
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Effectively Designing 2-Dimensional Sequence Models for
Multivariate Time Series

Anonymous Author(s)

Abstract
Although Transformers dominate fields like language modeling and
computer vision, they often underperform simple linear baselines
in time series tasks. Conversely, linear sequence models provide
an efficient, causally biased alternative that excels at autoregres-
sive processes. However, they are fundamentally limited to single-
sequence modeling and cannot capture inter-variate dependencies
in multivariate time series. Here, we introduce Typhon, a flexible
framework that applies two sequence models to the time and vari-
able dimensions, merging them with a Dimension Mixer module,
allowing the inter-variate information flow in the learning process.
Building on Typhon, we introduce T4 (Test Time Training with a
cross-variate Transformer), which employs a a meta-model for on-
the-fly forecasting across time, and a Transformer across variates to
capture their dependencies. The Typhon framework’s flexibility lets
us benchmark T4 alongside various modern recurrent models, re-
vealing that constant-memory recurrence struggles with long-term
dependencies and error propagation. To address this, we introduce
Gated Multiresolution Convolution (GMC)—a simple, attention-free
Typhon variant. With a carefully designed constant-size multireso-
lution memory, GMC can capture long-term dependencies while
mitigating error propagation. Our experiments validate Typhon’s
2D inductive bias design and demonstrate GMC and T4’s superior
performance across diverse benchmarks.

Keywords
Multivariate Time Series, Transformers, Multiresolution convolu-
tion, Test Time Training
ACM Reference Format:
Anonymous Author(s). 2018. Effectively Designing 2-Dimensional Sequence
Models for Multivariate Time Series. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation email (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 15 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction
Multivariate time series analysis plays a crucial role in under-
standing and predicting complex systems across a wide range of
domains such as healthcare, finance, energy, transportation and
weather [8, 28, 40, 43]. The complex nature of such multivariate
data raises fundamental challenges to design effective and gener-
alizable models: An effective model requires to (1) learn complex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

patterns, including multi-resolution, trend, and seasonal patterns
in the time series data; (2) capture the complex dynamics of the
dependencies between variate axes; and (3) be able to efficiently
and effectively scale to long-context.
The emergence of deep learning has shifted the focus of time series
prediction away from traditional statistical methods toward deep
architectures, including Transformer-based [76, 88], recurrence-
based [11, 41], and temporal convolutional-based [3, 64]. Despite
the promising performance of Transformers [69] in various do-
mains [24, 60, 76], several studies have highlighted that the in-
herent permutation equivariance of attentions in Transformers
contradicts the causal nature of time series and often results in
suboptimal performance compared to simple linear methods [81].
Also, their quadratic complexity can cause significant obstacles in
large-scale time series applications.
Recently, sub-quadratic sequence models demonstrated significant
potential as efficient alternatives to Transformers, mainly due to
their efficiency and also ability to learn long-range dependencies
based on their inductive temporal bias [67]. They, however, lack a
two-dimensional inductive bias of multivariate time series (missing
the complex dependencies across both time and variates), use fixed
resolutions (missing the dense information in complex time series
data), struggle with seasonal patterns, and/or rely on static update
parameters. Furthermore, natural attempts to simply employ mod-
ern recurrent sequence models for long-term time series forecasting
tasks results in (1) error propagation, and (2) poor performance
on out-of-distribution test data. While existing studies often uses
additional modules to mitigate the above challenges [11, 84], these
additional modules result in almost doubling the number of pa-
rameters, limiting the number of effective parameters and so the
expressive power of the model.
To address, explore, and validate the abovementioned challenges,
we present Typhon, a simple yet effective framework that allows
extending any sequence model to 2-dimensional data, and adapting
them for multivariate time series tasks. Typhon uses two sequence
models (not necessarily from the same architecture), each of which
responsible to learn the dependencies across one of the dimensions
(i.e., one across time and one across variate dimension). Then, it
uses a dimension mixer module to inject 2D inductive bias into the
model and combine the dimension-specific information along both
time and variates.
The flexibility and effectiveness of Typhon, allows us to explore the
different combinations of sequence models across time and variate
dimensions. Performing extensive experimental evaluations on the
combinations of recurrent models, SSMs, Transformers, and linear
models, we found that while these hybrid models show outstanding
performance in short-term forecasting tasks, they indeed suffer
from error propagation in long-term forecasting and show poor
performance when the test data is out of distribution.
To address this, we present two variants of Typhon–Test Time Train-
ing + Transformer (T4), and Gated Multiresolution Convolution

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(GMC)–that shows outstanding performance in all downstream
tasks: i.e., long-term and short-term forecasting, classification, im-
putation, and anomaly detection. T4 utilizes Test Time Training
(TTT) layer across time, a meta-in-context model that learn how to
learn at test time. Therefore, due to its meta-learning and causal
nature, T4 is capable of generalization to out-of-distribution data
at test time as it is based on test time training and can update its
weights even at test time, adapting itself to new data. T4 further
uses a Transformer across variate dimension. Variate dimension in
multivariate time series data is naturally permutation equivariant
and so Transformers are capable of capturing direct correlation of
variates.
Evaluating the performance of T4 and comparing it with more than
100 combinations of sequence models, we find that the recurrent
nature of T4 over time still results in error propagation in long-term
forecasting tasks. To overcome this challenge, we present a new
variant of Typons, Gated Multiresolution Convolution (GMC), that
is attention and recurrence free. Our experimental results indicate
that GMC show outstanding performance, outperforming T4 and
other baselines in most cases over a diverse set of datasets and
downstream tasks.

2 Related Work
Multiple mathematical models have been developed across various
fields, including healthcare, meteorology, and finance, to address
the challenges of time series forecasting. The research on time series
forecasting has evolved from traditional statistical methods—such
as those utilizing inherent patterns and properties of the data for
prediction [5, 14, 15, 72]—to modern deep learning solutions that
can capture more expressive temporal correlations. Additionally,
techniques like state-space models (SSM), including the Kalman
filter, have been widely used to model dynamic system behavior
[2, 22, 35]. In these cutting-edge approaches, various neural archi-
tectures have driven remarkable advances in predictive accuracy
and efficiency. Early work in time series forecasting adopted recur-
rent neural networks (RNNs)[26] and their variants, such as Long
Short-Term Memory (LSTM) networks [36] and Gated Recurrent
Units (GRUs) [18] due to their sequential nature, followed by the
introduction of temporal convolutional networks (TCNs) [3, 70, 74],
which excel at capturing local patterns due to their receptive field
design. Meanwhile, Transformer-based models [69], have further
revolutionized time series modeling by leveraging self-attention
mechanisms to capture both short- and long-term dependencies, im-
proving scalability and predictive performance across various time
series tasks [71]. Although, their quadratic complexity poses opti-
mization challenges [52, 76, 88, 89]. Recently, patch-based methods
have been introduced to enhance efficiency in Transformer vari-
ants [61, 87]. Meanwhile, multilayer perceptrons (MLPs) remain a
popular option for time series forecasting, owing to their simplicity
and direct mapping capabilities [25]. In parallel, graph neural net-
works (GNNs) [77, 80] have been employed to capture relationships
among multiple variables.

