module
	B Training Details
	C Prompts
	C.1 ICU Mortality Prompt
	C.2 Phenotyping Prompt


