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Leto: Modeling Multivariate Time Series with Memorizing at Test
Time

Anonymous Author(s)

Abstract

Modeling multivariate time series data has been at the core of ma-
chine learning research efforts across diverse domains. However,
effectively capturing dependencies across both time and variate
dimensions, as well as temporal dynamics, have made this problem
extremely challenging in realistic settings. The recent success of se-
quence models, such as Transformers, Convolutions, and Recurrent
Neural Networks, in language modeling and computer vision tasks,
has motivated various studies to adopt them for time series data.
These models, however, are either: (1) natively designed for a uni-
variate setup, missing the the rich information that comes from the
inter-dependencies of time and variate dimensions; (2) inefficient
for long-range time series; and/or (3) propagating the prediction er-
ror over time. In this work, we present Leto, a native 2-dimensional
memory module that takes the advantage of temporal inductive
bias across time while maintaining the permutation equivariance of
variates. Leto uses meta in-context memory modules to learn and
memorize patterns across the time dimension, and simultaneously,
incorporates information from other correlated variates, if needed.
Our experimental evaluation shows the effectiveness of Leto on
extensive and diverse benchmarks, including time series forecasting
(short, long, and ultra-long), classification, and anomaly detection.
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1 Introduction

Modeling multivariate time series data is a well-established prob-
lem in the literature with a diverse set of applications ranging
from healthcare [56, 96] and neuroscience [13] to finance [40, 86],
energy [124], transportation management [34], and weather fore-
casting [4, 87]. Classical shallow models—such as State Space Mod-
els [6, 49], ARIMA [11], SARIMA [20], Exponential Smoothing
(ETS) [101]—have long been the de-facto mathematical models for
time series prediction, modeling diverse complex patterns (such
as seasonal and trend patterns). Deploying these models at scale
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in real-world settings remains challenging due to their reliance
on manual data preprocessing, sensitive model selection, and in-
herently sequential, non-parallelizable computations. Additionally,
these models often fail to capture (1) the inter-dependencies of dif-
ferent variates, and (2) the complex non-linear dynamics inherent
to multivariate time series data.

The emergence of deep learning has shifted the focus of re-
cent time series research away from traditional statistical methods
toward deep neural network architectures such as Transformer-
based [106, 124], recurrence-based [17, 19, 58, 83], and tempo-
ral convolutional-based [9, 76, 90] models. Despite the outstand-
ing performance of Transformers [97] across various diverse do-
mains [33, 80, 106], recent studies have highlighted their frequent
suboptimal performance compared to even linear methods, mainly
due to their inherent permutation equivariance that contradicts
the causal nature of time series [115]. Additionally, their quadratic
time and memory complexity is a notable bottleneck for their use
in large-scale long real-world settings with long-range prediction
horizon.

In recent years, modern linear Recurrent Neural Networks (RNNs)
have attracted much attention as the linear alternative to Trans-
formers, improving Transformers’ training and inference efficiency
while maintaining their effectiveness [59, 60, 84, 92]. While these
models have shown promising performance on clean and tokenized
data modalities such as languages, applying them to multivariate
time series modeling is more challenging as: (1) Contrary to text,
time series data can be non-stationary and highly noisy, as demon-
strated by complex temporal patterns. Accordingly, the additive
nature of such recurrent models can cause error propagation in their
predictions over time, requiring additional careful parametrization
or design to achieve good performance [17, 58]; (2) These models
are inherently designed for a single sequence and so their use for
time series data overlooks the importance of variate dependencies
in modeling multivariate time series data [81, 116, 119]. Moreover,
simply mixing the variates to take advantage of cross-variate infor-
mation can hinder the performance in the general case as variate
dependencies are not always useful in practice; e.g., when the target
variate is not correlated with other covariates [26]. Therefore, a
major goal of effective modeling of multivariate time series is to de-
velop a model which can adaptively mix cross variate information
over time when appropriate; (3) To capture both cross-time and
cross-variate information, recently several studies aim to perform
selective 2-dimensional recurrence across both variates [17, 58].
These models, however, are sensitive to the order of variates, miss-
ing the permutation equivariance of information across variates.

Contributions. In this paper, to mitigate the above-mentioned
limitations in existing time series models, we present Leto, a novel
2-dimensional architecture based on two meta in-context memory
modules—called time and variate memory modules—that learns
how to memorize cross-time and cross-variate patterns at test time,
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respectively. While Leto updates the time memory module using
a recurrent rule to take advantage of its temporal inductive bias,
it uses an attention-like (with Softmax) non-parametric memory
module across variates to accurately consider their permutation
equivariance property. To capture the dynamics of dependencies
across variates, Leto needs tomix the states of both time and variate
memories at each time stamps. However, the non-parametric nature
of variate memory module makes it state-less, empowering the
memory to learn the dynamics of variate dependencies across time.
To overcome this challenge, Leto uses a parametric approximation
of the non-parametric memory and expresses the Softmax attention
using its Taylor series. To the best of our knowledge, Leto is the first
native 2-dimensional hybrid model. In our experiments, we perform
various evaluations and compare Leto with state-of-the-art time
series models on diverse downstream tasks, including: (1) short-,
long-, and ultra-long-term forecasting, (2) classification, and (3)
anomaly detection tasks. We further demonstrate the effectiveness
of Leto for longer horizons and support the significance of Leto’s
design by performing ablation studies.

2 Preliminaries, Background, and Related Work

In this section, we first discuss the notation that we use through the
paper and then provide an overview of the background concepts
and related studies. A more detailed discussions of the related work
is in Appendix B. Also, we build our model based on concepts like:
(1) meta learning, (2) learning to memorize, and (3) Titans [19]. We
provide a detailed explanation of these topics in Appendix A.

Notation.We let matrix = {1, . . . ,𝑉 } ∈ R𝑉 ×𝑇×𝑑in denote a multi-
variate time series, where 𝑇 and 𝑉 are the number of time stamps
and variates, respectively, and 𝑑in is the feature dimension of the
input (often 𝑑in = 1). We use 𝑥𝑣,𝑡 ∈ R𝑑in to refer to the value of the
time series in 𝑣-th variate at time 𝑡 . In this paper, we mainly focus
on forecasting, classification, and anomaly detection. In forecast-
ing tasks, given the historical series = {1, . . . ,𝑉 }, the model aims
to predict the next 𝐻 time steps. For classification and anomaly
detection, the task is to assign a label to the sequence, where anom-
aly detection is treated as a binary classification problem, labeling
variate as "normal" or "anomaly".

Autoregressive Process. Autoregressive (AR) process is a basic
but fundamental concept for time series modeling. An AR process
models the causal nature of time series by writing each element as
the linear combination of its past samples. Given 𝑝 ∈ N, 𝑘 ∈ R𝑑 , the
linear autoregressive relationships between 𝑘 and its past samples
𝑘−1,𝑘−2 , . . . ,𝑘−𝑝 is modeled as

𝑘 = 𝜁1𝑘−1 + 𝜁2𝑘−2 + . . . , 𝜁𝑝𝑘−𝑝 (AR(𝑝) Process)

where 𝜁1, . . . , 𝜁𝑝 are coefficients. Note that we can simply extend
the above autoregressive formulation to the multivariate setting by
letting coefficients be vectors, replacing the product with element-
wise product.