Recently, deep state-space models have gained significant atten-
tion as efficient alternatives to Transformers, which suffer from
quadratic computational complexity and demonstrated significant
potential in addressing the long-range dependencies problem. Deep

SSMs offer scalable training and inference, particularly efficient in
long-context tasks [31]. These methods combine traditional SSMs
with deep neural networks by parameterizing the sequence mixing
layers of a neural network using multiple linear SSMs, address-
ing common training drawbacks of RNNs through the convolu-
tional reformulation of SSMs [31–34, 66]. A recent advancement in
expressive sequence modeling has emerged by specifying model
parameters as functions of inputs, resulting in more expressive
deep SSMs and RNNs [19, 21, 30], as well as long convolution mod-
els [42]. These architectures has been expanded beyond sequential
tasks to diverse data modalities—including images [12, 42, 54, 58],
point clouds [49], tabular data [1], graphs [9, 10, 39], and DNA
modeling [30, 60, 63]—thereby enhancing its capacity for modeling
long-range dependencies. To address the method’s sensitivity to
scan order, researchers have proposed bidirectional scanning [90],
multi-directional scanning [47, 54], and even automatic direction
determination [38]. However, there remains a paucity of work ex-
amining variable scan orders specifically within temporal contexts.
Most relevant to this work is directly extending the 1-dimensional
deep SSMs to their multi-dimensional analogs. Previous works
have studied 2D State Space Models. Nguyen et al. [59] present
S4ND, a multidimensional SSM layer that extends the continuous-
signal modeling ability of SSMs to model videos and images. It not
only considers M separate SSM for the M axes, but it also directly
treat the system as a continuous system without discretization step.
It has data-independent parameters and shows discritizing each
1D SSM results in resolution invariance and can be computed as a
convolution as well. Baron et al. [4] present the 2D-SSM layer which
is new spatial layer based on Roesser’s model for multidimensional
state space Kung et al. [45], the most general model for M-axial state
space models. It has data-dependent weights and models images as
discrete signals where initial SSM model is discrete and there is a
lack of discretization step but can be computed as a convolution.
The main difference between S4ND and 2-D SSM is that S4ND
runs a standard 1-D SSM over each axis independently, and those
functions are combined to form a global kernel. In contrast, 2D SSM
learns multi-dimensional functions over multi-axes data directly,
and 2D-SSM is a generalization of S4ND in 2 dimensions when
setting 𝐴2 = 𝐴3 = 0 and 𝐴1, 𝐴4 to be the system matrices. Behrouz
et al. [11] discuss this in their extension to 2D-Mamba and 2D-
Mamba2.

3 Preliminaries
3.1 Notations
We focus on multivariate time series forecasting and classification
tasks. Let X = {x1, . . . , x𝑇 } ∈ R𝑇×𝑁 denote the input data, where
𝑇 is the number of time steps and 𝑁 is the number of features
(variates). The value of feature 𝑣 at time 𝑡 is denoted by 𝑥𝑡,𝑣 . For
forecasting tasks, given an input sequence x𝑖 , the goal is to predict
the next 𝐻 time steps, x̃𝑖 ∈ R𝐻×𝑁 , where 𝐻 is the prediction hori-
zon. For classification tasks, the goal is to assign a class label to each
sequence. Anomaly detection can be seen as a binary classification
task where 0 denotes “normal” and 1 denotes “anomalous.”

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Typhon integrates temporal mixing for cross-time dependencies, variate mixing for cross-variate interactions, and
dimension mixing to unify temporal and feature representations. Typhon efficiently models complex multivariate time series
dynamics while maintaining scalability.

3.2 (Seasonal) Autoregressive Processes
The autoregressive (AR) process is a foundational building block for
time series modeling, capturing causal relationships in sequential
data. For an order-𝑝 AR process, AR(𝑝), the relationship between
a value x𝑡 ∈ R𝑑 and its past 𝑝 values is given by:

x𝑡 =
𝑝∑︁
𝑖=1

𝜙𝑖x𝑡−𝑖 , (1)

where 𝜙𝑖 ∈ R𝑑×𝑑 are the autoregressive coefficients. This formula-
tion can be extended to account for seasonal patterns, resulting in
a Seasonal Autoregressive (SAR) process, SAR(𝑝, 𝑞, 𝑠):

x𝑡 =
𝑝∑︁
𝑖=1

𝜙𝑖x𝑡−𝑖 +
𝑞∑︁
𝑗=1

𝜂 𝑗x𝑡− 𝑗𝑠 , (2)

where 𝑠 is the seasonal period, and 𝜂 𝑗 ∈ R𝑑×𝑑 are the seasonal
coefficients. Here, the seasonal component captures periodic de-
pendencies at lag 𝑠 and its multiples.

4 Typhon: a Double-Headed Model with 2D
Inductive Bias

In this section, we present the general framework of Typhon and
discuss its main constituents and properties. In Typhon framework,
we break the architecture into three components (Figure 1 shows
the three main steps of Typhon):

4.1 Time Mixer
Learning complex patterns and dependencies across time is a key
component for understanding multivariate time series. Our intu-
ition is to treat the time series data as a sequence of tokens (or
patches) and then employ a sequence model (i.e., Transformers,

linear RNNs, linear models, etc.) to encode the information across
time. Notably, this encoding is done for each variate separately and
it is mainly responsible to capture temporal dependencies. There
are, however, three critical challenges to adapt existing sequence
models:
(1) Transformer-based Models: The attention mechanism in Trans-
formers is permutation equivariant and so is unable to recover au-
toregressive process by its nature, missing temporal patterns [11].
This lack of expressivity causes Transformers to even underperform
simple linear models in several scenarios [68]; (2) Linear Models:
Similar to Transformers, linear models also suffer from the lack
of ability to recover autoregressive process. They further assumes
a linear pattern in the temporal dependencies in data, resulting
poor performance in real-world downstream tasks; (3) Recurrent
Models: Contrary to Transformers and linear models, recurrence-
based approaches are not naturally limited. That is, with careful
parametrization and architectural design, recurrent models can re-
cover autoregressive process [11, 85]. Their recurrence, however,
can cause error propagation in inference time as the test data can
be out-of-distribution with respect to the training data [11]. Accord-
ingly, as we discuss later in § 4.5, we employ a test-time training
layer to encode information across time, mitigating error propaga-
tion by dynamically adapt weights at test-time.
Given X ∈ R𝑇×𝑁 as the input data, the time mixer module is
responsible to capture and learn temporal patterns in each variate
X separately. Given a sequence model T (.), a look-back window
lengthℎ, and prediction horizon𝐻 we use T across time dimension:

𝑦𝑇 :𝑇+𝐻 = T (Xℎ:), (3)

where 𝑦𝑇 :𝑇+𝐻 ∈ R𝐻×𝑁 is the prediction output for next 𝐻 time
steps, and Xℎ: is the data for the last ℎ time steps.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Later, we introduce two variants of Typhon, in which we specify
and explain our time mixer module. In our experiments, we use
Mamba [30], Transformers [69], xLSTM [6], and linear layers as
the baseline modules for time mixing.

