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Effectively Designing 2-Dimensional Sequence Models for
Multivariate Time Series

Anonymous Author(s)

Abstract
Although Transformers dominate fields like language modeling and
computer vision, they often underperform simple linear baselines
in time series tasks. Conversely, linear sequence models provide
an efficient, causally biased alternative that excels at autoregres-
sive processes. However, they are fundamentally limited to single-
sequence modeling and cannot capture inter-variate dependencies
in multivariate time series. Here, we introduce Typhon, a flexible
framework that applies two sequence models to the time and vari-
able dimensions, merging them with a Dimension Mixer module,
allowing the inter-variate information flow in the learning process.
Building on Typhon, we introduce T4 (Test Time Training with a
cross-variate Transformer), which employs a a meta-model for on-
the-fly forecasting across time, and a Transformer across variates to
capture their dependencies. The Typhon framework’s flexibility lets
us benchmark T4 alongside various modern recurrent models, re-
vealing that constant-memory recurrence struggles with long-term
dependencies and error propagation. To address this, we introduce
Gated Multiresolution Convolution (GMC)—a simple, attention-free
Typhon variant. With a carefully designed constant-size multireso-
lution memory, GMC can capture long-term dependencies while
mitigating error propagation. Our experiments validate Typhon’s
2D inductive bias design and demonstrate GMC and T4’s superior
performance across diverse benchmarks.

Keywords
Multivariate Time Series, Transformers, Multiresolution convolu-
tion, Test Time Training
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1 Introduction
Multivariate time series analysis plays a crucial role in under-
standing and predicting complex systems across a wide range of
domains such as healthcare, finance, energy, transportation and
weather [8, 28, 40, 43]. The complex nature of such multivariate
data raises fundamental challenges to design effective and gener-
alizable models: An effective model requires to (1) learn complex
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patterns, including multi-resolution, trend, and seasonal patterns
in the time series data; (2) capture the complex dynamics of the
dependencies between variate axes; and (3) be able to efficiently
and effectively scale to long-context.
The emergence of deep learning has shifted the focus of time series
prediction away from traditional statistical methods toward deep
architectures, including Transformer-based [76, 88], recurrence-
based [11, 41], and temporal convolutional-based [3, 64]. Despite
the promising performance of Transformers [69] in various do-
mains [24, 60, 76], several studies have highlighted that the in-
herent permutation equivariance of attentions in Transformers
contradicts the causal nature of time series and often results in
suboptimal performance compared to simple linear methods [81].
Also, their quadratic complexity can cause significant obstacles in
large-scale time series applications.
Recently, sub-quadratic sequence models demonstrated significant
potential as efficient alternatives to Transformers, mainly due to
their efficiency and also ability to learn long-range dependencies
based on their inductive temporal bias [67]. They, however, lack a
two-dimensional inductive bias of multivariate time series (missing
the complex dependencies across both time and variates), use fixed
resolutions (missing the dense information in complex time series
data), struggle with seasonal patterns, and/or rely on static update
parameters. Furthermore, natural attempts to simply employ mod-
ern recurrent sequence models for long-term time series forecasting
tasks results in (1) error propagation, and (2) poor performance
on out-of-distribution test data. While existing studies often uses
additional modules to mitigate the above challenges [11, 84], these
additional modules result in almost doubling the number of pa-
rameters, limiting the number of effective parameters and so the
expressive power of the model.
To address, explore, and validate the abovementioned challenges,
we present Typhon, a simple yet effective framework that allows
extending any sequence model to 2-dimensional data, and adapting
them for multivariate time series tasks. Typhon uses two sequence
models (not necessarily from the same architecture), each of which
responsible to learn the dependencies across one of the dimensions
(i.e., one across time and one across variate dimension). Then, it
uses a dimension mixer module to inject 2D inductive bias into the
model and combine the dimension-specific information along both
time and variates.
The flexibility and effectiveness of Typhon, allows us to explore the
different combinations of sequence models across time and variate
dimensions. Performing extensive experimental evaluations on the
combinations of recurrent models, SSMs, Transformers, and linear
models, we found that while these hybrid models show outstanding
performance in short-term forecasting tasks, they indeed suffer
from error propagation in long-term forecasting and show poor
performance when the test data is out of distribution.
To address this, we present two variants of Typhon–Test Time Train-
ing + Transformer (T4), and Gated Multiresolution Convolution

1
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(GMC)–that shows outstanding performance in all downstream
tasks: i.e., long-term and short-term forecasting, classification, im-
putation, and anomaly detection. T4 utilizes Test Time Training
(TTT) layer across time, a meta-in-context model that learn how to
learn at test time. Therefore, due to its meta-learning and causal
nature, T4 is capable of generalization to out-of-distribution data
at test time as it is based on test time training and can update its
weights even at test time, adapting itself to new data. T4 further
uses a Transformer across variate dimension. Variate dimension in
multivariate time series data is naturally permutation equivariant
and so Transformers are capable of capturing direct correlation of
variates.
Evaluating the performance of T4 and comparing it with more than
100 combinations of sequence models, we find that the recurrent
nature of T4 over time still results in error propagation in long-term
forecasting tasks. To overcome this challenge, we present a new
variant of Typons, Gated Multiresolution Convolution (GMC), that
is attention and recurrence free. Our experimental results indicate
that GMC show outstanding performance, outperforming T4 and
other baselines in most cases over a diverse set of datasets and
downstream tasks.