Time SeriesModels.The complexity of time series data—characterized
by higher-order structures, multivariate dependencies, and domain
variability—presents key challenges for model development. Models
must capture both local and long-range dependencies, selectively
leverage relevant covariates, and scale efficiently to long sequences

without relying heavily on domain-specific pre-processing. Addi-
tionally, scalability to long sequences remains a critical require-
ment for practical deployment. Classical statistical models, such
as ARIMA [5] and STL [30], effectively address periodic and trend
components but are fundamentally limited when it comes to model-
ing non-linear and complex dependencies. Early efforts to enhance
time series forecasting with deep learning methods adopted recur-
rent neural networks (RNNs) [37] and their variants, such as Long
Short-Term Memory (LSTM) networks [50] and Gated Recurrent
Units (GRUs) [27], owing to their natural suitability for sequen-
tial data. Subsequently, temporal convolutional networks (TCNs)
[9, 98, 103] were introduced, excelling at capturing local patterns
through carefully designed receptive fields. The introduction of
Transformer-based models [97] marked a significant advancement,
enabling more effective modeling of both short- and long-term de-
pendencies with enhanced scalability and predictive performance
across a wide range of time series tasks [100]. transformer-based
architectures such as [72, 91, 126] exemplify the power of atten-
tion mechanisms to capture both local and global temporal pat-
terns, surpassing earlier convolutional and recurrent approaches.
These models further integrate frequency-domain representations
and downsampling strategies to enhance computational efficiency
without compromising accuracy. However, the quadratic complex-
ity of standard Transformers has led to optimization challenges
[71, 106, 124, 126]. In response, patch-based methods have been
proposed to improve efficiency in Transformer variants [81, 123].
Meanwhile, multilayer perceptrons (MLPs) have maintained popu-
larity for time series forecasting due to their simplicity and direct
mapping capabilities [36].

Test Time Memorization and Time Series Modeling. In recent
years, there have been growing interest in understanding the un-
derlying mechanisms of sequence models and unifying (a subset of)
them through a single perspective [16, 69, 89, 95]. In this work, we
discuss a connection between test time memorization models, time
series modeling, and autoregressive processes. In the associative
memory perspective of sequence models, given the incoming input
data 𝑡 , a sequence model is defined as an associative memory, (·)
that aims to learn a mapping between a set of keys (i.e., {𝑖 }𝑁𝑖=1) and
values (i.e., { ⃗⃗ 𝑖}𝑁

𝑖=1) based on an objective function ℓ ((·);𝑡 , ⃗⃗ 𝑡). For
example, in recurrent neural networks, this memory module is
their hidden state. Since this memory module is updated for each
incoming data (at test time), it is often called a test time learner or
test time memorizer. It is notable that the process of training such
memory is a meta learning process [52], where in the inner-loop
the corresponding parameters to memory are optimized, while the
outer-loop optimizes other parameters in the neural network. For
additional discussions on the meta learning process and how archi-
tectures like Transformers and recurrent models can be formulated
as associative memory module, we refer the reader to Behrouz et al.
[16] and our background discussion in Appendix A.

In practice, given input data 𝑡 , keys and values are defined as
the linear projections of the input, i.e.,

𝑡 =𝑊𝑘𝑡 and ⃗⃗ 𝑡 =𝑊𝑣𝑡 , (1)

where𝑊𝑘 ∈ R𝑑 Another interpretation of this framework for as-
sociative memory is to see 𝑡 as the corrupted version of the input,
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and define (.) as a model that can reconstruct a projection of the
input from the corrupted version. In this interpretation, objective
ℓ ((·);𝑡 , ⃗⃗ 𝑡) measures the ability of in reconstructing the input pro-
jection. Despite the equivalence of these two interpretations, the
later provides an interesting connection between modeling time
series data with sequence models. That is, modeling time series data,
in which given a lookback window of 𝑝 time stamps, the model
aims to predict the next ℎ ≥ 1 steps, is equivalent to reconstruct-
ing a time series of ℎ + 𝑝 time stamps from its corrupted version
that masks its last ℎ steps. This reconstruction perspective and
its connection to sequence models allows us to design sequence
models that are theoretically expressive and capable of modeling
time series data. Despite this advantage, it is important to note
that this formulation is limited to a single sequence. Hence, there
still remains an unanswered question:“How can we design a native
2-dimensional model that learns to map underlying patterns of 2D
data?”

3 Leto: Learning to Memorize at Test Time

with 2-Dimensional Memory

To address this question, we present our model: Leto, a native
2-dimensional architecture that takes advantage of two separate
memory modules, each of which learns how to memorize patterns
across either time or variate dimensions.

3.1 How to Memorize 2-Dimensional Data?

As discussed earlier, while sequence modeling and its test time
memorization perspective can be an effective paradigm for model-
ing time series data, its design is limited to single sequences. Thus,
for 2-dimensional data like multivariate time series, two memory
modules are needed, each of which learns how to memorize pat-
terns across each dimension (either time or variate) at test time.
However, having memory modules that simply memorize the train-
ing data can significantly hinder the performance of the model, due
to overfitting and the fact that time series data at test time can be
out-of-distribution (OOD). To this end, we use a meta in-context
memory, where the model learns how to memorize patterns at test
time. This memory does not directly memorize training data, but
instead uses the underlying patterns in the training data to learn
what patterns need to be memorized and what patterns need to be
forgotten.

Cross Time Dynamic. For the sake of simplicity and to demon-
strate the process of modeling cross-time patterns, we fix the variate
to 𝑣 and remove it from subscript whenever the context is clear.
Accordingly, for the input sequence this is a meta learning problem
on the memory parameters, in which memory aims to reconstruct
the projection of the time series (i.e., ⃗⃗ 𝑖 =𝑊𝑣𝑖 ) from its corrupted
version (i.e., 𝑖 =𝑊𝑘𝑖 ). That is, given an internal objective ℓ (·) that
measures the quality of reconstruction, the process of training the
model performs two loops:

(1) Inner Loop: In this loop the memory is optimized to recon-
struct the sequence from its corrupted version using an
optimization algorithm such as gradient descent. Therefore,
the memory update is defined as:

𝑡 = 𝛼𝑡 𝑡−1 − 𝜂𝑡∇ℓ (𝑡−1;𝑣,𝑡 ), (2)

Note that in the inner loop we only optimize the memory
parameters; all other parameters are considered fixed in
this loop.

(2) Outer Loop: The outer loop is responsible for the training
of the entire model for a specific downstream task such
as forecasting, classification, or anomaly detection. In this
process, while all parameters in the model are optimized,
memory parameters are fixed.

Using a reconstruction loss, i.e., ℓ (;𝑡 ) = ∥𝑡 − ⃗⃗ 𝑡 ∥22, where 𝑡 and ⃗⃗ 𝑡
are defined as Equation 1, gives us a memory module with delta
update rule (recurrence) [89] as:

𝑡 =𝑡−1 −𝜂𝑡∇ℓ (𝑡−1;𝑡 ) =𝑡−1 −(𝑡−1𝑡 − ⃗⃗ 𝑡)⊤𝑡
⇒ 𝑡 = (I − 𝜂𝑡 𝑡

⊤
𝑡 )𝑡−1 + 𝜂𝑡 ⃗⃗ 𝑡𝑡⊤, (3)

where (I −𝑡 ⊤
𝑡 ) is the transition matrix from state 𝑡−1 to 𝑡 and ⃗⃗ 𝑡⊤𝑡

is the transformation of the input data. This linear recurrent pro-
cess is equivalent to a linear dynamical system with non-diagonal
transition matrix, which is more expressive than its counterpart
dynamical systems with diagonal transition [17, 64, 83]. In our later
design of Leto in Equation Variant 2, we further enhance the above
formulation by incorporating a gating mechanism from the Titans
architecture [19]. Therefore, the update rule can be written as:

𝑡 = (𝛼𝑡 I − 𝜂𝑡 𝑡
⊤
𝑡 )𝑡−1 + 𝜂𝑡 ⃗⃗ 𝑡𝑡⊤, (4)

where 𝛼 controls the retention from the previous state of the mem-
ory. When 𝛼 → 1, it fully retains the past state (equivalent to
Equation 3) and when 𝛼 → 0 it erases the past state of the memory.