4.2 Variate Mixer
In understanding multivariate time series data, the dependencies
across variates can be pivotal and play an important role in several
real-world scenarios ranging from neuro-signals [8] and other bio-
signals to stock prediction [76] and traffic forecasting [88]. For
example, in neuro-signals (e.g., EEG, MEG, fMRI, etc.) the temporal
dependencies is only important up to a binary label (i.e., active,
deactive), while the dependencies of variates (i.e., co-activation
of different brain regions) is a key to classify or forecast brain
activity [7, 8].
Our approach to capture such dependencies is to treat the variate
as un-ordered sequences, where each variate is described by its
time stamps: i.e., each variate 𝑣 is represented by 𝑥𝑣 ∈ R𝑇 , where
the 𝑖-th element is the value of variate 𝑣 at time 𝑖 . Accordingly,
in Typhon, we use a bidierectional sequence model as the Variate
Mixer module, which is responsible to learn pairwise dependencies
of channels. Given a sequence model V(.), we define V∗ (.) as the
bidirectional variant ofV(.). That is, ifV(.) is causal by its nature,
we define:

V∗ (𝑥) = V(𝑥) + V(flip(𝑥)), (4)

and ifV(𝑥) is bidirectional by its nature we defineV∗ (𝑥) = V(𝑥).
As an example, letV(.) be a SSM, thenV∗ (.) is defined by Equa-
tion 4 as SSMs are naturally causal. On the other hand, Transformers
are permutation equivariant and soV = V∗. Therefore, given a se-
quence model V(.), the variate mixer module performs as follows:

𝑦𝑉 = V∗ (X⊤). (5)

Notably, as mentioned earlier, the main reason to define the bidirec-
tional variants of a sequence modelV(.) is the non-causal nature of
variates. That is, variates are not naturally ordered and so a causal
sequence model can make model sensitive to the initial order of
variates.

4.3 Dimension Mixer
In the previous modules, we encode both time and variate depen-
dencies. The resulting model by the combination of these two mod-
ules, however, still lacks 2D inductive bias as modules are working
separately. In complex real-world scenarios, time and variate di-
mensions in a multivariate time series system are inter-connected,
meaning that the dependencies of variates can affect the temporal
patterns and vice versa. Accordingly, a powerful model needs to
fuse information and learning process across both directions. To
address this, in Typhon, we use a Dimension Mixer module. The
main role of dimension mixer is to fuse information between these
two dimension encoders. Given a neural network D(.), we obtain
the final output of Typhon as:

𝑜 = D (𝑦𝑇 | |𝑦𝑉) . (6)

There are different choices for D(.) in practice; however, in this
paper, we focus on three variants of linear-model, MLP, and atten-
tion.

It is notable that our framework of Typhon is significantly different
from linear mixer models such as TSMixer [17]. That is, Typhon,
utilizes time and variate mixer modules in a parallel manner, while
models like TSMixer consider a stack of time and variate mixers in
a sequential manner. Accordingly, while the input of both time and
variate mixer in Typhon is the data (and its transposed), the input
of variate/time mixer in such models is the output of the previous
layer.

4.4 Improving Typhon with Normalization and
Time Series Decomposition

In this section, we first discuss a pre-processing step to improve
the performance of Typhon with normalization of input data. Next,
we present two natural ways to let model adaptively learn to de-
compose the time series data into seasonal and trend patterns.

Input Pre-processing and Embedding. In our framework, to
stabilize training and capture time-dependent features, the input X
is normalized along the temporal dimension:

e𝑡 =
x𝑡 − 𝜇𝑡
𝜎𝑡

, 𝜇𝑡 =
1
𝑁

𝑁∑︁
𝑣=1

𝑥𝑡,𝑣, (7)

𝜎𝑡 =

√√√
1
𝑁

𝑁∑︁
𝑣=1

(𝑥𝑡,𝑣 − 𝜇𝑡)2 . (8)

The normalized sequence {e𝑡 }𝑇𝑡=1 is then embedded using a data
embedding module:

z𝑡 = Embedding(e𝑡 ,m𝑡),

where m𝑡 represents associated time features (e.g., timestamps or
positional encodings).

Long-Term and Seasonal Decomposition. Real-world time se-
ries data is multi-resolution by its nature [81]. That is, temporal
dependencies and its dynamic is happening in different scales. For
example, seasonal patterns are patterns in a time series data that
repeats every (almost) fixed period of time (e.g., each day, month,
season, etc.), while trend patterns are long-term dynamic of the
data. In this paper, we introduce two different methods to capture
these multi-resolution patterns in time series data.
In the first approach, following previous studies on seasonal pat-
terns in time series data [11], we split the sequence into long-term
and seasonal components for specialized processing. Given the
combined temporal and feature representations {h(𝑥)𝑡 , h(𝑦)𝑡 }, the
decomposition is:

h𝑡 = htrend𝑡 + hseasonal𝑡 , (9)

z(1)𝑡 = 𝜎

(
W1 [htrend𝑡 ; hseasonal𝑡] + b1

)
, (10)

h𝑡 = 𝜎
(
W2z

(1)
𝑡 + b2

)
, (11)

where W1,W2 are learnable parameters and 𝜎 is an activation
function such as Swish. Note that the dimension mixer does not
need to be linear, though we obeserved that more complicated
dimension mixers seem to lead to overfitting. Later, in our T4 model,
we use this decomposition method.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Multi-resolution Decomposition. While the above approach
in most cases achieves outstanding performance to model multi-
variate time series data, in some complex cases, the granularity of
patterns in the time series data is more than 2 levels. Accordingly,
an expressive an generalizable model needs to extract and learn all
different multi-resolution patterns in different levels of granularity.
Accordingly, given granularity levels of {ℓ1, . . . , ℓ𝑘 }, we decompose
the time series into:

h𝑡 = h(ℓ1)𝑡 + h(ℓ2)𝑡 + · · · + h(ℓ𝑘)𝑡 , (12)

z(1)𝑡 = 𝜎

(
W1 [h(ℓ1)𝑡 ; h(ℓ2)𝑡 ; . . . ; h(ℓ𝑘)𝑡] + b1

)
, (13)

h𝑡 = 𝜎
(
W2z

(1)
𝑡 + b2

)
. (14)

Later, we use a gated multi-resolution convolution to extract and
learn different h(ℓ𝑖)𝑡 .

4.5 T4: A Double-headed Test-Time Training
and Transformer Model

Earlier, we discuss the design of Typhon framework that allows us
to employ any sequence model for 2D time series data (i.e., multi-
variate time series). However, given diverse choices for Time Mixer
(e.g., Transformers [69], linear recurrent models [19], xLSTM [6],
TTT [67], Mamba [30], etc.), Variate Mixer (e.g., the bidirectional
variants of the same set of choices for time mixing), and Dimension
Mixer (e.g., attention [69], linear, and/or MLPs, etc.), it is still an
open question that what constitute a good time, variate, and di-
mension mixer. Accordingly, in this section, we present a powerful
variant of Typhon, called Test Time Training with Transformer (T4)
model.
TimeMixer.As discussed earlier, a good timemixer module should

recover the autoregressive process and also mitigate the error prop-
agation at test time. Accordingly, we use Test Time Training layer
(TTT) [67] as our time mixer. More specifically, TTT is a meta-
learning layer that aims to reconstruct different views of data in
its inner-loop. Let 𝑋 be the input, we corrupt the data using a
linear layer𝑊𝜃 and reconstruct it using another linear layer𝑊𝜙 .
Therefore, one can define the loss function as:

Linner = | |𝑊𝜃𝑋 −M × (𝑊𝜙𝑋) | |22, (15)

where M ∈ R𝑁×𝑁 is the hidden state of the layer. Note that
the above loss function is the loss for the inner-loop of the meta-
learning framework and so learnable parameters of𝑊𝜃 and𝑊𝜙
are considered hyperparameters in it. Given this loss function and
time stamp 𝑡 , we optimize it using mini-batch gradient descent
with adaptive learning rate of 𝜂𝑡 (input-dependent), resulting in
the following recurrence:

𝑀𝑡+1 = 𝑀𝑡 + 𝜂𝑡∇Linner (16)

This meta model will learn how to learn at test time. Notably, the
recurrence in the above equation is still valid at test time and so the
model is always learning from the data. This adaptive nature and its
continual learning results inmore generalization and less sensitivity
to out-of-distribution data as discussed in previous studies. Next
theorem shows the power of the above layer (proof is simply derive
from its definition):

Theorem 4.1. The above TTT layer can recover autoregressive pro-
cess.

