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Abstract

Time Series Classification is a popular approach in machine learn-
ing with many applications. The Random Convolutional Kernel
Transform (ROCKET) model has achieved state-of-the-art perfor-
mance in various time-series classification tasks due to its ability
to capture complex patterns and temporal relationships. However,
its reliance on random convolutions hinders the explainability of
the model, as the relationships between the transformed features
and the original input data become obscured. To address these chal-
lenges, we propose a novel approach for computing explanations
in ROCKET-based time-series classification models that integrates
Layer-wise Relevance Propagation with either model-agnostic post-
hoc or model-intrinsic local explanation techniques. We implement
our approach for two widely used classification models and three
local explanation techniques. We validate our approach on two
simulated datasets, demonstrating its faithfulness and effectiveness.
Additionally, we present an application of our approach to anomaly
prediction in real-world manufacturing data and show that it pro-
vides superior local explanations compared to popular explanation
techniques such as SHAP and LIME.!
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« Computing methodologies — Machine learning; Learning
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1 Introduction

Machine learning has become a powerful tool across domains, in-
cluding finance [27], healthcare [10], supply chain management
[23], and process mining [28]. In manufacturing, it plays a crucial
role in process optimization [8], quality control [17], and anom-
aly prediction [32]. By building complex relationships with data,
machine learning techniques allow manufacturers to enhance prod-
uct quality while reducing reliance on costly and time-consuming
testing [33].
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Manufacturing processes are inherently time-dependent, with
products moving through a pipeline where characteristics are recorded
at each step. These steps are highly interdependent, and deviations
in one stage can propagate through the pipeline, affecting the fi-
nal product [18]. For example, the number of scratches or foreign
matter in a product is closely tied to the conditions on the manu-
facturing line. Capturing these temporal dependencies is critical
for understanding and improving manufacturing processes.

Explainability in machine learning is essential for ensuring trust
and transparency, and it is now becoming ubiquitous across vari-
ous domains [48]. In manufacturing, explainability is particularly
crucial, allowing factory managers to understand the reasoning
behind a model’s predictions [1]. Explainable Time Series Classi-
fication models are vital for detecting anomalies and identifying
defects, where actionable insights can help prevent costly errors
and support informed decision-making [46].

Convolutional models effectively capture temporal patterns in
time-series data, making them valuable for time-series applications,
including manufacturing [47]. ROCKET, which combines features
extracted from randomly initialized convolutional kernels with a
conventional predictive model, has achieved state-of-the-art perfor-
mance in various time-series tasks [42]. However, despite its strong
empirical success, ROCKET’s reliance on random convolutions
poses challenges to its explainability.

In this paper, we propose a novel approach to explain the predic-
tions of ROCKET-based time-series classification models by com-
bining Layer-wise Relevance Propagation (LRP) [6] with local ex-
planation techniques. Our work aims to bridge the gap between
the accuracy of ROCKET-based models in TSC tasks and the need
for model explainability. We make the following contributions:

e We introduce ROCKET-LRP, a novel approach for integrat-
ing LRP with post-hoc or intrinsic local explanations to
provide explanations for the predictions of ROCKET-based
TSC models.

e We implement our approach for two widely used classifi-
cation models, XGBoost and Logistic Regression (LR), and
three local explanation techniques (TreeSHAP, LinearSHAP,
and linear intrinsic explanations). We evaluate the faith-
fulness of our explanations on two simulated time-series
anomaly detection datasets and show that they significantly
outperform existing approaches that are not designed for
ROCKET-based models.



e We apply our approach to a real-world manufacturing anom-
aly prediction dataset and demonstrate our approach’s abil-
ity to provide effective explanations.

2 Related Work
2.1 Time Series Classification

A multivariate time series consists of multiple sequences of data
points indexed in time order. Formally, it can be represented as:

{(x1,t1), (x2,82), ..., (Xn, tn) }

where x; = (xtl, xf, .. .,xf) represents a d-dimensional vector at
each time step ¢, with each component xi corresponding to a dif-
ferent variable or sensor reading.

Time series data are prevalent in fields like finance [29], manu-
facturing [40], and climatology [16], often characterized by trends,
seasonality, and outliers. Trends capture long-term changes, while
seasonality reflects repeating cycles at fixed frequencies.

Unlike Time Series Forecasting, which aims to predict continuous
future sequences, Time Series Classification (TSC) [42] focuses on
assigning discrete categorical labels to an entire time series based
on its temporal patterns and features.