Cross Variate Dynamic. In the previous section, we discuss a
neural memory module that learns how to memorize cross-time
patterns. However, in multivariate time series data, the dependen-
cies of variates can be a rich source of information, sometimes even
more important than cross-time patterns [12, 72, 96]. To this end,
we aim to design a memory module that can learn from and memo-
rize cross-variate patterns. One simple approach is to transpose the
input data (re-ordering time and variate dimension) and apply our
memory module introduced in Equation 4 across variates. However,
the main drawback of such a method is its sensitivity to the order
of variates. That is, while the temporal inductive bias of recurrent
models is effective for capturing temporal patterns, it is indeed a
caveat that when sampling data, the order of elements are arbitrary.
In multivariate time series data, the order of variates is often ar-
bitrary and so we expect the model to produce the same output
(or its corresponding permutation) when we change the order of
variates. This property is called “permutation equivariance” (resp.
“permutation invariant”), where the output of the model permutes
the same (resp. remains the same) with the permutation of the
input.

Transformers are one of the most powerful architectures with
the permutation equivariance property [110, 114]. Although this
property makes their direct applicability to time series data limited,
it makes them a great choice of architectural backbone for use
in learning the cross-variate information [72]. To this end, given
the input data = {1, . . . ,𝑉 } ∈ R𝑉 ×𝑇×𝑑in , one can define ˜ =⊤=
{̃1, . . . �̃� } ∈ R𝑇×𝑉 ×𝑑in and then pass it to a Transformer block to

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

capture the cross-variate dependencies:

Y = Transformer (̃) . (5)

While the above method can satisfy both (1) fusing information
across variates, and (2) preserving the robustness to the permutation
of variates, it only models cross-variate patterns and misses the
dynamics of variates dependencies [17, 58].

3.2 Leto: A Native 2-Dimensional Memory

System

Previously we discussed how one can design an effective memory
module that learns how to map underlying patterns across time
or variate dimensions in the data. A simple and commonly used
method in the literature is to use two different modules, each for
one of the dimensions, and then mix their outputs for the final
prediction [3, 28]. That is, given input ∈ R𝑉 ×𝑇×𝑑in , one can use
Module1 (·) and Module2 (·) to fuse information across time and
variates, respectively, and then combine them for the final output:

𝑌time = Module1 (),
𝑌variate = Module2 (̃),
𝑌output = Combine (𝑌time, 𝑌variate) . (Variant 1)

Another commonly used method is to employ Module1 (·) and
Module2 (·) in a sequential manner (instead of the above parallel
manner). However, all these models treat each dimension separately
and thus miss the inter-dependencies of time and variate dimen-
sions at each state of the system, resulting in less expressive power
in modeling time series data (see Theorem 3.1 for the details). To
this end, we present a native 2-dimensional memory system that
not only has the temporal inductive bias across time, but also has
the permutation equivariance property across variates.

We use two memory modules (1) (·) and (2) (·) to learn the un-
derlying mappings/patterns across time and variate dimensions,
respectively. As discussed in section 2 and section 3, to design such
memory modules it is appropriate to use a reconstruction objective
ℓ (·) for the memory and then optimize this objective with an opti-
mization algorithm (such as gradient descent). However, to capture
the inter-dependencies of dimensions at each step of optimization,
it is necessary to fuse the information between the memory mod-
ules as well. Therefore, the state of each memory module not only
depends on its time stamp, but it also depends on its variate. Given
= {1, . . . ,𝑉 } as the input, and arbitrary 𝑣 ∈ {1, . . . ,𝑉 } we define
the update of cross-time memory, as:
(1)
𝑡,𝑣 = 𝛼

(1)
𝑡,𝑣 𝑡−1,𝑣 − 𝜂𝑡,𝑣∇ℓ ( (1)𝑡−1,𝑣,𝑡,𝑣 )︸                               ︷︷                               ︸

cross-time dynamic

+ 𝛽
(2)
𝑡,𝑣 𝑡−1,𝑣 − 𝛾𝑡,𝑣∇ℓ ( (2)𝑡−1,𝑣,𝑡,𝑣 )︸                               ︷︷                               ︸

cross-variate dynamic
(6)

where ℓ ( ( 𝑗 )
𝑡−1,𝑣,𝑡,𝑣 ) = ∥ ( 𝑗 )

𝑡−1,𝑣𝑡 .𝑣 − ⃗⃗ 𝑡, 𝑣 ∥22 for 𝑗 ∈ {1, 2} and 𝑣 ∈
{1, . . . ,𝑉 } and:

𝑡,𝑣 =𝑊𝑘𝑡,𝑣, and ⃗⃗ 𝑡, 𝑣 =𝑊𝑣𝑡,𝑣 . (7)

Expanding the gradient for the above formulation results in the
recurrent update rule for the cross-time memory module as follows:
(1)
𝑡,𝑣 = (𝛼𝑡,𝑣I − 𝜂𝑡,𝑣𝑡,𝑣

⊤
𝑡 )𝑡−1,𝑣+ 𝜂𝑡,𝑣 ⃗⃗ 𝑡, 𝑣⊤𝑡,𝑣+ (𝛽𝑡,𝑣I − 𝛾𝑡,𝑣𝑡,𝑣

⊤
𝑡,𝑣)𝑡−1,𝑣+𝛾𝑡,𝑣 ⃗⃗ 𝑡, 𝑣⊤𝑡,𝑣 .

The above formulation demonstrates how to update the cross-time
memory. To get the final output from this memory, we need to
multiply it by the input data 𝑡,𝑣 to achieve the 𝑡,𝑣 ’s corresponding
information in the memory: i.e., Y(1)

𝑡,𝑣 =
(1)
𝑡,𝑣 𝑡,𝑣 . One can similarly

define the recurrence for the cross-variate memory module (2)
𝑡,𝑣 as:

(2)
𝑡,𝑣 = 𝜃

(1)
𝑡,𝑣 𝑡,𝑣−1 − 𝜆𝑡,𝑣∇ℓ ( (1)𝑡,𝑣−1,𝑡,𝑣 )︸                               ︷︷                               ︸

cross-time dynamic

+ 𝜇
(2)
𝑡,𝑣 𝑡,𝑣−1 − 𝜔𝑡,𝑣∇ℓ ( (2)𝑡,𝑣−1,𝑡,𝑣 )︸                               ︷︷                               ︸

cross-variate dynamic

.

(8)

However, it is still sensitive to the order of variates. This sensitivity
to variate ordering comes from the parametric nature of gradient
descent algorithm as its iterations requires a series of ordered steps.
Therefore, the use of any other parametric optimizer can cause
such sensitivity to the order. To overcome this issue, we use the
non-parametric estimate of our objective. Interestingly, with a small
modification and using Nadaraya-Watson estimators [38, 122], the
non-parametric estimate of the objective is equivalent to softmax
attention mechanism in Transformers [97], as also discussed in
previous studies [16, 95]. Therefore, due to this theoretical connec-
tion, we use an attention module for the cross-variate information
mixing. The final output of this block can simply be defined as:

Y(2)
𝑡,𝑣 = 𝜃𝑡,𝑣 Attention

(
{ (1)
𝑡,𝑖 𝑡,𝑖 }𝑉𝑖=1

)
︸                          ︷︷                          ︸

cross-time dynamic

+ 𝜇𝑡,𝑣 Attention
(
{𝑡,𝑖 }𝑉𝑖=1

)
︸                     ︷︷                     ︸
cross-variate dynamic

.