Variate Mixer. Using the above design across time (i.e., as the time

mixer module) to learn the temporal patterns in data, we need to
specify the variate mixer module. While the permutation equivari-
ance property of Transformers make them less expressive to recover
autoregressive process, that is indeed an advantage for learning
patterns across variates. That is, a Transformer architecture with
full attention is permutation equivariance and so is not sensitive
to the order of variates. On the other hand, recurrent models are
causal by nature and while their bidirectional versions can con-
siderably avoid sensitivity to the order of variates, they cannot
be full permutation equivariance. Therefore, in T4 design, we use
an attention mechanism across variates to capture their pairwise
dependencies. More specifically, let 𝑋 be the input data, we use:

Attention(Q,K,V) = Softmax

(
QK⊤
√
𝑑

)
V (17)

as the variate mixer, where 𝑄 = 𝑊𝑄𝑋
⊤, 𝐾 = 𝑊𝐾𝑋

⊤, and 𝑉 =

𝑊𝑉𝑋
⊤.

Dimension Mixer. For our dimension mixer, we simply use a

simple linear layer. The main reason for this choice was mainly
motivated by our experimental observations, in which we did not
see a notable improvement when using non-linear multilayer MLPs
and/or attention.
Given the above choices for the Time, Variate, and Dimension Mix-
ers, we also use input normalization and long-term and seasonal
decomposition of time series, which we discussed both in the pre-
vious subsection.

5 Gated Multi-resolution Convolution
In the above, we discussed a variant of Typhon, in which we de-
compose the time series into two types of patterns. However, as
discussed earlier, real-world complex time series data can have
multiple scales of granularity and so requires a more general model
to capture such temporal multi-scale patterns. In this section, we
present another variant of Typhon, in which we use simple mul-
tiresolution convolutions across both time and variates. The mul-
tiresolution convolutions allow the model to capture dependencies
in multiple levels and so automatically can extract such patterns,
without any manual decomposition as T4.
We take a similar approach as Luo and Wang [57] to design a mod-
ern convolutional time series model and use pointwise convolutions.
However, to capture both across time and variate dependencies,
we use pointwise convolutuions across both of these dimensions.
Figure 2 represents the Gated Multiresolution Convolution (GMC)
block. More specifically, let X ∈ R𝑇×𝑁 represent the input time
series, where 𝑇 is the number of time steps and 𝑁 is the number of
variates. For a convolutional filter of size 𝑘 , the operation is defined
as:

H(𝑘)
𝑡 = W(𝑘) ∗ X𝑡 + b(𝑘) ,

where: H(𝑘)
𝑡 ∈ R𝑇×𝑑 is the output of the convolution at scale 𝑘 ,

W(𝑘) ∈ R𝑘×𝑁×𝑑 are the learnable weights of the convolutional
kernel, b(𝑘) ∈ R𝑑 is the bias term, and ∗ denotes the convolution
operator.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 2: The GMC block processes the input through stacked filters across different resolutions, using GELU activations and
gating mechanisms to enhance expressiveness. The processed representations are combined and passed to the dimension mixer
for integrating temporal and feature interactions, leveraging either linear or attention-based layers for downstream tasks.

Next, to accommodate multi-resolution processing [65], we recur-
sively apply convolution filters with size 𝐾 to the time dimension.
Therefore, after 𝑠-th iteration, the output of the 𝑠-th scale for filters
h0 and h1 is as:

ℎ
(𝑠)
𝑡 =

𝐾−1∑︁
𝑖=0

ℎ
(𝑠−1)
𝑡−2𝑠−1𝑖

h0 (18)

𝑞
(𝑠)
𝑡 =

𝐾−1∑︁
𝑖=0

𝑞
(𝑠−1)
𝑡−2𝑠−1𝑖

h1 . (19)

We simply mix scales by a linear layer in this setup and use H𝑡 to
denote the output of this multiresolution convolution. Therefore,
the output, H𝑡 , is the mix of all scales and can learn to weight
different scales in a data-driven manner.

Gated Convolution. To enhance expressiveness, we follow the
backbone architecture of modern sequence models [13, 19, 30, 67]
and add a gating mechanism that modulates the multi-resolution
convolution outputs. Let 𝑋 be the input data, H𝑡 be the output in
the above process, the gate branch is defined as:

G𝑡 = 𝜎 (W𝑔𝑋𝑡 + b𝑔),

where G𝑡 ∈ R𝑇×𝑑 is the gating signal, W𝑔 ∈ R𝑑×𝑑 and b𝑔 ∈ R𝑑

are learnable parameters, 𝜎 is a non-linear activation function (e.g.,
GELU or sigmoid). Given this gated branch, we define the output
of the gated convolution as:

Hgated
𝑡 = G𝑡 ⊙ H𝑡 , (20)

where ⊙ denotes element-wise multiplication. This gating mecha-
nism allows the model to selectively amplify or suppress specific
patterns, enabling a more dynamic representation of the input data.

6 Experiments
We evaluate Typhon’s performance on the standard baselines for
multivariate time series tasks, comparing Typhon with the state
of the art multivariate time series models, including recent models
like: TimesNet [75], ModernTCN [57], iTransformer [53], Auto-
former [76], ETSFormer [73], CrossFormer [87], FedFormer [89],
etc. [20, 50, 51]. Specifically for time series tasks, we test Typhon’s
variants on short term forecasting 6.1, long term forecasting 6.2,
imputation 6.3, and anomaly detection and classification 6.4. We
further evaluate the significance of the Typhon’s components by
performing an ablation study in 6.5. We also provide results evalu-
ating whether the strong performance of Typhon coincides with
its efficiency and also test its generalizability on unseen variates
and its ability to filter irrelevant context. Additional model combi-
nations, experimental details for reproducibility, and the complete
experiment results are provided in the appendix. Note that the order
in which the 2 models is stated throughout our results is always in
the order of time variate dimension and feature variate dimension.
All the experiments were run on 4 NVIDIA RTX A6000 GPUs.

6.1 Short-term Forecasting
We perform experiments in short-term forecasting task on the
M4 benchmark dataset datasets [29] and report the results in Ta-
ble 1. Interestingly, the performance of both Typhon’s variants (i.e.,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

T4 and GMC) are close and both outperform state-of-the-art ap-
proaches like ModernTCN, PatchTST, etc. These results highlight
the expressivity of Typhon’s design to capture cross time dependen-
cies. However, since the data is one dimensional, it is questionable
whether or not the use of the more advanced dimension mixer or
the use of the number of dimensions of Typhon may help. Our
results show that in those cases the model tends to overfit. In our
case we find that the best results are obtained when using only
1 layer of Typhon and a single linear layer dimension mixer. The
complete results are in Table 8.

6.2 Long-term Forecasting
Despite the outstanding performance of Typhon’s variants, still it
is not clear if our designs perform well when we have long-term
time series data. Accordingly, we perform experiments in long-
term forecasting task on commonly-used benchmark datasets [88].
The summary of results is reported in Table 2 and the full results
can be found in Table 9. Typhon outperforms extensively studied
MLP-based, convolution-based, and Transformer-based models pro-
viding a better balance of performance and efficiency, as well as
recurrent models. Comparing with other baselines that also use
time series decomposition (i.e., seasonal and trend pattern), the
superior performance of Typhon’s variants show their expressivity
in capturing both time and variate dependencies.