2 Related Work
Multiple mathematical models have been developed across various
fields, including healthcare, meteorology, and finance, to address
the challenges of time series forecasting. The research on time series
forecasting has evolved from traditional statistical methods—such
as those utilizing inherent patterns and properties of the data for
prediction [5, 14, 15, 72]—to modern deep learning solutions that
can capture more expressive temporal correlations. Additionally,
techniques like state-space models (SSM), including the Kalman
filter, have been widely used to model dynamic system behavior
[2, 22, 35]. In these cutting-edge approaches, various neural archi-
tectures have driven remarkable advances in predictive accuracy
and efficiency. Early work in time series forecasting adopted recur-
rent neural networks (RNNs)[26] and their variants, such as Long
Short-Term Memory (LSTM) networks [36] and Gated Recurrent
Units (GRUs) [18] due to their sequential nature, followed by the
introduction of temporal convolutional networks (TCNs) [3, 70, 74],
which excel at capturing local patterns due to their receptive field
design. Meanwhile, Transformer-based models [69], have further
revolutionized time series modeling by leveraging self-attention
mechanisms to capture both short- and long-term dependencies, im-
proving scalability and predictive performance across various time
series tasks [71]. Although, their quadratic complexity poses opti-
mization challenges [52, 76, 88, 89]. Recently, patch-based methods
have been introduced to enhance efficiency in Transformer vari-
ants [61, 87]. Meanwhile, multilayer perceptrons (MLPs) remain a
popular option for time series forecasting, owing to their simplicity
and direct mapping capabilities [25]. In parallel, graph neural net-
works (GNNs) [77, 80] have been employed to capture relationships
among multiple variables.

Recently, deep state-space models have gained significant atten-
tion as efficient alternatives to Transformers, which suffer from
quadratic computational complexity and demonstrated significant
potential in addressing the long-range dependencies problem. Deep

SSMs offer scalable training and inference, particularly efficient in
long-context tasks [31]. These methods combine traditional SSMs
with deep neural networks by parameterizing the sequence mixing
layers of a neural network using multiple linear SSMs, address-
ing common training drawbacks of RNNs through the convolu-
tional reformulation of SSMs [31–34, 66]. A recent advancement in
expressive sequence modeling has emerged by specifying model
parameters as functions of inputs, resulting in more expressive
deep SSMs and RNNs [19, 21, 30], as well as long convolution mod-
els [42]. These architectures has been expanded beyond sequential
tasks to diverse data modalities—including images [12, 42, 54, 58],
point clouds [49], tabular data [1], graphs [9, 10, 39], and DNA
modeling [30, 60, 63]—thereby enhancing its capacity for modeling
long-range dependencies. To address the method’s sensitivity to
scan order, researchers have proposed bidirectional scanning [90],
multi-directional scanning [47, 54], and even automatic direction
determination [38]. However, there remains a paucity of work ex-
amining variable scan orders specifically within temporal contexts.
Most relevant to this work is directly extending the 1-dimensional
deep SSMs to their multi-dimensional analogs. Previous works
have studied 2D State Space Models. Nguyen et al. [59] present
S4ND, a multidimensional SSM layer that extends the continuous-
signal modeling ability of SSMs to model videos and images. It not
only considers M separate SSM for the M axes, but it also directly
treat the system as a continuous system without discretization step.
It has data-independent parameters and shows discritizing each
1D SSM results in resolution invariance and can be computed as a
convolution as well. Baron et al. [4] present the 2D-SSM layer which
is new spatial layer based on Roesser’s model for multidimensional
state space Kung et al. [45], the most general model for M-axial state
space models. It has data-dependent weights and models images as
discrete signals where initial SSM model is discrete and there is a
lack of discretization step but can be computed as a convolution.
The main difference between S4ND and 2-D SSM is that S4ND
runs a standard 1-D SSM over each axis independently, and those
functions are combined to form a global kernel. In contrast, 2D SSM
learns multi-dimensional functions over multi-axes data directly,
and 2D-SSM is a generalization of S4ND in 2 dimensions when
setting 𝐴2 = 𝐴3 = 0 and 𝐴1, 𝐴4 to be the system matrices. Behrouz
et al. [11] discuss this in their extension to 2D-Mamba and 2D-
Mamba2.

3 Preliminaries
3.1 Notations
We focus on multivariate time series forecasting and classification
tasks. Let X = {x1, . . . , x𝑇 } ∈ R𝑇×𝑁 denote the input data, where
𝑇 is the number of time steps and 𝑁 is the number of features
(variates). The value of feature 𝑣 at time 𝑡 is denoted by 𝑥𝑡,𝑣 . For
forecasting tasks, given an input sequence x𝑖 , the goal is to predict
the next 𝐻 time steps, x̃𝑖 ∈ R𝐻×𝑁 , where 𝐻 is the prediction hori-
zon. For classification tasks, the goal is to assign a class label to each
sequence. Anomaly detection can be seen as a binary classification
task where 0 denotes “normal” and 1 denotes “anomalous.”
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Figure 1: Typhon integrates temporal mixing for cross-time dependencies, variate mixing for cross-variate interactions, and
dimension mixing to unify temporal and feature representations. Typhon efficiently models complex multivariate time series
dynamics while maintaining scalability.