(9)

Note that (1)
𝑡,𝑖 𝑡,𝑖 provides the 𝑡,𝑖 ’s corresponding information in

cross-time memory module and so the first term combines the cross-
time dynamic of all variates at the same time. While computation
of the final output for the cross-variate memory is clear, we need
to access its memory (i.e., (2)𝑡,𝑣 ) to use in the update of cross-time
memory (i.e., Equation 6). The memory of Transformers are known
to be the pair of key and value matrices (K,V) in the attention
mechanism [19, 21, 107, 121]. However, incorporating a pair of
matrices into the recurrence update rule of Equation 6 is unclear and
challenging. Therefore, we utilize a kernelized variant of attention,
in which we replace Softmaxwith a separable kernel𝜙 (·) [7, 59, 60]
(see Appendix A for the corresponding background and detailed
formulation). This allows us to concretely define the memory of
the Transformer with keys and values of {̂𝑖 } and {𝑖 } as [60]:

(2)
𝑡,𝑣 =

𝑉∑︁
𝑖=1

𝑡,𝑖𝜙 (̂⊤𝑡,𝑖 ). (10)

The question about what would be the optimal kernel 𝜙 (·) to use in
the above formulation remains. To answer this, we recall the formu-
lation of Softmax attention that is proportional to softmax(⊤𝑡 𝑡 ) ⃗⃗ 𝑡 .
To replace softmax softmax(·) with a separable kernel 𝜙 (·), we can
choose the kernel to approximate the exponential term in softmax
with its Taylor series. Accordingly, we use the first four terms of
the Taylor series of exp(·) defined as:

exp(𝑥) ≈ 𝜙 (𝑥) = 1 + 𝑥 + 𝑥2

2
+ 𝑥3

3!
. (11)
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Combining the prior expressions, we can define our native 2-dimensional
update rule as:
(1)
𝑡,𝑣 = 𝛼

(1)
𝑡,𝑣 𝑡−1,𝑣 − 𝜂𝑡,𝑣∇ℓ ( (1)𝑡−1,𝑣,𝑡,𝑣 )︸                               ︷︷                               ︸

cross-time dynamic

+ 𝛽
(2)
𝑡,𝑣 𝑡−1,𝑣 − 𝛾𝑡,𝑣∇ℓ ( (2)𝑡−1,𝑣,𝑡,𝑣 )︸                               ︷︷                               ︸

cross-variate dynamic

,

(2)
𝑡,𝑣 =

𝑉∑︁
𝑖=1

𝑡,𝑖𝜙 (̂⊤𝑡,𝑖 ), where 𝜙 (𝑥) = 1 + 𝑥 + 𝑥2

2
+ 𝑥3

3!
.

(Variant 2)

Note that in the above formulation 𝑖 and �̂� are keys and values of
the Transformer block, coming from the keys and values of the
cross-variate dynamic attention mentioned in Equation 9. In the
next theorem, we show that this inter-connectivity of these two
memories can enhance the expressive power of model, compared
to two separate memory modules:

Theorem 3.1. Let Module𝑖 (·) be linear recurrent models, then inter-
connected memory modules (i.e., Equation Variant 2) can express
full-rank kernels with O(1) parameters, while independent memory
systems (i.e., Equation Variant 1) require at least O(𝑁 ) parameters
to express matrix with rank 𝑁 .

3.3 LetoModel Design

While our recurrence formulation is theoretically motivated to
capture both cross-time and variate dependencies, in practice, its
training can be difficult due its recurrent nature, potentially limiting
parallelizable training. In this section, we discuss the architectural
details in Leto and present a fast parallelizable training approach.
Figure 1 illustrates the architectural design of Leto.

Parallelizable Training. Despite the recurrent nature of Leto, in
this section, we build upon the training algorithms of Sun et al. [95]
and Behrouz et al. [19] and present a parallel training process for our
model. To begin, given a variate 𝑣 , we divide its corresponding time
series {1,𝑣, . . . ,𝑇,𝑣 } with length 𝑇 into 𝐶 subsequences of length
𝑏 = 𝑇

𝐶
, each of which is represented by S𝑖 = {(𝑖−1)𝑏+1,𝑣, . . . ,𝑖𝑏,𝑣 }.

Recall that the cross-variate dynamic term in Equation 9 is inde-
pendent of time and variate states in our formulation and thus can
be computed in advance. Note that the training procedure for the
attention module is highly parallelizable. Given the output of the
attention module, we can also calculate all the states of (2) memory
using Equation 10. Therefore, we can calculate the gradient term
with respect to (2) in (Variant 2), all in advance. Having the states
of (2) and its corresponding gradient terms, we have calculated
the cross-variate dynamic term in (Variant 2) in advance and so
we only need to compute the cross-time dynamic term in a par-
allelizable manner. To this end, following the algorithms of Sun
et al. [95] and Behrouz et al. [19], we approximate the gradient
term ∇ℓ ( (1)

𝑡−1,𝑣,𝑡,𝑣 ) with ∇ℓ ( (1)
𝑡 ′,𝑣,𝑡,𝑣 ), in which 𝑡 ′ is the last state of

the memory in the previous chunk, i.e., 𝑡 ′ = ⌊ 𝑡
𝑏
⌋ × 𝑏. Therefore,

we can calculate the gradients of each chunk in advance, making
the recurrence linear, which is highly parallelizable. For a detailed
discussion of parallelizable training see Appendix C.

Thus, we can parallelize the training process for each variate
and by scanning the variates from top to bottom, we can encode all
the states in the multivariate time series. We note that the training

complexity is linear across time and is dominated by the attention
module’s complexity across variates.

4 Experiments

Goals and Baselines. In this section, we evaluate Leto on a wide
range of time series tasks, comparing with the state-of-the-art mul-
tivariate time series models [31, 32, 68, 70, 72, 76, 83, 99, 102, 104,
106, 111, 117, 123, 126] on forecasting: long, ultra-long, and short
term, classification, and anomaly detection tasks. In Section 4.2, we
evaluate the significance of the Leto’s components by performing
ablation studies. Detailed dataset descriptions, complete experimen-
tal results, error bars, visualization of predictions, hyperparameters,
metric descriptions, additional experimental results on the effect of
lookback and other design choices are provided in Section E of the
Appendix. Please note that we control the effect of parameters and
all models use the same number of parameters.

4.1 Main Results: Classification and Forecasting

Long-Term Forecasting. We conduct experiments on the long-
term forecasting tasks using commonly used benchmark datasets
used by Zhou et al. [124]. The average performance across differ-
ent horizons is summarized in Table 1. Leto consistently delivers
strong results across different datasets, highlighting its robustness
compared to recurrent, convolutional, SSM, and Transformer-based
models.

Ultra Long-termForecasting.We further extend the evaluation to
ultra-long-range forecasting on the same benchmark datasets [124]
to observe the effectiveness of Leto in longer horizons. The tasks
on the left side of the Table 2 retain the same interpretation as
in the standard long-term forecasting setting. The results in Ta-
ble 2 demonstrate Leto’s ability to capture long-term dependencies
from extremely long historical inputs, maintaining its strong per-
formance across various extended prediction horizons.