6.3 Imputation
Real-world systems always work continuously and are monitored
by automatic observation equipment. However, due to malfunc-
tions, the collected time series can be partially missing, making the
downstream analysis difficult which begs the need for imputation.
For imputation task we select the datasets from the electricity and
weather scenarios as our benchmarks, including ETT [88], Elec-
tricity [78] and Weather, where the data-missing problem happens
commonly. To compare the model capacity under different pro-
portions of missing data, we randomly mask the time points in
the following ratios: 12.5%, 25%, 37.5%, 50%. The main results are
summarized in Table 3.

6.4 Classification and Anomaly Detection
Anomaly detection is generally viewed as a binary classification
task, where 0 denotes “normal” and 1 denotes “anomaly”. We let
X = {x1, . . . , x𝑁 } ∈ R𝑁×𝑇 be the input sequences, where 𝑁 is the
number of variates and 𝑇 is the time steps. We use 𝑥𝑣,𝑡 to refer to
the value of the series 𝑣 at time 𝑡 . In classification (anomaly detec-
tion) tasks, we aim to classify input sequences and for forecasting
tasks, given an input sequence x𝑖 , we aim to predict x̃𝑖 ∈ R1×𝐻 ,
i.e., the next 𝐻 time steps for variate x𝑖 , where 𝐻 is called horizon.
We evaluate the performance of Gated Multiresolution Convolu-
tion and T4 in anomaly detection task by aggregating over their
respective datasets for their specific tasks, and report the results
in Figure 3. Typhon’s variants achieve outstanding performance
and outperform all baselines from different group of models (i.e.,
transformer-based, linear-based, and convolutional).

Figure 3: Anomaly detection and classification results of Typhon
and baselines.

6.5 Ablation Study
To evaluate the significance of the Typhon’s design, we perform an
ablation study for Gated Multiresolution Convolution and remove
one of its components at each time, keeping other parts unchanged.
We first report Gated Multiresolution Convolution’s performance
with each of its components, while the next row removes dimension
mixer, third row removes multiresolution convolution and instead
uses a simple convolution, and the last two rows removes gating
from time and variate mixing, respectively. The results are reported
in Table 5 and demonstrate that removing each component sig-
nificantly degrades the performance of the model, supporting the
importance of our design.
We then perform an ablation study on T4 architecture. The results
for T4 where we remove one of the directions for the bidirection-
ing model encoding, the dimension mixer, and each of the long
term and seasonal components, are reported in Table 4. The results
demonstrate that these changes on long term time forecasting. The
full ablation study is in the appendix.

Table 4: Ablation Study Results for Typhon: TTT-Linear and
Transformer (T4)

Model Variations ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Typhon 0.438 0.444 0.374 0.399 0.373 0.410
Uni.-directional 0.501 0.463 0.485 0.437 0.431 0.523
w/o Dim Mixer 0.522 0.476 0.391 0.414 0.389 0.413
w/o Long term 0.471 0.498 0.361 0.389 0.372 0.401
w/o Seasonal 0.456 0.471 0.357 0.403 0.395 0.425

Table 5: Ablation Study Results for Typhon: Gated Multires-
olution (GMC)

Model Variations ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Gated Multiresolution 0.398 0.409 0.344 0.373 0.316 0.377
w/o Dim Mixer 0.448 0.462 0.394 0.419 0.367 0.412
w/o multiresolution 0.405 0.431 0.354 0.383 0.328 0.380
w/o time gating 0.405 0.412 0.366 0.389 0.324 0.379
w/o variate gating 0.400 0.412 0.357 0.383 0.331 0.386

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: Average performance on short-term forecasting tasks on the M4 dataset. Full results are reported in the appendix. For
the Typhon architecture results we denote GMC as Gated Multiresolution Convolution variant of Typhon, and T4 as TTT layer
and Transformer

Models Typhon (T4) Typhon (GMC) ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗

(Ours) (Ours) 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021 2021

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.917 11.614 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987

MASE 1.744 1.534 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265
OWA 0.932 0.825 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480

Table 2: Average performance on long term forecasting tasks.

Models Typhon (T4) Typhon (GMC) ModernTCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.374 0.399 0.344 0.373 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.275 0.325 0.251 0.307 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.438 0.444 0.398 0.409 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.373 0.410 0.316 0.377 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
Exchange 0.363 0.406 0.298 0.363 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.436 0.278 0.392 0.264 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.245 0.276 0.211 0.258 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317

Table 3: Average performance on imputation tasks. We randomly mask 12.5%, 25%, 37.5%, 50% time points in length-96 time series.

Models Typhon (T4) Typhon (GMC) FedFormer ModernTCN Reformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.027 0.104 0.033 0.124 0.062 0.177 0.020 0.093 0.407 0.410 0.070 0.166 0.045 0.133 0.041 0.143 0.419 0.419 0.027 0.107 0.093 0.206
ETTm2 0.026 0.099 0.029 0.103 0.101 0.215 0.019 0.082 0.288 0.332 0.032 0.108 0.028 0.098 0.046 0.149 0.358 0.404 0.022 0.088 0.096 0.208
ETTh1 0.076 0.186 0.082 0.195 0.117 0.246 0.050 0.150 0.288 0.332 0.141 0.242 0.133 0.236 0.132 0.251 0.358 0.404 0.078 0.187 0.201 0.306
ETTh2 0.058 0.159 0.053 0.148 0.163 0.279 0.042 0.131 0.288 0.332 0.066 0.165 0.066 0.164 0.122 0.240 0.358 0.404 0.049 0.146 0.142 0.306
Weather 0.033 0.051 0.039 0.060 0.099 0.203 0.027 0.044 0.288 0.332 0.034 0.058 0.033 0.057 0.036 0.090 0.358 0.404 0.030 0.054 0.052 0.110

7 Conclusion
We present Typhon, a general and flexible framework which adapts
1-dimensional sequence models to multivariate time series. We use
two 1-dimensional sequence models across time variate and feature
variate dimensions, using a dimension mixer and discretization
and demonstrate that this better helps capture and tie together the
information across the time and feature variate dimensions. We
provide a special case of Typhon - a Gated Multiresolution Convo-
lution architecture - which uses convolutions with iterative kernel
dimensions to retain as much information as possible when moving
autoregressively. We evaluate on a variety of time series tasks such
as classification and long term forecasting, demonstrating the state
of the art performance of Typhon. We also ascertain the importance
of each component in contributing to the strong performance of
Typhon through an ablation study.
We believe there is great potential for improvement of efficiency,
particularly in the parallel scan, possibly through usingmore hardware-
aware implementations and optimizations. We also leave possible
methods from numerical linear algebra and control theory in de-
veloping a more optimal dimension mixer. We also note that a
promising direction is to explore the potential of Typhon with its
2D inductive bias for other high dimensional data modalities and
different tasks such as images, videos, multi-channel speech where
prior 1 dimensional sequence models have been applied.

References
[1] Md Atik Ahamed and Qiang Cheng. 2024. MambaTab: A Simple Yet Effective

Approach for Handling Tabular Data. arXiv preprint arXiv:2401.08867 (2024).
[2] Masanao Aoki. 2013. State space modeling of time series. Springer Science &

Business Media.
[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation

of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[4] Ethan Baron, Itamar Zimerman, and Lior Wolf. 2024. A 2-Dimensional State
Space Layer for Spatial Inductive Bias. In The Twelfth International Conference
on Learning Representations.