3.2 (Seasonal) Autoregressive Processes
The autoregressive (AR) process is a foundational building block for
time series modeling, capturing causal relationships in sequential
data. For an order-𝑝 AR process, AR(𝑝), the relationship between
a value x𝑡 ∈ R𝑑 and its past 𝑝 values is given by:

x𝑡 =
𝑝∑︁
𝑖=1

𝜙𝑖x𝑡−𝑖 , (1)

where 𝜙𝑖 ∈ R𝑑×𝑑 are the autoregressive coefficients. This formula-
tion can be extended to account for seasonal patterns, resulting in
a Seasonal Autoregressive (SAR) process, SAR(𝑝, 𝑞, 𝑠):

x𝑡 =
𝑝∑︁
𝑖=1

𝜙𝑖x𝑡−𝑖 +
𝑞∑︁
𝑗=1

𝜂 𝑗x𝑡− 𝑗𝑠 , (2)

where 𝑠 is the seasonal period, and 𝜂 𝑗 ∈ R𝑑×𝑑 are the seasonal
coefficients. Here, the seasonal component captures periodic de-
pendencies at lag 𝑠 and its multiples.

4 Typhon: a Double-Headed Model with 2D
Inductive Bias

In this section, we present the general framework of Typhon and
discuss its main constituents and properties. In Typhon framework,
we break the architecture into three components (Figure 1 shows
the three main steps of Typhon):

4.1 Time Mixer
Learning complex patterns and dependencies across time is a key
component for understanding multivariate time series. Our intu-
ition is to treat the time series data as a sequence of tokens (or
patches) and then employ a sequence model (i.e., Transformers,

linear RNNs, linear models, etc.) to encode the information across
time. Notably, this encoding is done for each variate separately and
it is mainly responsible to capture temporal dependencies. There
are, however, three critical challenges to adapt existing sequence
models:
(1) Transformer-based Models: The attention mechanism in Trans-
formers is permutation equivariant and so is unable to recover au-
toregressive process by its nature, missing temporal patterns [11].
This lack of expressivity causes Transformers to even underperform
simple linear models in several scenarios [68]; (2) Linear Models:
Similar to Transformers, linear models also suffer from the lack
of ability to recover autoregressive process. They further assumes
a linear pattern in the temporal dependencies in data, resulting
poor performance in real-world downstream tasks; (3) Recurrent
Models: Contrary to Transformers and linear models, recurrence-
based approaches are not naturally limited. That is, with careful
parametrization and architectural design, recurrent models can re-
cover autoregressive process [11, 85]. Their recurrence, however,
can cause error propagation in inference time as the test data can
be out-of-distribution with respect to the training data [11]. Accord-
ingly, as we discuss later in § 4.5, we employ a test-time training
layer to encode information across time, mitigating error propaga-
tion by dynamically adapt weights at test-time.
Given X ∈ R𝑇×𝑁 as the input data, the time mixer module is
responsible to capture and learn temporal patterns in each variate
X separately. Given a sequence model T (.), a look-back window
lengthℎ, and prediction horizon𝐻 we use T across time dimension:

𝑦𝑇 :𝑇+𝐻 = T (Xℎ:), (3)

where 𝑦𝑇 :𝑇+𝐻 ∈ R𝐻×𝑁 is the prediction output for next 𝐻 time
steps, and Xℎ: is the data for the last ℎ time steps.
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Later, we introduce two variants of Typhon, in which we specify
and explain our time mixer module. In our experiments, we use
Mamba [30], Transformers [69], xLSTM [6], and linear layers as
the baseline modules for time mixing.

4.2 Variate Mixer
In understanding multivariate time series data, the dependencies
across variates can be pivotal and play an important role in several
real-world scenarios ranging from neuro-signals [8] and other bio-
signals to stock prediction [76] and traffic forecasting [88]. For
example, in neuro-signals (e.g., EEG, MEG, fMRI, etc.) the temporal
dependencies is only important up to a binary label (i.e., active,
deactive), while the dependencies of variates (i.e., co-activation
of different brain regions) is a key to classify or forecast brain
activity [7, 8].
Our approach to capture such dependencies is to treat the variate
as un-ordered sequences, where each variate is described by its
time stamps: i.e., each variate 𝑣 is represented by 𝑥𝑣 ∈ R𝑇 , where
the 𝑖-th element is the value of variate 𝑣 at time 𝑖 . Accordingly,
in Typhon, we use a bidierectional sequence model as the Variate
Mixer module, which is responsible to learn pairwise dependencies
of channels. Given a sequence model V(.), we define V∗ (.) as the
bidirectional variant ofV(.). That is, ifV(.) is causal by its nature,
we define:

V∗ (𝑥) = V(𝑥) + V(flip(𝑥)), (4)

and ifV(𝑥) is bidirectional by its nature we defineV∗ (𝑥) = V(𝑥).
As an example, letV(.) be a SSM, thenV∗ (.) is defined by Equa-
tion 4 as SSMs are naturally causal. On the other hand, Transformers
are permutation equivariant and soV = V∗. Therefore, given a se-
quence model V(.), the variate mixer module performs as follows:

𝑦𝑉 = V∗ (X⊤). (5)

Notably, as mentioned earlier, the main reason to define the bidirec-
tional variants of a sequence modelV(.) is the non-causal nature of
variates. That is, variates are not naturally ordered and so a causal
sequence model can make model sensitive to the initial order of
variates.