Classification and Anomaly Detection. We evaluate the per-
formance of Leto on 10 multivariate datasets from the UEA Time
Series Classification Archive [8] (see Figure 2 and Table 12). For
anomaly detection, which is typically treated as a binary classifica-
tion task, we conduct experiments on five widely-used benchmarks:
SMD [93], SWaT [78], PSM [1], and SMAP [54] (see Figure 2 and
Table 11). For each benchmark, we compare Leto against state-of-
the-art methods for each respective task.
Short-Term Forecasting. Our evaluation on short-term fore-
casting tasks using the M4 benchmark datasets [43] is reported in
Table 3 (with the full results provided in Table 8). We fix the input
length to twice the prediction length and calculate Symmetric Mean
Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error
(MASE), and Overall Weighted Average (OWA) as the evaluation
metrics. The results demonstrate the strong performance of Leto
compared to current baselines.

4.2 Ablation Study

To validate the effectiveness of our model design, we perform an
ablation study on long-term forecasting tasks with averaged across
5 runs over the ETT, Weather, and Exchange datasets by removing
key architectural components - see Table 4. The first row reports
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Figure 1: An Overview of Leto’s Architecture: We define two inter-connected memory blocks𝑀1
,𝑀2

corresponding to time

and variate axes, where the recurrence is updated by fusing together both cross-time and cross-variate information, using an

approximation of softmax attention for𝑀2
.

Table 1: Average performance on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}. A lower MAE and MSE indicates

a better prediction. As a convention for all experimental results, best performance is highlighted in red, and the second-best is underlined.

Models Leto (Ours) TimeMixer Simba ModernTCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.347 0.375 0.381 0.385 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.249 0.302 0.275 0.323 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.393 0.401 0.447 0.440 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.318 0.381 0.364 0.395 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
Exchange 0.297 0.364 0.391 0.453 0.298 0.363 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.408 0.267 0.484 0.297 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.216 0.253 0.240 0.271 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317
ECL 0.149 0.247 0.182 0.272 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300

Table 2: Average performance on Ultra long-term forecasting tasks (MSE / MAE)

Dataset Metric Leto MICN TimesNet PatchTST DLinear FiLM FEDformer Autoformer Informer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL
720–1440 0.4782 0.5614 1.0460 0.7765 0.6119 0.5962 0.8243 0.6704 0.4923 0.5473 0.4730 0.5336 0.4833 0.5393 1.4957 0.9533 0.5064 0.5317

1440–1440 0.4639 0.5387 0.8262 1.2207 0.5720 0.5712 0.9053 0.7328 0.5146 0.5615 0.4849 0.5429 0.5142 0.5571 1.7873 1.0283 0.7247 0.6920
1440–2880 0.6047 0.5868 2.8936 1.3717 0.7683 0.6846 1.1282 0.8087 0.8355 0.7193 0.6847 0.6493 3.9018 1.5276 1.2867 0.8878 0.6152 0.5953

Traffic
720–1440 0.1672 0.2431 0.2876 0.3916 0.1882 0.2656 0.1904 0.2685 0.1639 0.2412 0.1638 0.2448 0.2753 0.3650 0.3104 0.4095 0.7614 0.6496
1440–1440 0.1521 0.2497 0.2905 0.3923 0.2081 0.2712 0.1917 0.2764 0.1590 0.2411 0.1602 0.2437 0.2848 0.3681 0.2970 0.3999 0.7375 0.6414
1440–2880 0.1425 0.2433 0.2823 0.3874 0.1560 0.2409 0.1819 0.2761 0.1550 0.2421 0.1744 0.2693 0.2952 0.3844 0.3035 0.3982 0.9408 0.7618

ETTh1
720–1440 0.1331 0.2943 0.4640 0.5836 0.1391 0.3049 0.3708 0.4906 0.2952 0.4370 0.2949 0.4388 0.1768 0.3409 0.3298 0.4741 0.1378 0.3051
1440–1440 0.1359 0.3120 0.5188 0.6075 0.1404 0.3093 0.4475 0.5392 0.2200 0.3714 0.3226 0.4678 0.1928 0.3576 0.3618 0.5507 0.1402 0.3192
1440–2880 0.2591 0.3949 0.7591 0.7215 0.2732 0.4094 0.9617 0.8072 0.3773 0.4794 0.3624 0.4705 0.2627 0.3754 0.3177 0.4733 0.3495 0.4111

the Leto’s performance, while the second row removes the Cross
Attention block, the third row removes the the linear attention
mechanisms, and the fourth row removes the the weights for the
final gating between each block. The results demonstrate that Leto
with all components yields the strongest performance. Notably, the
results without the linear attention component and Transformer
Block perform the worst, highlighting the importance of maintain-
ing separate time and variate memories, and including both in the
recurrence.

5 Conclusion

In this paper, we present Leto, a native 2-dimensional memory
module that takes the advantage of temporal inductive bias across
time while maintaining the permutation equivariance of variates.
Leto uses a meta in-context memory module to learn andmemorize
patterns across time dimension, and simultaneously, incorporates
information from other correlated variates, if it is needed. Our ex-
perimental and theoretical results support the effectiveness of Leto
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Table 3: Average performance on short-term forecasting tasks on the M4 dataset. A lower SMAPE, MASE, and OWA indicate

better prediction. * is an abbreviation of the “former" term.

Models

Leto ModernTCNTimeMixer PatchTSTTimesNetN-HiTSN-BEATS
∗
ETS

∗
LightTSDLinear FED

∗
StationaryAuto

∗
Pyra

∗

(Ours) 2024 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021 2021

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.658 11.698 11.723 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987

MASE 1.541 1.556 1.559 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265
OWA 0.832 0.838 0.840 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480

Table 4: Ablation Study of Leto on ETT, Weather, and Exchange datasets

Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange

MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE

Full Leto 0.393 / 0.401 0.318 / 0.381 0.347 / 0.375 0.243 / 0.302 0.216 / 0.253 0.297 / 0.364
w/o Cross Variate Attention 0.458 / 0.447 0.400 / 0.427 0.394 / 0.419 0.320 / 0.362 0.244 / 0.274 0.311 / 0.398
w/o Linear Attention 0.454 / 0.454 0.392 / 0.421 0.407 / 0.410 0.341 / 0.370 0.258 / 0.278 0.360 / 0.403
w/o Weighted Gating 0.405 / 0.412 0.368 / 0.392 0.389 / 0.397 0.312 / 0.354 0.237 / 0.269 0.301 / 0.384

Figure 2: Anomaly detection and classification results of Leto and

baselines. Higher accuracy/F1-score indicate better performance.

across a diverse set of tasks, including time series forecasting, clas-
sification, and anomaly detection tasks. Limitations, future research
directions, and societal impacts are discussed in Section F of the
Appendix.
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A Preliminaries and Background

Transformers and their Permutation Equivariance Property.