[5] David J Bartholomew. 1971. Time Series Analysis Forecasting and Control.
[6] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra

Prudnikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp
Hochreiter. 2024. xLSTM: Extended Long Short-Term Memory. arXiv preprint
arXiv:2405.04517 (2024).

[7] Ali Behrouz and Farnoosh Hashemi. 2023. Learning Temporal Higher-order
Patterns to Detect Anomalous Brain Activity. In Proceedings of the 3rd Ma-
chine Learning for Health Symposium (Proceedings of Machine Learning Research,
Vol. 225), Stefan Hegselmann, Antonio Parziale, Divya Shanmugam, Shengpu
Tang, Mercy Nyamewaa Asiedu, Serina Chang, Tom Hartvigsen, and Harvineet
Singh (Eds.). PMLR, 39–51.

[8] Ali Behrouz and FarnooshHashemi. 2024. Brain-Mamba: Encoding Brain Activity
via Selective State Space Models. In Proceedings of the fifth Conference on Health,
Inference, and Learning (Proceedings of Machine Learning Research, Vol. 248), Tom
Pollard, Edward Choi, Pankhuri Singhal, Michael Hughes, Elena Sizikova, Bobak
Mortazavi, Irene Chen, Fei Wang, Tasmie Sarker, Matthew McDermott, and
Marzyeh Ghassemi (Eds.). PMLR, 233–250.

[9] Ali Behrouz and Farnoosh Hashemi. 2024. Graph Mamba: Towards Learning
on Graphs with State Space Models. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 119–130.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[10] Ali Behrouz, Ali Parviz, Mahdi Karami, Clayton Sanford, Bryan Perozzi, and
Vahab S. Mirrokni. 2024. Best of Both Worlds: Advantages of Hybrid Graph
Sequence Models. arXiv preprint arXiv:2411.15671 (2024).

[11] Ali Behrouz, Michele Santacatterina, and Ramin Zabih. 2024. Chimera: Effectively
Modeling Multivariate Time Series with 2-Dimensional State Space Models. In
Thirty-eighth Conference on Advances in Neural Information Processing Systems.

[12] Ali Behrouz, Michele Santacatterina, and Ramin Zabih. 2024. MambaMixer:
Efficient selective state space models with dual token and channel selection.
arXiv preprint arXiv:2403.19888 (2024).

[13] Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. 2024. Titans: Learning to
Memorize at Test Time. arXiv preprint arXiv:2501.00663 (2024).

[14] Michael Bender and Slobodan Simonovic. 1994. Time-series modeling for long-
range stream-flow forecasting. Journal of Water Resources Planning and Manage-
ment 120, 6 (1994), 857–870.

[15] George EP Box and GwilymM Jenkins. 1968. Some recent advances in forecasting
and control. Journal of the Royal Statistical Society. Series C (Applied Statistics)
17, 2 (1968), 91–109.

[16] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergen-
thaler, and Artur Dubrawski. 2022. N-HiTS: Neural Hierarchical Interpolation
for Time Series Forecasting. arXiv preprint arXiv:2201.12886 (2022).

[17] Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. 2023.
Tsmixer: An all-mlp architecture for time series forecasting. arXiv preprint
arXiv:2303.06053 (2023).

[18] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[19] Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized Models and
Efficient Algorithms Through Structured State Space Duality. In International
Conference on Machine Learning (ICML).

[20] Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and
Rose Yu. 2023. Long-term Forecasting with TiDE: Time-series Dense Encoder.
Transactions on Machine Learning Research (2023).

[21] Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George
Cristian-Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Sri-
vatsan Srinivasan, et al. 2024. Griffin: Mixing Gated Linear Recurrences with
Local Attention for Efficient Language Models. arXiv preprint arXiv:2402.19427
(2024).

[22] Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis,
Michael Bohlke-Schneider, Richard Kurle, Lorenzo Stella, Hilaf Hasson, Patrick
Gallinari, and Tim Januschowski. 2020. Normalizing kalman filters for multivari-
ate time series analysis. Advances in Neural Information Processing Systems 33
(2020), 2995–3007.

[23] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Min-
derer, Mathilde Caron, Andreas Peter Steiner, Joan Puigcerver, Robert Geirhos,
Ibrahim Alabdulmohsin, Avital Oliver, Piotr Padlewski, Alexey A. Gritsenko,
Mario Lucic, and Neil Houlsby. 2023. Patch n’ Pack: NaViT, a Vision Transformer
for any Aspect Ratio and Resolution. In Thirty-seventh Conference on Neural
Information Processing Systems.

[24] Dazhao Du, Bing Su, and Zhewei Wei. 2023. Preformer: Predictive Transformer
with Multi-Scale Segment-Wise Correlations for Long-Term Time Series Fore-
casting. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 1–5. doi:10.1109/ICASSP49357.2023.10096881

[25] Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant
Kalagnanam. 2023. Tsmixer: Lightweight mlp-mixer model for multivariate
time series forecasting. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 459–469.

[26] Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990),
179–211.

[27] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised
Scalable Representation Learning for Multivariate Time Series. In NeurIPS.

[28] Kelum Gajamannage, Yonggi Park, and Dilhani I Jayathilake. 2023. Real-time
forecasting of time series in financial markets using sequentially trained dual-
LSTMs. Expert Systems with Applications 223 (2023), 119879.

[29] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman,
and Pablo Montero-Manso. 2021. Monash time series forecasting archive. arXiv
preprint arXiv:2105.06643 (2021).

[30] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

[31] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. 2020. HiPPo:
Recurrent memory with optimal polynomial projections. Advances in neural
information processing systems 33 (2020), 1474–1487.

[32] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. 2022. On the Param-
eterization and Initialization of Diagonal State Space Models. In Advances in
Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (Eds.).

[33] Albert Gu, Karan Goel, and Christopher Re. 2022. Efficiently Modeling Long
Sequences with Structured State Spaces. In International Conference on Learning
Representations.

[34] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and
Christopher Ré. 2021. Combining recurrent, convolutional, and continuous-time
models with linear state space layers. Advances in neural information processing
systems 34 (2021), 572–585.

[35] Andrew C Harvey. 1990. Forecasting, structural time series models and the
Kalman filter. Cambridge university press (1990).

[36] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[37] S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural
Comput. (1997).

[38] Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. 2024.
LocalMamba: Visual State Space Model with Windowed Selective Scan. arXiv
preprint arXiv:2403.09338 (2024).

[39] Yinan Huang, Siqi Miao, and Pan Li. 2024. What Can We Learn from State Space
Models for Machine Learning on Graphs? ArXiv abs/2406.05815 (2024).

[40] Plamen Ch Ivanov, Luis A Nunes Amaral, Ary L Goldberger, Shlomo Havlin,
Michael G Rosenblum, Zbigniew R Struzik, and H Eugene Stanley. 1999. Multi-
fractality in human heartbeat dynamics. Nature 399, 6735 (1999), 461–465.

[41] Yuxin Jia, Youfang Lin, Xinyan Hao, Yan Lin, Shengnan Guo, and Huaiyu Wan.
2023. WITRAN: Water-wave Information Transmission and Recurrent Accelera-
tion Network for Long-range Time Series Forecasting. In Thirty-seventh Confer-
ence on Neural Information Processing Systems.