Formally, a TSC model is defined as a function:

f:8§-V

where S represents the space of time series, and Y is the set of
possible class labels. The goal of TSC is to learn a classification
model from a dataset

D ={(s1,y1)s---> (Snsyn) }

where s; is a time series and y; is its corresponding categorical
target label. Conceptually, TSC can be understood as the process of
mapping temporal patterns to specific target values.

TSC encompasses various algorithms, with methods based on
convolutional kernels achieving state-of-the-art performance [42].
Among them, methods based on random convolutional kernels (e.g.,
ROCKET [13], MINIROCKET [14], MultiROCKET [43]) efficiently
extract features using a large number of randomly initialized ker-
nels, while deep learning-based models (e.g., InceptionTime [26],
ResNet [24]) utilize trained convolutional kernels to capture hierar-
chical temporal dependencies.

2.2 Random Convolutional Kernel
Transformation

Random Convolutional Kernel Transform (ROCKET), pro-
posed by Dempster et al. [13], utilizes a large number of ran-
domly initialized convolutional kernels instead of trained ones.
They demonstrated that ROCKET excels in computational efficiency
and shorter training time compared to trained convolutional layers
by extracting discriminative features without requiring extensive
parameter tuning. Additionally, methods based on trained convo-
lutional kernels often struggle to learn effective kernels on small
datasets, whereas random convolutional kernels offer a distinct
advantage in such scenarios [11].

A ROCKET-based TSC model comprises two key components:
the Random Convolutional Kernel Transformation and the
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classification model. In multivariate TSC, the Random Convolu-
tional Kernel Transformation effectively captures temporal patterns
and inter-variable relationships, while the classification model uses
the latent representations generated by this transformation to de-
liver accurate predictions.

2.2.1 Random Convolutional Kernel Transformation. The Random
Convolutional Kernel Transformation applies a series of 2D convo-
lutional kernels to the input matrix X € RT* VI, where T represents
the time-series length and |V| denotes the number of variables. Each
convolutional kernel is randomly initialized with attributes such as
kernel size, kernel weights, bias, padding, and dilation. Instead of
operating on the entire set of variables, each kernel independently
selects a random subset V; C V for transformation, ensuring diverse
feature extraction across different subsets of variables.

Each 2D random convolutional kernel, with kernel length L; and
kernel weight w;, processes an input with a convolutional channel
size of |V;| (corresponding to the number of selected variables) and
produces a single output channel. The stride is set to 1 across all
convolutions. For simplicity, the following formulations assume a
padding size of 0 and a dilation rate of 1. Mathematically, the oper-
ation for the i-th random convolution at the j-th output position is
defined as:

Li-1

Convi(X)[j] =bias; + ». > wilLo]-X[j+Lol, (1)

1=0 veV;

The output from each convolutional operation varies in length
due to differences in kernel size, padding, and dilation. To obtain a
consistent feature representation, two predefined transformations
are applied:

e Global Max Pooling (GMP): Selects the maximum value
from the convolutional output, capturing the most domi-
nant feature across the receptive field.

o Proportion of Positive Values (PPV): Computes the frac-
tion of positive values in the convolutional output, provid-
ing a statistical summary of activation patterns.

Formally, given a convolution output sequence z = [z1, 22, . .., Zm],
these transformations are defined as:

m
GMP(z) = maxz;, PPV(z) = — Z 1(z > 0), @)
i mia

where m is the length of the convolution output and 1(-) is the
indicator function.

The latent feature space is defined as the concatenation of these
transformed representations across C random convolutions:

h = [GMP(z1), PPV (z1), ..., GMP(z¢), PPV (z¢)] 3)

where h € R?C serves as the final fixed-length feature representa-
tion for downstream classification tasks.

2.2.2  Classification Model. The classification model leverages the
latent feature space to generate final predictions. This model can
be any classifier, such as LR or XGBoost. By operating on the trans-
formed feature space, the classifier effectively captures temporal
patterns and relationships within the time series, enabling accurate
and reliable classification.
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2.3 Explainable Machine Learning

While machine learning and deep learning models achieve high
accuracy, they often lack explainability, which is crucial in fields
like healthcare [10], risk management [9], and manufacturing [3].