Transformers [97] have been the de facto backbone for many deep
learning models and are based on attention module. Let 𝑥 ∈ R𝑁×𝑑in

be the input, attention computes output y ∈ R𝑁×𝑑in based on
softmax over input dependent key, value, and query matrices:

Q = 𝑥WQ, K = 𝑥WK, V = 𝑥WV, (12)

y𝑖 =
𝑁∑︁
𝑗=1

exp
(
Q⊤
𝑖
K𝑗/

√︁
𝑑in

)
V𝑗∑𝑁

ℓ=1 exp
(
Q⊤
𝑖
Kℓ/

√︁
𝑑in

) , (13)

where WQ,WK, and WV ∈ R𝑑in×𝑑in are learnable parameters. This
formulation of attentionmakes it permutation equivariant, meaning
that the permutation of the input cannot change the output but
permute it. That is, let 𝜋 (.) be a permutation, andA(·) be the above
attention module, we have:

A(𝜋 (𝑥)) = 𝜋 (A(𝑥)) . (14)

The property, which is called permutation equivariance, is a desir-
able property for the data that is permutation equivariant, such as
variates in the multivariate time series. When encoding the multi-
variate time series, we do not want the output of the model to be
sensitive to the order of the input (variates) and so transformers
are great architectures as any change to the order, does not change
the output, but just permute it.

Learning to Memorize at Test Time. The concept of learning
to memorize at test time is derived from the learning at test time
or learning to learn, which backs to very early studies on local
learning [22]: i.e., training each test sample on its neighbors be-
fore making a prediction [41, 118]. Later, test time training shows
promising results in vision tasks [57, 79], mainly because of the
ability to properly address out-of-distribution cases. Using this
perspective, recently this idea has been applied on sequence model-
ing [16, 19, 95]. These methods that aim to train a memory module

that learns how to memorize the context at test time, have shown
promising results in language and sequence modeling tasks. In this
work, we also take this perspective and design a 2-dimensional test
time memorizer that generalizes all these methods to 2-dimensional
data modality.

B Additional Related Work

Classical Approach. Time series modeling has been a fundamen-
tal research topic, Classical approaches include a range of statis-
tical models such as exponential smoothing [101], ARIMA [11],
SARIMA [20], and the Box-Jenkins methodology [23], with later
advancements introducing state-space models [6, 49]. While these
models offer interpretability, they often fall short in capturing com-
plex non-linear dynamics and typically rely onmanual inspection of
time series characteristics—such as trend and seasonality—limiting
their adaptability across diverse datasets.

Transformer-based models. Transformer-based architectures
have become increasingly prominent in multivariate time series
forecasting, particularly when modeling complex inter-variable and
temporal dependencies [55, 61, 71, 81, 106, 116, 123, 124, 126]. A line
of research has focused on designing specialized attention mecha-
nisms that leverage the unique structure of time series data [102],
while others have explored strategies for capturing long-term tem-
poral patterns to improve forecasting accuracy [81, 125].

In parallel, recent works have revisited linear recurrent neu-
ral networks (Linear RNNs) as efficient alternatives to Transform-
ers, aiming to reduce the quadratic complexity while maintain-
ing competitive performance on long-range dependency model-
ing [85, 94, 104]. For instance, Chen et al. [26] introduce TSMixer, a
purely MLP-based model that demonstrates strong performance on
time series forecasting tasks. Notably, the expressive capacity of cer-
tain linearmodels alignswith 2D state spacemodels (SSMs), suggest-
ing that these architectures can be interpreted as specific instances
within the broader 2D SSM framework. Additionally, convolution-
based models have shown renewed promise [76], where the use of
global convolutional kernels facilitates an expanded receptive field
for capturing long-range dynamics.

Recurrent-based models. Another line of research closely re-
lated to our work involves deep sequence modeling. Recurrent
neural networks (RNNs), including variants such as GRUs [29],
LSTMs [51], and DeepAR [88], have been widely used for sequen-
tial data. However, these models suffer fromwell-known limitations
such as vanishing and exploding gradients, along with inherently
sequential computation that slows down training and inference. To
address these inefficiencies, recent efforts have explored linear at-
tention mechanisms as faster alternatives [59, 60, 89]. For instance,
Katharopoulos et al. [60] propose a linear attention model with
a recurrent formulation, enabling efficient inference and reduced
computational complexity.

In parallel, deep state space models (SSMs) have gained momen-
tum as a compelling alternative to Transformer-based architec-
tures [97], offering improved scalability and training efficiency [45].
These models blend classical state space formulations with deep
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learning by parameterizing neural network layers usingmultiple lin-
ear SSMs. This hybrid formulation leverages the convolutional inter-
pretation of SSMs to mitigate the optimization challenges typically
associated with RNNs [45–48, 92]. Recently, Gu and Dao [44] intro-
duced Mamba, a novel deep SSM architecture where parameters dy-
namically depend on input features. This approach has been success-
fully extended to various modalities—including images [18, 73, 77],
point clouds [67], tabular data [2], graphs [14, 15, 53], and time
series [17, 24]—demonstrating strong capabilities in modeling long-
range dependencies across domains.

Other Methods. Graph-based models have emerged as powerful
tools for time series forecasting[108, 112], especially when the data
exhibits spatial or relational structure across variables or entities.
Approaches such as graph neural networks (GNNs) model depen-
dencies through learned graph representations, enabling effective
spatiotemporal forecasting in domains like traffic [65, 113] and
sensor networks [109]. Recent work has extended these ideas by in-
corporating dynamic graphs [35, 42, 104], learning graph structures
jointly with temporal dynamics to better capture evolving relation-
ships over time. These methods offer strong performance in settings
where explicit or latent graph structure underpins multivariate time
series behavior.

C Parallelizable Training of Leto

While the recurrence-based formulation of Leto enables it to better
capture joint temporal and variate dependencies, as well as their
independent dynamics, it introduces sequential dependencies that
can hinder training efficiency. To address this, we develop a paral-
lelizable training strategy inspired by recent advances in test-time
memorization frameworks [19, 95].

Specifically, for a given variate 𝑣 , we divide its time series {𝑥1,𝑣, . . . , 𝑥𝑇,𝑣}
into𝐶 disjoint chunks of length𝑏 = 𝑇 /𝐶 . Each chunk 𝑆𝑖 = {𝑥 (𝑖−1)𝑏+1,𝑣, . . . , 𝑥𝑖𝑏,𝑣}
can be treated as an independent subsequence for computing the
inner-loop updates of the memory module. This chunking allows us
to approximate the gradient ∇ℓ (𝑀 (1)

𝑡−1,𝑣, 𝑥𝑡,𝑣) with ∇ℓ (𝑀 (1)
𝑡 ′,𝑣 , 𝑥𝑡,𝑣),

where 𝑡 ′ = ⌊𝑡/𝑏⌋ · 𝑏 is the last time step of the previous chunk.
Since 𝑡 ′ is fixed for each chunk, this gradient can be computed in
parallel for all time steps within a chunk.

Moreover, the cross-variate dynamic component—modeled via
the attention mechanism—is independent of time and can be com-
puted in advance. We precompute the attention-based memory
𝑀

(2)
𝑡,𝑣 for all variates using equation abovewith a Taylor-approximated

softmax kernel. This enables us to also precompute ∇ℓ (𝑀 (2)
𝑡,𝑣 , 𝑥𝑡,𝑣),

further decoupling the cross-variate dynamics from the sequential
recurrence.

With the cross-variate memory and its corresponding gradient
terms available, the remaining computation in each chunk reduces
to a linear update over the cross-time memory using the precom-
puted components. As a result, we obtain a recurrence that is linear
within chunks and can be parallelized across both time and variates.

D Dataset and Experimental Details

The experimental details are reported in Table 5.