4.3 Dimension Mixer
In the previous modules, we encode both time and variate depen-
dencies. The resulting model by the combination of these two mod-
ules, however, still lacks 2D inductive bias as modules are working
separately. In complex real-world scenarios, time and variate di-
mensions in a multivariate time series system are inter-connected,
meaning that the dependencies of variates can affect the temporal
patterns and vice versa. Accordingly, a powerful model needs to
fuse information and learning process across both directions. To
address this, in Typhon, we use a Dimension Mixer module. The
main role of dimension mixer is to fuse information between these
two dimension encoders. Given a neural network D(.), we obtain
the final output of Typhon as:

𝑜 = D (𝑦𝑇 | |𝑦𝑉 ) . (6)

There are different choices for D(.) in practice; however, in this
paper, we focus on three variants of linear-model, MLP, and atten-
tion.

It is notable that our framework of Typhon is significantly different
from linear mixer models such as TSMixer [17]. That is, Typhon,
utilizes time and variate mixer modules in a parallel manner, while
models like TSMixer consider a stack of time and variate mixers in
a sequential manner. Accordingly, while the input of both time and
variate mixer in Typhon is the data (and its transposed), the input
of variate/time mixer in such models is the output of the previous
layer.

4.4 Improving Typhon with Normalization and
Time Series Decomposition

In this section, we first discuss a pre-processing step to improve
the performance of Typhon with normalization of input data. Next,
we present two natural ways to let model adaptively learn to de-
compose the time series data into seasonal and trend patterns.

Input Pre-processing and Embedding. In our framework, to
stabilize training and capture time-dependent features, the input X
is normalized along the temporal dimension:

e𝑡 =
x𝑡 − 𝜇𝑡
𝜎𝑡

, 𝜇𝑡 =
1
𝑁

𝑁∑︁
𝑣=1

𝑥𝑡,𝑣, (7)

𝜎𝑡 =

√√√
1
𝑁

𝑁∑︁
𝑣=1

(𝑥𝑡,𝑣 − 𝜇𝑡 )2 . (8)

The normalized sequence {e𝑡 }𝑇𝑡=1 is then embedded using a data
embedding module:

z𝑡 = Embedding(e𝑡 ,m𝑡 ),

where m𝑡 represents associated time features (e.g., timestamps or
positional encodings).

Long-Term and Seasonal Decomposition. Real-world time se-
ries data is multi-resolution by its nature [81]. That is, temporal
dependencies and its dynamic is happening in different scales. For
example, seasonal patterns are patterns in a time series data that
repeats every (almost) fixed period of time (e.g., each day, month,
season, etc.), while trend patterns are long-term dynamic of the
data. In this paper, we introduce two different methods to capture
these multi-resolution patterns in time series data.
In the first approach, following previous studies on seasonal pat-
terns in time series data [11], we split the sequence into long-term
and seasonal components for specialized processing. Given the
combined temporal and feature representations {h(𝑥 )𝑡 , h(𝑦)𝑡 }, the
decomposition is:

h𝑡 = htrend𝑡 + hseasonal𝑡 , (9)

z(1)𝑡 = 𝜎

(
W1 [htrend𝑡 ; hseasonal𝑡 ] + b1

)
, (10)

h𝑡 = 𝜎
(
W2z

(1)
𝑡 + b2

)
, (11)

where W1,W2 are learnable parameters and 𝜎 is an activation
function such as Swish. Note that the dimension mixer does not
need to be linear, though we obeserved that more complicated
dimension mixers seem to lead to overfitting. Later, in our T4 model,
we use this decomposition method.
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Multi-resolution Decomposition. While the above approach
in most cases achieves outstanding performance to model multi-
variate time series data, in some complex cases, the granularity of
patterns in the time series data is more than 2 levels. Accordingly,
an expressive an generalizable model needs to extract and learn all
different multi-resolution patterns in different levels of granularity.
Accordingly, given granularity levels of {ℓ1, . . . , ℓ𝑘 }, we decompose
the time series into:

h𝑡 = h(ℓ1 )𝑡 + h(ℓ2 )𝑡 + · · · + h(ℓ𝑘 )𝑡 , (12)

z(1)𝑡 = 𝜎

(
W1 [h(ℓ1 )𝑡 ; h(ℓ2 )𝑡 ; . . . ; h(ℓ𝑘 )𝑡 ] + b1

)
, (13)

h𝑡 = 𝜎
(
W2z

(1)
𝑡 + b2

)
. (14)

Later, we use a gated multi-resolution convolution to extract and
learn different h(ℓ𝑖 )𝑡 .

4.5 T4: A Double-headed Test-Time Training
and Transformer Model

Earlier, we discuss the design of Typhon framework that allows us
to employ any sequence model for 2D time series data (i.e., multi-
variate time series). However, given diverse choices for Time Mixer
(e.g., Transformers [69], linear recurrent models [19], xLSTM [6],
TTT [67], Mamba [30], etc.), Variate Mixer (e.g., the bidirectional
variants of the same set of choices for time mixing), and Dimension
Mixer (e.g., attention [69], linear, and/or MLPs, etc.), it is still an
open question that what constitute a good time, variate, and di-
mension mixer. Accordingly, in this section, we present a powerful
variant of Typhon, called Test Time Training with Transformer (T4)
model.
TimeMixer.As discussed earlier, a good timemixer module should

recover the autoregressive process and also mitigate the error prop-
agation at test time. Accordingly, we use Test Time Training layer
(TTT) [67] as our time mixer. More specifically, TTT is a meta-
learning layer that aims to reconstruct different views of data in
its inner-loop. Let 𝑋 be the input, we corrupt the data using a
linear layer𝑊𝜃 and reconstruct it using another linear layer𝑊𝜙 .
Therefore, one can define the loss function as:

Linner = | |𝑊𝜃𝑋 −M × (𝑊𝜙𝑋 ) | |22, (15)

where M ∈ R𝑁×𝑁 is the hidden state of the layer. Note that
the above loss function is the loss for the inner-loop of the meta-
learning framework and so learnable parameters of𝑊𝜃 and𝑊𝜙
are considered hyperparameters in it. Given this loss function and
time stamp 𝑡 , we optimize it using mini-batch gradient descent
with adaptive learning rate of 𝜂𝑡 (input-dependent), resulting in
the following recurrence:

𝑀𝑡+1 = 𝑀𝑡 + 𝜂𝑡∇Linner (16)

This meta model will learn how to learn at test time. Notably, the
recurrence in the above equation is still valid at test time and so the
model is always learning from the data. This adaptive nature and its
continual learning results inmore generalization and less sensitivity
to out-of-distribution data as discussed in previous studies. Next
theorem shows the power of the above layer (proof is simply derive
from its definition):

Theorem 4.1. The above TTT layer can recover autoregressive pro-
cess.

Variate Mixer. Using the above design across time (i.e., as the time

mixer module) to learn the temporal patterns in data, we need to
specify the variate mixer module. While the permutation equivari-
ance property of Transformers make them less expressive to recover
autoregressive process, that is indeed an advantage for learning
patterns across variates. That is, a Transformer architecture with
full attention is permutation equivariance and so is not sensitive
to the order of variates. On the other hand, recurrent models are
causal by nature and while their bidirectional versions can con-
siderably avoid sensitivity to the order of variates, they cannot
be full permutation equivariance. Therefore, in T4 design, we use
an attention mechanism across variates to capture their pairwise
dependencies. More specifically, let 𝑋 be the input data, we use:

Attention(Q,K,V) = Softmax

(
QK⊤
√
𝑑

)
V (17)

as the variate mixer, where 𝑄 = 𝑊𝑄𝑋
⊤, 𝐾 = 𝑊𝐾𝑋

⊤, and 𝑉 =

𝑊𝑉𝑋
⊤.

Dimension Mixer. For our dimension mixer, we simply use a

simple linear layer. The main reason for this choice was mainly
motivated by our experimental observations, in which we did not
see a notable improvement when using non-linear multilayer MLPs
and/or attention.
Given the above choices for the Time, Variate, and Dimension Mix-
ers, we also use input normalization and long-term and seasonal
decomposition of time series, which we discussed both in the pre-
vious subsection.

5 Gated Multi-resolution Convolution
In the above, we discussed a variant of Typhon, in which we de-
compose the time series into two types of patterns. However, as
discussed earlier, real-world complex time series data can have
multiple scales of granularity and so requires a more general model
to capture such temporal multi-scale patterns. In this section, we
present another variant of Typhon, in which we use simple mul-
tiresolution convolutions across both time and variates. The mul-
tiresolution convolutions allow the model to capture dependencies
in multiple levels and so automatically can extract such patterns,
without any manual decomposition as T4.
We take a similar approach as Luo and Wang [57] to design a mod-
ern convolutional time series model and use pointwise convolutions.
However, to capture both across time and variate dependencies,
we use pointwise convolutuions across both of these dimensions.
Figure 2 represents the Gated Multiresolution Convolution (GMC)
block. More specifically, let X ∈ R𝑇×𝑁 represent the input time
series, where 𝑇 is the number of time steps and 𝑁 is the number of
variates. For a convolutional filter of size 𝑘 , the operation is defined
as:

H(𝑘 )
𝑡 = W(𝑘 ) ∗ X𝑡 + b(𝑘 ) ,

where: H(𝑘 )
𝑡 ∈ R𝑇×𝑑 is the output of the convolution at scale 𝑘 ,

W(𝑘 ) ∈ R𝑘×𝑁×𝑑 are the learnable weights of the convolutional
kernel, b(𝑘 ) ∈ R𝑑 is the bias term, and ∗ denotes the convolution
operator.
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Figure 2: The GMC block processes the input through stacked filters across different resolutions, using GELU activations and
gating mechanisms to enhance expressiveness. The processed representations are combined and passed to the dimension mixer
for integrating temporal and feature interactions, leveraging either linear or attention-based layers for downstream tasks.

Next, to accommodate multi-resolution processing [65], we recur-
sively apply convolution filters with size 𝐾 to the time dimension.
Therefore, after 𝑠-th iteration, the output of the 𝑠-th scale for filters
h0 and h1 is as:

ℎ
(𝑠 )
𝑡 =

𝐾−1∑︁
𝑖=0

ℎ
(𝑠−1)
𝑡−2𝑠−1𝑖

h0 (18)

𝑞
(𝑠 )
𝑡 =

𝐾−1∑︁
𝑖=0

𝑞
(𝑠−1)
𝑡−2𝑠−1𝑖

h1 . (19)

We simply mix scales by a linear layer in this setup and use H𝑡 to
denote the output of this multiresolution convolution. Therefore,
the output, H𝑡 , is the mix of all scales and can learn to weight
different scales in a data-driven manner.