Explainability can be categorized into intrinsically interpretable
models and post-hoc explanations. The former include linear mod-
els, decision trees, rule-based models, and Generalized Additive
Models (GAMs) [22], which are transparent by design. However,
these models often trade off explainability for performance, neces-
sitating post-hoc explanations.

Post-hoc methods can be model-agnostic or model-specific. Model-
agnostic approaches explain predictions without relying on the
model’s internal structure. Instead, they approximate feature impor-
tances by perturbing inputs, analyzing their effect on predictions,
or fitting simpler surrogate models to mimic the original model’s
behavior. A key consideration in post-hoc methods is faithfulness
[2], which refers to how accurately the explanation reflects the
model’s actual reasoning. Global methods, such as Partial Depen-
dence Plots (PDP) [19] and Accumulated Local Effects (ALE) [5],
summarize how features influence predictions across the entire
dataset. In contrast, Local methods, like LIME [41] and KernelSHAP
[35], explain individual predictions by estimating feature impor-
tances for specific instances. Model-specific techniques, such as
LinearSHAP [35], TreeSHAP [34], gradient-based methods [7], and
LRP, leverage model structures to explain predictions.

Several studies have been applying and improving ROCEKT, but
only limited work has focused on its explainability. Naretto et al.
[37] use SHAP to explain ROCKET by treating the original input
time series as tabular data and computing SHAP-based feature im-
portances for the input features. Additionally, the method proposed
by Tikabo and Touray [44] and X-ROCKET [15] can provide in-
formation on which convolutional channels are most frequently
activated and which dilation rates are most influential in forming
the top latent representations. However, these approaches do not
offer input-level feature importances.

3 Methodology

The random convolutional kernel transformation enhances predic-
tive performance by capturing temporal dependencies in time-series
data. However, this comes at the cost of explainability. The transfor-
mation introduces complexity and randomness, making it difficult
to trace how the original input contributes to predictions. The latent
feature space, generated through randomly initialized convolutions,
obscures direct relationships between inputs and outputs, making
conventional explanation techniques ineffective.

Since the classification model operates on the transformed rep-
resentations, applying explanation techniques to the classification
model would lead to explanations that are expressed in terms of
the latent feature space (e.g., feature importance scores to each of
the GMP or PPV features). This limitation prevents attributions of
explanations to original time series data. An alternative approach
is to apply model-agnostic post-hoc explanation methods, such as
KernelSHAP and LIME, directly to the original input. However,
these methods do not capture temporal relationships in time-series
data. KernelSHAP quantifies feature contributions based on mar-
ginal effects, while LIME approximates the model locally using

perturbed samples. Both treat features independently and disregard
sequential dependencies, making them more suitable for tabular
data [12].

To provide accurate explanations for ROCKET-based TSC mod-
els, we propose ROCKET-LRP, a two-stage post-hoc approach
specifically designed for the ROCKET model. This hybrid method
combines feature-level explanations derived from either model-
agnostic post-hoc techniques or intrinsically interpretable model-
based explanations with LRP’s capacity to trace and attribute the
temporal relationships captured by the convolutional kernels.
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Figure 1: The top diagram shows the structure of the
ROCKET-based TSC model. The bottom diagram illustrates
the workflow of ROCKET-LRP: The first stage computes local
feature importances in the latent space. Feature importances
are then propagated to the output of random convolutional
kernels following the GMP and PPV rules. Finally, feature
importances are propagated to the original inputs using the
LRP for convolutions, based on the weighted contributions
of inputs to the convolution operation.

3.0.1 First Stage. In the first stage, we focus on computing local
explanations for the predictions of the classification model. The
explanation methods fall into two categories: those designed for
intrinsically interpretable models, which can inherently provide
local feature importances, and post-hoc local explanation methods
that are applicable to any model.

For intrinsically interpretable models, local explanations are of-
ten directly provided by the model itself. For example, in linear
models, global feature contributions can be inferred directly from
their coefficients, and local feature importances can be expressed
as the product of the coefficient and the corresponding input fea-
ture value [4]. Similarly, models like GAMs provide built-in local
feature importances by design, as they model the target as a sum
of functions of individual features [22].

While most machine learning models are not intrinsically inter-
pretable, post-hoc explanation methods provide a powerful tool
to compute local feature importances. KernelSHAP and LIME are
model-agnostic methods, i.e., they can be applied regardless of the
underlying model structure. Although KernelSHAP is computation-
ally inefficient, if the model type is known (e.g., linear or tree-based),
model-specific SHAP methods can be used. For example, Linear-
SHAP is tailored for linear models, and TreeSHAP is designed for



tree-based models. These methods are significantly more efficient
while maintaining accuracy in their explanations.