[42] Mahdi Karami and Ali Ghodsi. 2024. Orchid: Flexible and Data-Dependent
Convolution for Sequence Modeling. In Thirty-eighth Conference on Advances in
Neural Information Processing Systems.

[43] Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, Nataraj Dasgupta,
Sayee Natarajan, Larry A Pickett, and Varun Dutt. 2020. AI in healthcare: time-
series forecasting using statistical, neural, and ensemble architectures. Frontiers
in big data 3 (2020), 4.

[44] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient
Transformer. In International Conference on Learning Representations.

[45] Sun-Yuan Kung, Bernard C Levy, Martin Morf, and Thomas Kailath. 1977. New
results in 2-D systems theory, Part II: 2-D state-space models—realization and
the notions of controllability, observability, and minimality. Proc. IEEE 65, 6
(1977), 945–961.

[46] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the Locality and Breaking the Memory Bottle-
neck of Transformer on Time Series Forecasting. In NeurIPS.

[47] Shufan Li, Harkanwar Singh, and Aditya Grover. 2024. Mamba-ND: Se-
lective State Space Modeling for Multi-Dimensional Data. arXiv preprint
arXiv:2402.05892 (2024).

[48] Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. 2023. Revisiting long-term time series
forecasting: An investigation on linear mapping. arXiv preprint arXiv:2305.10721
(2023).

[49] Dingkang Liang, Xin Zhou, Xinyu Wang, Xingkui Zhu, Wei Xu, Zhikang Zou,
Xiaoqing Ye, and Xiang Bai. 2024. PointMamba: A Simple State Space Model for
Point Cloud Analysis. arXiv preprint arXiv:2402.10739 (2024).

[50] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning:
a survey. Philosophical Transactions of the Royal Society A 379, 2194 (2021),
20200209.

[51] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and
Qiang Xu. 2022. Scinet: Time series modeling and forecasting with sample
convolution and interaction. Advances in Neural Information Processing Systems
35 (2022), 5816–5828.

[52] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and
Schahram Dustdar. 2021. Pyraformer: Low-complexity pyramidal attention for
long-range time series modeling and forecasting. In International Conference on
Learning Representations (ICLR).

[53] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and
Mingsheng Long. 2024. iTransformer: Inverted Transformers Are Effective for
Time Series Forecasting. In The Twelfth International Conference on Learning
Representations.

[54] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang,
Qixiang Ye, and Yunfan Liu. 2024. Vmamba: Visual state space model. arXiv
preprint arXiv:2401.10166 (2024).

[55] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Non-stationary
transformers: Exploring the stationarity in time series forecasting. Advances in
Neural Information Processing Systems 35 (2022), 9881–9893.

[56] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Non-stationary
Transformers: Rethinking the Stationarity in Time Series Forecasting. InNeurIPS.

[57] Donghao Luo and Xue Wang. 2024. ModernTCN: A Modern Pure Convolu-
tion Structure for General Time Series Analysis. In The Twelfth International
Conference on Learning Representations.

[58] Jun Ma, Feifei Li, and Bo Wang. 2024. U-Mamba: Enhancing Long-range De-
pendency for Biomedical Image Segmentation. arXiv preprint arXiv:2401.04722
(2024).

[59] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao,
Stephen Baccus, and Christopher Ré. 2022. S4nd: Modeling images and videos

9

https://doi.org/10.1109/ICASSP49357.2023.10096881

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

as multidimensional signals with state spaces. Advances in neural information
processing systems 35 (2022), 2846–2861.

[60] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow,
Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua
Bengio, et al. 2024. Hyenadna: Long-range genomic sequence modeling at single
nucleotide resolution. Advances in neural information processing systems 36
(2024).

[61] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023.
A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In
International Conference on Learning Representations (ICLR).

[62] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2019. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
ICLR (2019).

[63] Yair Schiff, Chia-Hsiang Kao, AaronGokaslan, Tri Dao, Albert Gu, and Volodymyr
Kuleshov. 2024. Caduceus: Bi-directional equivariant long-range dna sequence
modeling. arXiv preprint arXiv:2403.03234 (2024).

[64] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. 2019. Think Globally, Act Locally:
A Deep Neural Network Approach to High-Dimensional Time Series Forecasting.
In Advances in Neural Information Processing Systems (NeurIPS).

[65] Jiaxin Shi, Ke Alexander Wang, and Emily Fox. 2023. Sequence modeling with
multiresolution convolutional memory. In International Conference on Machine
Learning. PMLR, 31312–31327.

[66] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. 2023. Simpli-
fied State Space Layers for Sequence Modeling. In The Eleventh International
Conference on Learning Representations.

[67] Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann
Dubois, Xinlei Chen, XiaolongWang, Sanmi Koyejo, et al. 2024. Learning to (learn
at test time): Rnns with expressive hidden states. arXiv preprint arXiv:2407.04620
(2024).

[68] William Toner and Luke Darlow. 2024. An Analysis of Linear Time Series
Forecasting Models. International conference on machine learning (ICML) (2024).

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems (NeurIPS), Vol. 30.

[70] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei
Xiao. 2023. MICN: Multi-scale Local and Global Context Modeling for Long-
term Series Forecasting. In International Conference on Learning Representations
(ICLR).

[71] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,
and Liang Sun. 2022. Transformers in time series: A survey. arXiv preprint
arXiv:2202.07125 (2022).

[72] Peter R Winters. 1960. Forecasting sales by exponentially weighted moving
averages. Management science 6, 3 (1960), 324–342.

[73] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H.
Hoi. 2022. ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting. arXiv preprint arXiv:2202.01381 (2022).

[74] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. 2022. Timesnet: Temporal 2d-variation modeling for general time series
analysis. In The eleventh international conference on learning representations.

[75] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. 2023. TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis. In The Eleventh International Conference on Learning Representations.

[76] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series Fore-
casting. In Advances in Neural Information Processing Systems (NeurIPS).

[77] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with
graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 753–763.

[78] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. 2018. Uni-
fied perceptual parsing for scene understanding. In Proceedings of the European
conference on computer vision (ECCV). 418–434.

[79] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2021. Anomaly
Transformer: Time Series Anomaly Detection with Association Discrepancy. In
ICLR.

[80] Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Long-
bing Cao, and Zhendong Niu. 2024. FourierGNN: Rethinking multivariate time
series forecasting from a pure graph perspective. Advances in Neural Information
Processing Systems 36 (2024).

[81] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers
effective for time series forecasting?. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 37. 11121–11128.

[82] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are Transformers
Effective for Time Series Forecasting?, In AAAI. AAAI.

[83] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are Transformers
Effective for Time Series Forecasting? Proceedings of the AAAI Conference on
Artificial Intelligence 37, 9 (Jun. 2023), 11121–11128.

[84] Michael Zhang, Khaled K Saab, Michael Poli, Tri Dao, Karan Goel, and Christo-
pher Ré. 2023. Effectively modeling time series with simple discrete state spaces.
arXiv preprint arXiv:2303.09489 (2023).

[85] Michael Zhang, Khaled Kamal Saab, Michael Poli, Tri Dao, Karan Goel, and
Christopher Re. 2023. EffectivelyModeling Time Series with Simple Discrete State
Spaces. In The Eleventh International Conference on Learning Representations.

[86] T. Zhang, Yizhuo Zhang, Wei Cao, J. Bian, Xiaohan Yi, Shun Zheng, and Jian
Li. 2022. Less Is More: Fast Multivariate Time Series Forecasting with Light
Sampling-oriented MLP Structures. arXiv preprint arXiv:2207.01186 (2022).