Gated Convolution. To enhance expressiveness, we follow the
backbone architecture of modern sequence models [13, 19, 30, 67]
and add a gating mechanism that modulates the multi-resolution
convolution outputs. Let 𝑋 be the input data, H𝑡 be the output in
the above process, the gate branch is defined as:

G𝑡 = 𝜎 (W𝑔𝑋𝑡 + b𝑔),

where G𝑡 ∈ R𝑇×𝑑 is the gating signal, W𝑔 ∈ R𝑑×𝑑 and b𝑔 ∈ R𝑑

are learnable parameters, 𝜎 is a non-linear activation function (e.g.,
GELU or sigmoid). Given this gated branch, we define the output
of the gated convolution as:

Hgated
𝑡 = G𝑡 ⊙ H𝑡 , (20)

where ⊙ denotes element-wise multiplication. This gating mecha-
nism allows the model to selectively amplify or suppress specific
patterns, enabling a more dynamic representation of the input data.

6 Experiments
We evaluate Typhon’s performance on the standard baselines for
multivariate time series tasks, comparing Typhon with the state
of the art multivariate time series models, including recent models
like: TimesNet [75], ModernTCN [57], iTransformer [53], Auto-
former [76], ETSFormer [73], CrossFormer [87], FedFormer [89],
etc. [20, 50, 51]. Specifically for time series tasks, we test Typhon’s
variants on short term forecasting 6.1, long term forecasting 6.2,
imputation 6.3, and anomaly detection and classification 6.4. We
further evaluate the significance of the Typhon’s components by
performing an ablation study in 6.5. We also provide results evalu-
ating whether the strong performance of Typhon coincides with
its efficiency and also test its generalizability on unseen variates
and its ability to filter irrelevant context. Additional model combi-
nations, experimental details for reproducibility, and the complete
experiment results are provided in the appendix. Note that the order
in which the 2 models is stated throughout our results is always in
the order of time variate dimension and feature variate dimension.
All the experiments were run on 4 NVIDIA RTX A6000 GPUs.

6.1 Short-term Forecasting
We perform experiments in short-term forecasting task on the
M4 benchmark dataset datasets [29] and report the results in Ta-
ble 1. Interestingly, the performance of both Typhon’s variants (i.e.,
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T4 and GMC) are close and both outperform state-of-the-art ap-
proaches like ModernTCN, PatchTST, etc. These results highlight
the expressivity of Typhon’s design to capture cross time dependen-
cies. However, since the data is one dimensional, it is questionable
whether or not the use of the more advanced dimension mixer or
the use of the number of dimensions of Typhon may help. Our
results show that in those cases the model tends to overfit. In our
case we find that the best results are obtained when using only
1 layer of Typhon and a single linear layer dimension mixer. The
complete results are in Table 8.

6.2 Long-term Forecasting
Despite the outstanding performance of Typhon’s variants, still it
is not clear if our designs perform well when we have long-term
time series data. Accordingly, we perform experiments in long-
term forecasting task on commonly-used benchmark datasets [88].
The summary of results is reported in Table 2 and the full results
can be found in Table 9. Typhon outperforms extensively studied
MLP-based, convolution-based, and Transformer-based models pro-
viding a better balance of performance and efficiency, as well as
recurrent models. Comparing with other baselines that also use
time series decomposition (i.e., seasonal and trend pattern), the
superior performance of Typhon’s variants show their expressivity
in capturing both time and variate dependencies.

6.3 Imputation
Real-world systems always work continuously and are monitored
by automatic observation equipment. However, due to malfunc-
tions, the collected time series can be partially missing, making the
downstream analysis difficult which begs the need for imputation.
For imputation task we select the datasets from the electricity and
weather scenarios as our benchmarks, including ETT [88], Elec-
tricity [78] and Weather, where the data-missing problem happens
commonly. To compare the model capacity under different pro-
portions of missing data, we randomly mask the time points in
the following ratios: 12.5%, 25%, 37.5%, 50%. The main results are
summarized in Table 3.

6.4 Classification and Anomaly Detection
Anomaly detection is generally viewed as a binary classification
task, where 0 denotes “normal” and 1 denotes “anomaly”. We let
X = {x1, . . . , x𝑁 } ∈ R𝑁×𝑇 be the input sequences, where 𝑁 is the
number of variates and 𝑇 is the time steps. We use 𝑥𝑣,𝑡 to refer to
the value of the series 𝑣 at time 𝑡 . In classification (anomaly detec-
tion) tasks, we aim to classify input sequences and for forecasting
tasks, given an input sequence x𝑖 , we aim to predict x̃𝑖 ∈ R1×𝐻 ,
i.e., the next 𝐻 time steps for variate x𝑖 , where 𝐻 is called horizon.
We evaluate the performance of Gated Multiresolution Convolu-
tion and T4 in anomaly detection task by aggregating over their
respective datasets for their specific tasks, and report the results
in Figure 3. Typhon’s variants achieve outstanding performance
and outperform all baselines from different group of models (i.e.,
transformer-based, linear-based, and convolutional).

Figure 3: Anomaly detection and classification results of Typhon
and baselines.

6.5 Ablation Study
To evaluate the significance of the Typhon’s design, we perform an
ablation study for Gated Multiresolution Convolution and remove
one of its components at each time, keeping other parts unchanged.
We first report Gated Multiresolution Convolution’s performance
with each of its components, while the next row removes dimension
mixer, third row removes multiresolution convolution and instead
uses a simple convolution, and the last two rows removes gating
from time and variate mixing, respectively. The results are reported
in Table 5 and demonstrate that removing each component sig-
nificantly degrades the performance of the model, supporting the
importance of our design.
We then perform an ablation study on T4 architecture. The results
for T4 where we remove one of the directions for the bidirection-
ing model encoding, the dimension mixer, and each of the long
term and seasonal components, are reported in Table 4. The results
demonstrate that these changes on long term time forecasting. The
full ablation study is in the appendix.