E Additional Experimental Results

E.1 Metrics

We utilize the mean square error (MSE) and mean absolute error
(MAE) for long-term forecasting. For short-term forecasting on
the M4 datasets, we follow the methodology of N-BEATS [82] and
utilize the symmetric mean absolute percentage error (SMAPE),
mean absolute scaled error (MASE), and overall weighted average
(OWA) as metrics. It is worth noting that OWA is a specific metric
utilized in the M4 competition. The calculations of these metrics
are:

RMSE = (
𝐹∑︁
𝑖=1

(X𝑖 − X̂𝑖 )2)
1
2 , MAE =

𝐹∑︁
𝑖=1

|X𝑖 − X̂𝑖 |,

SMAPE =
200
𝐹

𝐹∑︁
𝑖=1

|X𝑖 − X̂𝑖 |
|X𝑖 | + |X̂𝑖 |

, MAPE =
100
𝐹

𝐹∑︁
𝑖=1

|X𝑖 − X̂𝑖 |
|X𝑖 |

,

MASE =
1
𝐹

𝐹∑︁
𝑖=1

|X𝑖 − X̂𝑖 |
1

𝐹−𝑠
∑𝐹

𝑗=𝑠+1 |X𝑗 − X𝑗−𝑠 |
, OWA =

1
2

[
SMAPE

SMAPENaïve2
+ MASE
MASENaïve2

]
,

where 𝑠 is the periodicity of the data. X, X̂ ∈ R𝐹×𝐶 are the ground
truth and prediction results of the future with 𝐹 time pints and 𝐶
dimensions. X𝑖 means the 𝑖-th future time point. For classification,
we use accuracy as the metric. Lastly for anomaly detection, we
use F1-Score as the metric.

E.2 Short Term Forecasting

The complete results of short term forecasting are reported in Table
8.

E.3 Long Term Forecasting

The complete results of long term forecasting are reported in 9.

E.4 Anomaly Detection

The complete results of Anomaly Detection are reported in Table 11.

E.5 Classification

The complete results of Classification are reported in 12.

F Limitations and Future Work

We note LETO has a few limitations worth acknowledging. First,
the use of gradient-based meta in-context updates at test time, while
powerful, introduces additional computational overhead compared
to traditional non-adaptive sequence models. Although our dual-
form implementation and parallel training strategies mitigate some
of this cost, the memory and compute requirements may still be
prohibitive in resource-constrained settings, particularly for long-
horizon forecasting tasks.

Second, while LETO is designed to model both cross-time and
cross-variate dependencies, its reliance on Taylor approximations
for the variate attention mechanism may limit its capacity to fully
capture complex, high-order variate interactions in some datasets.
More expressive non-parametric approximators or learned kernel
functions could offer improved generalization and efficiency.

Finally, our current formulation assumes access to reasonably
stationary statistics at test time for the meta-memorization process
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Table 5: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart Beat

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

Table 7: Standard deviation and statistical tests for our LETO method and the strongest baseline ModernTCN on the M4 dataset

(short-term forecasting). Lower is better. Confidence is derived from a paired two-tailed 𝑡-test over five runs.

Frequency

LETO (Ours) ModernTCN (2024)

Confidence

SMAPE MASE OWA SMAPE MASE OWA

Yearly 13.183 ± 0.115 2.941 ± 0.028 0.754 ± 0.022 13.226 ± 0.118 2.957 ± 0.031 0.777 ± 0.025 99%
Quarterly 9.953 ± 0.101 1.150 ± 0.015 0.851 ± 0.015 9.971 ± 0.105 1.167 ± 0.017 0.878 ± 0.018 95%
Monthly 12.517 ± 0.115 0.935 ± 0.014 0.853 ± 0.014 12.556 ± 0.120 0.917 ± 0.015 0.866 ± 0.016 95%
Others 4.583 ± 0.084 2.797 ± 0.027 0.900 ± 0.021 4.715 ± 0.090 3.107 ± 0.028 0.986 ± 0.024 99%

Averaged 11.658 ± 0.112 1.541 ± 0.022 0.832 ± 0.018 11.698 ± 0.120 1.556 ± 0.024 0.838 ± 0.020 95%
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Table 8: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers indicates the name of

∗former. Stationary means the Non-stationary Transformer. A lower SMAPE, MASE, and OWA indicate a better prediction. As

a convention for all experimental results, best performance is highlighted in red, and the second-best is underlined. We take

the average of 5 separate runs for each prediction frequency.

Models
Leto ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗
(Ours) [2024] [2023] [2023] [2023] [2022] [2019] [2022] [2022b] [2023b] [2022b] [2022b] [2021] [2021] [2021]

Ye
ar
ly SMAPE 13.183 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169

MASE 2.941 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800

OWA 0.754 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973

Q
ua
rt
er
ly SMAPE 9.953 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313

MASE 1.150 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775

OWA 0.851 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252

M
on

th
ly SMAPE 12.517 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128

MASE 0.935 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614

OWA 0.853 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927

O
th
er
s SMAPE 4.583 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491

MASE 2.797 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355

OWA 0.9001 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.658 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200

MASE 1.541 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223

OWA 0.832 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775

to be effective. In highly non-stationary environments or under
strong distribution shifts, the learned test-time updates may gener-
alize poorly, leading to suboptimal performance.

G Broader Impact

Leto has demonstrated strong performance as a general-purpose
model for time series pattern recognition, achieving competitive
results across a wide range of tasks including forecasting, classifi-
cation, and anomaly detection. Its versatility makes it well-suited
for deployment in diverse real-world scenarios, such as energy
and power demand forecasting with pronounced seasonal trends,
weather prediction under complex and dynamic conditions, finan-
cial market modeling in rapidly shifting environments, and demand
forecasting within supply chains. Furthermore, Leto has shown
particular promise in industrial anomaly detection tasks, which
often require robustness to noise and structural variability. These
capabilities highlight Leto’s potential as a foundational model for
advancing time series analysis across multiple applied domains.

H Compute Resources

For experiments, we utilized up to 4 NVIDIA A6000 and A6000
ADA GPUs.

I Proof of Theorem 3.1

To prove this theorem, we show that our Leto can recover the 2D
linear recurrent models that are proven to model full-rank matri-
ces [10, 17]. To this end, we show that a special instance of our
Leto is equivalent to these linear 2D recurrent models. We let the
chunk size to be the size of the sequence length. Therefore, for
every 1 ≤ 𝑡 ≤ 𝑇 , we have:

∇ℓ ( (1)0 ;𝑡 , ⃗⃗ 𝑡) = ( (1)0 𝑡 − ⃗⃗ 𝑡)⊤𝑡 , (15)

where (1)
0 is the initial state of the memory, which we let (1)

0 = I
for the simplicity. Replacing this gradient in Equation Variant 2, we
have:

(1)
𝑡,𝑣 = 𝛼

(1)
𝑡,𝑣 𝑡−1,𝑣 − 𝜂𝑡,𝑣

©­­­«(𝑡−
⃗⃗ 𝑡)︸  ︷︷  ︸

u𝑡

⊤

𝑡

ª®®®¬ + 𝛽
(2)
𝑡,𝑣 𝑡−1,𝑣 − 𝛾𝑡,𝑣

(
(2)
𝑡 𝑡

⊤
𝑡 − ⃗⃗ 𝑡⊤𝑡

)
,

(16)

where we let 𝜂𝑡,𝑣 = 𝛾𝑡,𝑣 = 1. Also, for the attention module, we use
polynomials with degree 1 to approximate the softmax attention
(which is the special instance and the weaker version of our design,
i.e., considering only the first two terms of the Taylor series). The
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Table 9: Complete experiments on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}. A lower MAE and MSE indicates

a better prediction. As a convention for all experimental results, best performance is highlighted in red, and the second-best is underlined. We

take the average of 5 separate runs for each prediction length.