Due to the large number of latent features, a filtering step is
applied. The filter sets the lowest a% of the computed feature im-
portances to zero to reduce noise in subsequent computations.

3.0.2  Second Stage. In the second stage, the local feature impor-
tances of the latent features are propagated to the original input
using Layer-wise Relevance Propagation [6], which was originally
developed for distributing relevance scores through the layers of a
neural network. We utilize this technique for the first time to prop-
agate local feature importances through ROCKET-based models to
the original inputs.

We use Ry, to denote the feature importances for the latent
features computed based on the classifier in the first stage. Ry
consists of two types of feature importance values corresponding
to the two pooling operations: GMP and PPV. Formally, it is de-
fined as Ry, = {RgMP(z,)> RPPV (2,)s - - -» RPPV (20) }- In addition, let
Rz = {Ry,,Ry,, ..., Ry} denote the local feature importances as-
signed to the outputs of the random convolutions before pooling,
where each Ry, corresponds to the local feature importances attrib-
uted to the output of the i-th random convolution. Ry, [ j] denotes
the importance assigned to the j-th position of R,;. Each feature
importance in Rz consists of contributions propagated from the
importances of GMP and PPV features in Ry:

Ry, [j] = RSMP (] + REPV 1, ()

The propagation of these importance values to the corresponding
convolution outputs in Rz is defined as follows:

o GMP: If the local feature importance Ry, in the latent rep-
resentation is derived using GMP, the entire importance is
assigned to the maximum value in the output of the random
convolution:

R y, if j = argmaxz;
ROMP[ i1 _ JRoMP(z)» , s
% ] 0, otherwise, ©)

where arg max z; identifies the position of the maximum
value in the convolution output.

e PPV:If the feature importance Ry, is derived using PPV, the
importance is equally distributed among all positive values
in the output of the random convolution

Repy(z;) . .
RPPV [j] = NF L=, ifzi[j] >0, ©)
Zi .
0, otherwise,

where

Nf = )" 1(zk] > 0)
k

represents the total number of positive values in the con-
volution output.

After obtaining the local feature importances for the outputs
of the convolutions, these values need to be propagated to the
raw input through the random convolutional kernels. The convo-
lution operation is analogous to the linear layer in LRP, and the
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formulation for the propagation [6] can be expressed as follows:

X[Jj, 0] - wilj — k0] - Ry, [K]
Rxl[j,v]i = L
xlol Zk: Srict Sopev, XIk + Lol - will,o] +¢

. (7

where:

e Rx[J,v]; represents the local feature importance assigned
to the j-th time step and v-th variable in the entire raw
input from the i-th random convolution.

o k is constrained by

max(0,j—L+1) <k <min(j, T - L)

e ¢isasmall constant that manages the distribution of feature
importance when the product of activation and weight is
small. As € increases, inputs with smaller contributions
receive feature importance closer to zero.

By aggregating the local feature importances from all random
convolutions, the local feature importances for the raw input are
obtained as:

Rxlj.0] = Z Rx[j.0ls, ®)

4 Experiments on Simulated Datasets

To evaluate the faithfulness of our method’s explanations, we con-
ducted experiments on two synthetic datasets: Shapelet Data and
Spike Data [45]. The generation process for these datasets is detailed
below. Each dataset includes 2,000 samples, with 80% for training
and 20% for testing. We conducted experiments using two ROCKET-
based TSC models, each using a different classifier: ROCKET with
XGBoost (ROCKET-XGBoost) and ROCKET with LR (ROCKET-
LR). ROCKET-XGBoost was trained using default hyperparameters,
while ROCKET-LR employed an /5 penalty with C = 0.01 to encour-
age sparse coefficients. We observed that both models achieved a
testing accuracy of at least 95%, ensuring the models effectively
learned the patterns within the data. We then compared the faithful-
ness of explanations generated by ROCKET-LRP with explanations
generated by KernelSHAP, Permutation, and LIME applied directly
to the entire ROCKET-based TSC model, following the approach
used by Naretto et al. [37]. However, because these methods cannot
handle temporally structured data, we flattened the input before
applying them. This process did not affect the ROCKET model itself,
and the outputs remained unchanged. In ROCKET-LRP, the filtering
threshold « is set to 30 for all experiments.