Table 4: Ablation Study Results for Typhon: TTT-Linear and
Transformer (T4)

Model Variations ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Typhon 0.438 0.444 0.374 0.399 0.373 0.410
Uni.-directional 0.501 0.463 0.485 0.437 0.431 0.523
w/o Dim Mixer 0.522 0.476 0.391 0.414 0.389 0.413
w/o Long term 0.471 0.498 0.361 0.389 0.372 0.401
w/o Seasonal 0.456 0.471 0.357 0.403 0.395 0.425

Table 5: Ablation Study Results for Typhon: Gated Multires-
olution (GMC)

Model Variations ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Gated Multiresolution 0.398 0.409 0.344 0.373 0.316 0.377
w/o Dim Mixer 0.448 0.462 0.394 0.419 0.367 0.412
w/o multiresolution 0.405 0.431 0.354 0.383 0.328 0.380
w/o time gating 0.405 0.412 0.366 0.389 0.324 0.379
w/o variate gating 0.400 0.412 0.357 0.383 0.331 0.386
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Table 1: Average performance on short-term forecasting tasks on the M4 dataset. Full results are reported in the appendix. For
the Typhon architecture results we denote GMC as Gated Multiresolution Convolution variant of Typhon, and T4 as TTT layer
and Transformer

Models Typhon (T4) Typhon (GMC) ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗

(Ours) (Ours) 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021 2021

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.917 11.614 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987

MASE 1.744 1.534 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265
OWA 0.932 0.825 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480

Table 2: Average performance on long term forecasting tasks.

Models Typhon (T4) Typhon (GMC) ModernTCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.374 0.399 0.344 0.373 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.275 0.325 0.251 0.307 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.438 0.444 0.398 0.409 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.373 0.410 0.316 0.377 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
Exchange 0.363 0.406 0.298 0.363 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.436 0.278 0.392 0.264 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.245 0.276 0.211 0.258 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317

Table 3: Average performance on imputation tasks. We randomly mask 12.5%, 25%, 37.5%, 50% time points in length-96 time series.

Models Typhon (T4) Typhon (GMC) FedFormer ModernTCN Reformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.027 0.104 0.033 0.124 0.062 0.177 0.020 0.093 0.407 0.410 0.070 0.166 0.045 0.133 0.041 0.143 0.419 0.419 0.027 0.107 0.093 0.206
ETTm2 0.026 0.099 0.029 0.103 0.101 0.215 0.019 0.082 0.288 0.332 0.032 0.108 0.028 0.098 0.046 0.149 0.358 0.404 0.022 0.088 0.096 0.208
ETTh1 0.076 0.186 0.082 0.195 0.117 0.246 0.050 0.150 0.288 0.332 0.141 0.242 0.133 0.236 0.132 0.251 0.358 0.404 0.078 0.187 0.201 0.306
ETTh2 0.058 0.159 0.053 0.148 0.163 0.279 0.042 0.131 0.288 0.332 0.066 0.165 0.066 0.164 0.122 0.240 0.358 0.404 0.049 0.146 0.142 0.306
Weather 0.033 0.051 0.039 0.060 0.099 0.203 0.027 0.044 0.288 0.332 0.034 0.058 0.033 0.057 0.036 0.090 0.358 0.404 0.030 0.054 0.052 0.110

7 Conclusion
We present Typhon, a general and flexible framework which adapts
1-dimensional sequence models to multivariate time series. We use
two 1-dimensional sequence models across time variate and feature
variate dimensions, using a dimension mixer and discretization
and demonstrate that this better helps capture and tie together the
information across the time and feature variate dimensions. We
provide a special case of Typhon - a Gated Multiresolution Convo-
lution architecture - which uses convolutions with iterative kernel
dimensions to retain as much information as possible when moving
autoregressively. We evaluate on a variety of time series tasks such
as classification and long term forecasting, demonstrating the state
of the art performance of Typhon. We also ascertain the importance
of each component in contributing to the strong performance of
Typhon through an ablation study.
We believe there is great potential for improvement of efficiency,
particularly in the parallel scan, possibly through usingmore hardware-
aware implementations and optimizations. We also leave possible
methods from numerical linear algebra and control theory in de-
veloping a more optimal dimension mixer. We also note that a
promising direction is to explore the potential of Typhon with its
2D inductive bias for other high dimensional data modalities and
different tasks such as images, videos, multi-channel speech where
prior 1 dimensional sequence models have been applied.
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A Appendix
A.1 Background Information: 1-D State Space

Models
1D Space State Models (SSMs) are linear time-invariant systems
that map input sequence 𝑥 (𝑡) ∈ R𝐿 ↦→ 𝑦 (𝑡) ∈ R𝐿 [2]. SSMs use
a latent state ℎ(𝑡) ∈ R𝑁×𝐿 , transition parameter A ∈ R𝑁×𝑁 , and
projection parameters B ∈ R𝑁×1,C ∈ R1×𝑁 to model the input
and output as:

ℎ′ (𝑡) = A ℎ(𝑡) + B 𝑥 (𝑡), 𝑦 (𝑡) = C ℎ(𝑡) . (21)