Leto TimeMixer Simba TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(ours) [2024] [2024] [2024] [2024a] [2023] [2023] [2023] [2023] [2023] [2023a] [2022c] [2022b] [2022a] [2021]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.312 0.343 0.320 0.357 0.342 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.330 0.365 0.361 0.381 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.355 0.384 0.390 0.404 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.391 0.408 0.454 0.441 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.347 0.375 0.381 0.395 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ET
Tm

2

96 0.164 0.248 0.175 0.258 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.217 0.284 0.237 0.299 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.266 0.312 0.298 0.340 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.349 0.363 0.391 0.396 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.249 0.302 0.275 0.323 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

ET
Th

1

96 0.365 0.383 0.375 0.400 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.396 0.400 0.429 0.421 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.461 0.462 0.484 0.458 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.427 0.428 0.498 0.482 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.393 0.401 0.447 0.440 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

ET
Th

2

96 0.258 0.337 0.289 0.341 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.316 0.379 0.372 0.392 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.309 0.379 0.386 0.414 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.389 0.430 0.412 0.434 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.318 0.381 0.364 0.395 0.361 0.377 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

Ex
ch
an
ge

96 0.079 0.208 0.090 0.235 - - 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.164 0.298 0.187 0.343 - - 0.166 0.288 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.308 0.329 0.353 0.473 - - 0.307 0.398 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.637 0.621 0.934 0.761 - - 0.656 0.582 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.297 0.364 0.391 0.453 - - 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
affi

c

96 0.380 0.247 0.462 0.285 0.468 0.268 0.368 0.253 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.391 0.258 0.473 0.296 0.413 0.317 0.379 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.409 0.266 0.498 0.296 0.529 0.284 0.397 0.270 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.452 0.297 0.506 0.313 0.564 0.297 0.440 0.296 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.408 0.267 0.484 0.297 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea
th
er

96 0.155 0.203 0.163 0.209 0.176 0.219 0.149 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.173 0.240 0.222 0.260 0.222 0.260 0.196 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.232 0.260 0.251 0.287 0.275 0.297 0.238 0.277 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.307 0.309 0.350 0.349 0.350 0.349 0.314 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.366 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.216 0.253 0.240 0.271 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

EC
L

96 0.136 0.233 0.153 0.247 0.165 0.253 0.129 0.226 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.144 0.221 0.166 0.256 0.173 0.262 0.143 0.239 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.154 0.253 0.185 0.277 0.188 0.277 0.161 0.259 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.162 0.261 0.225 0.310 0.214 0.305 0.191 0.286 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.149 0.247 0.182 0.272 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

resulting formula can be written as:

(1)
𝑡,𝑣 = 𝛼

(1)
𝑡,𝑣 𝑡−1,𝑣 − 𝜂𝑡,𝑣u𝑡⊤𝑡 + 𝛽

(2)
𝑡,𝑣 𝑡−1,𝑣 − 𝛾𝑡,𝑣

(2)
𝑡 + 𝛾𝑡,𝑣u𝑡⊤𝑡 , (17)

which is equivalent to the 2-dimensional linear recurrence with
diagonal transition matrix. Therefore, as proven by Baron et al. [10],
the recurrence can model full-rank matrix.
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Table 10: Standard deviation and statistical tests for LETO vs. the strongest baseline ModernTCN on long-term forecasting

(lower is better). Confidence levels derive from a paired two-tailed 𝑡-test over five seeds.

Dataset

LETO (Ours) ModernTCN (2024)

Confidence

MSE MAE MSE MAE

ETTm1 0.347 ± 0.010 0.375 ± 0.012 0.351 ± 0.011 0.381 ± 0.013 99%
ETTm2 0.249 ± 0.009 0.302 ± 0.011 0.253 ± 0.010 0.314 ± 0.013 95%
ETTh1 0.393 ± 0.012 0.401 ± 0.014 0.404 ± 0.013 0.420 ± 0.015 99%
ETTh2 0.318 ± 0.010 0.381 ± 0.012 0.322 ± 0.011 0.379 ± 0.013 95%
Exchange 0.297 ± 0.016 0.364 ± 0.018 0.302 ± 0.017 0.366 ± 0.019 95%
Traffic 0.408 ± 0.020 0.267 ± 0.012 0.398 ± 0.019 0.270 ± 0.013 90%
Weather 0.216 ± 0.009 0.253 ± 0.011 0.224 ± 0.010 0.264 ± 0.012 95%
ECL 0.149 ± 0.007 0.247 ± 0.009 0.156 ± 0.008 0.253 ± 0.010 99%

Table 11: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall and F1-score in percentage

respectively. A higher value of P, R and F1 indicates a better performance. Best performance is highlighted in red, and the

second-best is underlined. We take the average of 5 separate runs for each dataset.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM [1997b] 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer [2017] 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans [2019] 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN [2019] 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer [2020] 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer [2021] 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ [2021] 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer [2021] 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer [2021] 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL [2021] 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary [2022b] 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear [2023b] 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer [2022] 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS [2022b] 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer [2022b] 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) [2023] 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) [2023] 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer [2023] 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST [2023] 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN [2024] 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Leto (ours) 88.20 85.52 86.84 83.50 89.27 86.29 93.20 57.10 70.81 92.00 96.73 94.31 99.20 94.61 96.85 87.02

Table 12: Full results for the classification task (accuracy %).

We omit “former” from the names of Transformer-based

methods. For all methods, the standard deviation is less than

0.1%. A higher average accuracy indicates a better prediction.

Best performance is highlighted in red, and the second-best

is underlined.We take the average of 5 separate runs for each

dataset.

Datasets / Models
LSTM LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. /ETS. /Flow. /DLinear/LightTS./TimesNet/PatchTST/MTCN/Leto

[1997b][2018] [2017][2020][2021][2021][2021] [2022b] [2022b][2022][2022c] [2023b] [2022b] [2023] [2023] [2024] (ours)

EthanolConcentration 32.3 39.9 31.1 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7 35.7 32.8 36.3 38.8

FaceDetection 57.7 65.7 66.7 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 68.3 70.8 71.3

Handwriting 15.2 25.8 24.6 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 29.6 30.6 32.9

Heartbeat 72.2 77.1 72.7 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 78.0 74.9 77.2 78.3

JapaneseVowels 79.7 98.1 98.4 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.2 96.2 98.4 97.5 98.8 98.5
PEMS-SF 39.9 86.7 86.1 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 75.1 88.4 89.6 89.3 89.1 89.6

SelfRegulationSCP1 68.9 84.0 90.8 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 87.3 89.8 91.8 90.7 93.4 94.4

SelfRegulationSCP2 46.6 52.8 52.2 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 51.1 57.2 57.8 60.3 61.1

SpokenArabicDigits 31.9 100.0 100.0 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0 99.0 98.3 98.7 98.7
UWaveGestureLibrary 41.2 87.8 85.9 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3 85.3 85.8 86.7 87.1

Average Accuracy 48.6 71.8 70.9 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4 73.6 72.5 74.2 75.07

On the other hand, the univariate version of this recurrence (i.e.,
𝛾𝑡,𝑣 = 0) results in linear attention formulation, which is limited
and cannot express full-rank matrices.

J Visualizations

J.1 Long Term Forecasting

J.2 Ultra Long Term Forecasting
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Figure 3: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-96 setting. The blue lines stand

for the ground truth and the orange lines stand for predicted values.
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Leto: Modeling Multivariate Time Series with Memorizing at Test Time Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
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