[87] Yunhao Zhang and Junchi Yan. 2023. Crossformer: Transformer utilizing cross-
dimension dependency for multivariate time series forecasting. In The eleventh
international conference on learning representations.

[88] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 11106–11115.

[89] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022.
Fedformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In International Conference on Machine Learning (ICML).

[90] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and
Xinggang Wang. 2024. Vision Mamba: Efficient visual representation learning
with bidirectional state space model. arXiv preprint arXiv:2401.09417 (2024).

A Appendix
A.1 Background Information: 1-D State Space

Models
1D Space State Models (SSMs) are linear time-invariant systems
that map input sequence 𝑥 (𝑡) ∈ R𝐿 ↦→ 𝑦 (𝑡) ∈ R𝐿 [2]. SSMs use
a latent state ℎ(𝑡) ∈ R𝑁×𝐿 , transition parameter A ∈ R𝑁×𝑁 , and
projection parameters B ∈ R𝑁×1,C ∈ R1×𝑁 to model the input
and output as:

ℎ′ (𝑡) = A ℎ(𝑡) + B 𝑥 (𝑡), 𝑦 (𝑡) = C ℎ(𝑡) . (21)

Most existing SSMs [12, 30, 33], first discretize the signals A,B, and
C. That is, using a parameter 𝚫 and zero-order hold, the discretized
formulation is defined as:

ℎ𝑡 = Ā ℎ𝑡−1 + B̄ 𝑥𝑡 , 𝑦𝑡 = C ℎ𝑡 , (22)

where Ā = exp (𝚫A) and B̄ = (𝚫A)−1 (exp (𝚫A − 𝐼)) . 𝚫B. [31]
show that discrete SSMs can be interpreted as both convolutions
and recurrent networks: i.e.,

K̄ =

(
CB̄,CĀB̄, . . . ,CĀ𝐿−1B̄

)
,

𝑦 = 𝑥 ∗ K̄, (23)

which makes their training and inference very efficient as a convo-
lution and recurrent model, respectively.

A.2 Experiment Details
The experimental details are reported in Table 6.

A.3 Full Experimental Results
A.3.1 Short Term Forecasting Full Results.

A.3.2 Long Term Forecasting Full Results.

A.3.3 Anomaly Detection.

A.3.4 Imputation.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Figure 4: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-336 setting. The blue lines stand
for the ground truth and the orange lines stand for predicted values.

Figure 5: Visualization of ETTm1 imputation results given by models under the 25% mask ratio setting. The blue lines stand for the ground
truth and the orange lines stand for predicted values.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 6: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart Beat

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 8: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers indicates the name of ∗former.
Stationary means the Non-stationary Transformer.

Models
Typhon ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗
(Ours) [2024]) [2023] [2023] [2023] [2022] [2019] [2022] [2022] [2023b] [2022] [2022b] [2021] [2021] [2021]

Ye
ar
ly SMAPE 13.455 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169

MASE 3.023 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800

OWA 0.801 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973

Q
ua
rt
er
ly SMAPE 10.243 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313

MASE 1.192 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775

OWA 0.908 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252

M
on

th
ly SMAPE 12.752 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128

MASE 0.937 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614

OWA 0.887 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927

O
th
er
s SMAPE 4.848 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491

MASE 3.236 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355

OWA 1.004 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.917 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200

MASE 1.744 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223

OWA 0.932 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 9: Long-term forecasting task with different horizons H. The best results are bolded. We include the results for Patching as well. Note
that & represents Typhon with Gated Multiresolution Convolution, ∗ represents Typhon with TTT-Linear [67] and Transformer [69], % denotes
Typhon with TTT-Linear and Transformer with Patching with patching dimension 4, stride dimension 1, and pad dimension 3.

Typhon∗ Typhon% TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(ours) (ours) [2024] [2024a] [2023] [2023] [2023] [2023] [2023] [2023a] [2022c] [2022] [2022a] [2021]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.335 0.371 0.324 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.365 0.391 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.398 0.406 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.407 0.431 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.374 0.399 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ET
Tm

2

96 0.174 0.263 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.231 0.302 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.306 0.344 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.389 0.401 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.275 0.325 0.281 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

ET
Th

1

96 0.376 0.399 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.431 0.440 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.461 0.462 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.486 0.476 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.438 0.444 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

ET
Th

2

96 0.301 0.370 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.392 0.403 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.396 0.423 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.406 0.447 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.373 0.410 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

Ex
ch
an
ge

96 0.09 0.209 0.089 0.201 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.223 0.338 0.232 0.351 0.166 0.288 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.401 0.455 0.416 0.445 0.307 0.398 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.741 0.623 0.771 0.789 0.656 0.582 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.363 0.406 0.377 0.446 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
affi

c

96 0.461 0.263 0.468 0.268 0.368 0.253 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.408 0.277 0.413 0.317 0.379 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.427 0.274 0.529 0.284 0.397 0.270 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.449 0.301 0.564 0.297 0.440 0.296 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.436 0.278 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea
th
er

96 0.164 0.218 0.176 0.219 0.149 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.208 0.256 0.222 0.260 0.196 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.261 0.267 0.275 0.297 0.238 0.277 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.357 0.364 0.350 0.349 0.314 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.366 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.245 0.276 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Effectively Designing 2-Dimensional Sequence Models for Multivariate Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 10: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall and F1-score in percentage
respectively. A higher value of P, R and F1 indicates a better performance. For Typhon models we let & represent Gated
Multiresolution Convolution, ∗ denotes TTT-Linear [67] and Transformer [69], % denotes Typhon with xLSTM [6] and TTT-
Linear, and # denotes Typhon with TTT-Linear [83] and TTT-Linear.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM [1997b] 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer [2017] 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans [2019] 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN [2019] 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer [2020] 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer [2021] 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ [2021] 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer [2021] 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer [2021] 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL [2022a] 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary [2022b] 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear [2023b] 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer [2022] 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS [2022] 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer [2022] 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) [2023] 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) [2023] 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer [2023] 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST [2023] 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN [2024] 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Typhon# (ours) 88.10 82.72 85.33 89.29 76.54 81.23 89.91 55.35 69.80 91.22 95.55 93.33 98.33 88.87 96.96 85.33
Typhon% (ours) 87.31 80.76 83.90 89.54 79.90 81.42 90.05 56.81 70.98 90.02 95.29 92.58 97.91 95.88 96.89 85.54
Typhon∗ (ours) 88.16 82.74 85.05 89.16 88.37 81.79 90.35 58.12 71.55 92.18 95.19 92.30 98.23 96.19 96.97 86.53

15

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notations
	3.2 (Seasonal) Autoregressive Processes

	4 Typhon: a Double-Headed Model with 2D Inductive Bias
	4.1 Time Mixer
	4.2 Variate Mixer
	4.3 Dimension Mixer
	4.4 Improving Typhon with Normalization and Time Series Decomposition
	4.5 T4: A Double-headed Test-Time Training and Transformer Model

	5 Gated Multi-resolution Convolution
	6 Experiments
	6.1 Short-term Forecasting
	6.2 Long-term Forecasting
	6.3 Imputation
	6.4 Classification and Anomaly Detection
	6.5 Ablation Study

	7 Conclusion
	References
	A Appendix
	A.1 Background Information: 1-D State Space Models
	A.2 Experiment Details
	A.3 Full Experimental Results