Most existing SSMs [12, 30, 33], first discretize the signals A,B, and
C. That is, using a parameter 𝚫 and zero-order hold, the discretized
formulation is defined as:

ℎ𝑡 = Ā ℎ𝑡−1 + B̄ 𝑥𝑡 , 𝑦𝑡 = C ℎ𝑡 , (22)

where Ā = exp (𝚫A) and B̄ = (𝚫A)−1 (exp (𝚫A − 𝐼 )) . 𝚫B. [31]
show that discrete SSMs can be interpreted as both convolutions
and recurrent networks: i.e.,

K̄ =

(
CB̄,CĀB̄, . . . ,CĀ𝐿−1B̄

)
,

𝑦 = 𝑥 ∗ K̄, (23)

which makes their training and inference very efficient as a convo-
lution and recurrent model, respectively.

A.2 Experiment Details
The experimental details are reported in Table 6.

A.3 Full Experimental Results
A.3.1 Short Term Forecasting Full Results.

A.3.2 Long Term Forecasting Full Results.

A.3.3 Anomaly Detection.

A.3.4 Imputation.
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Figure 4: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-336 setting. The blue lines stand
for the ground truth and the orange lines stand for predicted values.

Figure 5: Visualization of ETTm1 imputation results given by models under the 25% mask ratio setting. The blue lines stand for the ground
truth and the orange lines stand for predicted values.
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Table 6: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart Beat

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine
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Table 8: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers indicates the name of ∗former.
Stationary means the Non-stationary Transformer.

Models
Typhon ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗
(Ours) [2024]) [2023] [2023] [2023] [2022] [2019] [2022] [2022] [2023b] [2022] [2022b] [2021] [2021] [2021]

Ye
ar
ly SMAPE 13.455 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169

MASE 3.023 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800

OWA 0.801 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973

Q
ua
rt
er
ly SMAPE 10.243 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313

MASE 1.192 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775

OWA 0.908 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252

M
on

th
ly SMAPE 12.752 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128

MASE 0.937 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614

OWA 0.887 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927

O
th
er
s SMAPE 4.848 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491

MASE 3.236 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355

OWA 1.004 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.917 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200

MASE 1.744 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223

OWA 0.932 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775
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Table 9: Long-term forecasting task with different horizons H. The best results are bolded. We include the results for Patching as well. Note
that & represents Typhon with Gated Multiresolution Convolution, ∗ represents Typhon with TTT-Linear [67] and Transformer [69], % denotes
Typhon with TTT-Linear and Transformer with Patching with patching dimension 4, stride dimension 1, and pad dimension 3.

Typhon∗ Typhon% TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(ours) (ours) [2024] [2024a] [2023] [2023] [2023] [2023] [2023] [2023a] [2022c] [2022] [2022a] [2021]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.335 0.371 0.324 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.365 0.391 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.398 0.406 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.407 0.431 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.374 0.399 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ET
Tm

2

96 0.174 0.263 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.231 0.302 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.306 0.344 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.389 0.401 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.275 0.325 0.281 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

ET
Th

1

96 0.376 0.399 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.431 0.440 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.461 0.462 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.486 0.476 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.438 0.444 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

ET
Th

2

96 0.301 0.370 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.392 0.403 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.396 0.423 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.406 0.447 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.373 0.410 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

Ex
ch
an
ge

96 0.09 0.209 0.089 0.201 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.223 0.338 0.232 0.351 0.166 0.288 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.401 0.455 0.416 0.445 0.307 0.398 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.741 0.623 0.771 0.789 0.656 0.582 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.363 0.406 0.377 0.446 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
affi

c

96 0.461 0.263 0.468 0.268 0.368 0.253 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.408 0.277 0.413 0.317 0.379 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.427 0.274 0.529 0.284 0.397 0.270 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.449 0.301 0.564 0.297 0.440 0.296 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.436 0.278 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea
th
er

96 0.164 0.218 0.176 0.219 0.149 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.208 0.256 0.222 0.260 0.196 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.261 0.267 0.275 0.297 0.238 0.277 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.357 0.364 0.350 0.349 0.314 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.366 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.245 0.276 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382
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Table 10: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall and F1-score in percentage
respectively. A higher value of P, R and F1 indicates a better performance. For Typhon models we let & represent Gated
Multiresolution Convolution, ∗ denotes TTT-Linear [67] and Transformer [69], % denotes Typhon with xLSTM [6] and TTT-
Linear, and # denotes Typhon with TTT-Linear [83] and TTT-Linear.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM [1997b] 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer [2017] 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans [2019] 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN [2019] 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer [2020] 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer [2021] 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ [2021] 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer [2021] 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer [2021] 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL [2022a] 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary [2022b] 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear [2023b] 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer [2022] 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS [2022] 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer [2022] 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) [2023] 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) [2023] 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer [2023] 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST [2023] 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN [2024] 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Typhon# (ours) 88.10 82.72 85.33 89.29 76.54 81.23 89.91 55.35 69.80 91.22 95.55 93.33 98.33 88.87 96.96 85.33
Typhon% (ours) 87.31 80.76 83.90 89.54 79.90 81.42 90.05 56.81 70.98 90.02 95.29 92.58 97.91 95.88 96.89 85.54
Typhon∗ (ours) 88.16 82.74 85.05 89.16 88.37 81.79 90.35 58.12 71.55 92.18 95.19 92.30 98.23 96.19 96.97 86.53
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