The objective in both datasets was to detect synthetic shapelets
or anomalies injected into the time series, with a label of 1 indicat-
ing their presence. In our evaluation, we applied the explanation
methods to the testing dataset, focusing only on samples that were
correctly classified by the model and had a target label of 1, ana-
lyzing the key features contributing to the detected anomalies or
shapelets. When applying ROCKET-LRP to the ROCKET-XGBoost
model, we computed local feature importances using TreeSHAP.
For the ROCKET-LR model, we computed local feature importances
using either LinearSHAP or the model’s coefficients and reported
the results for each of the approaches.
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4.1 Shapelet Data

We consider the task of identifying shapelets embedded within
time series data. A shapelet is defined as a sine wave of length 10,
which may be present at a random location within the time series
with added noise (see Appendix A for details on the experimental
setting). The classification task determines whether a shapelet is
present, and the explanation methods are utilized to determine the
top 10 most relevant features, i.e., time steps in the time series,
contributing to the model’s decision.

To assess the faithfulness of ROCKET-LRP, we compute the
overlap between the top 10 features determined by each method
and the actual ground truth features corresponding to the shapelet.
We report mean and percentile overlaps (p90, p50, p10). Additionally,
we measure the number of cases where an explanation is completely
incorrect (#0), i.e., it does not overlap with any of the shapelet
features.

We conduct experiments on two datasets with time series lengths
of 50 and 200, each containing a shapelet of length 10 embedded at
a random location in some instances. We compare ROCKET-LRP
against KernelSHAP, Permutation Feature Importance, and LIME
across two classifiers: ROCKET-LR and ROCKET-XGBoost. Table 1
shows the results for the ROCKET with the XGBoost model. Table 2
shows the results for the ROCKET with the LR model.

Table 1: Explanation Overlap with Ground-Truth Features
on ROCKET-XGBoost

Method [ Mean [ poo [ p50 [ p10 [ #0
Time Series Length = 50
ROCKET-LRP(TreeSHAP) | 8.65 9 8 7 0
KernelSHAP 6.38 8 6 5 0
Permutation 6.14 7 6 5 0
LIME 1.88 3 2 1 16
Time Series Length = 200
ROCKET-LRP(TreeSHAP) | 825 | 9 | 8 | 7 | 0
KernelSHAP 6.15 7 6 5 0
Permutation 6.20 7 6 5 0
LIME 0.41 1 0 0 183

We observe that ROCKET-LRP consistently achieves the highest
mean overlap across both classifiers (ROCKET-LR and ROCKET-
XGBoost) and time series lengths (50 and 200), outperforming Ker-
nelSHAP, Permutation, and LIME. ROCKET-LRP (Coefficient) sig-
nificantly outperforms ROCKET-LRP (LinearSHAP) in explaining
the ROCKET-LR model; however, ROCKET-LRP (LinearSHAP) still
obtains a higher mean (and median) overlap with the ground truth
compared to the baselines.

4.2 Spike Data

We consider the task of detecting whether a spike is present in a
given relevant feature. Each sample consists of three independent
sequences, all with a length of k. The sequences are generated
using the TimeSynth package [36] and are based on a second-order
Nonlinear Autoregressive Moving Average(NARMA), which models
nonlinear dependencies on previous values and noise. For each
sequence in a sample, there is a probability of adding random spikes,

Table 2: Explanation Overlap with Ground-Truth Features
on ROCKET-LR

Method [ Mean [ p90 [ p50 [ p10 [ #0
Time Series Length = 50
ROCKET-LRP (LinearSHAP) 7.53 9 8 4 0
ROCKET-LRP (Coeflicient) 8.39 9 8 7 0
KernelSHAP 6.38 8 6 5 0
Permutation 6.14 7 6 5 0
LIME 1.88 3 2 1 24
Time Series Length = 200
ROCKET-LRP (LinearSHAP) | 684 | 9 | 7 | 2 | 5
ROCKET-LRP (Coeflicient) 8.21 9 8 7 0
KernelSHAP 6.22 7 6 5 0
Permutation 6.31 8 6 5 0
LIME 0.50 1 0 0 168

and the ground truth label indicates whether the first sequence
contains any spike (y = 1) or not (y = 0). The indices of spikes in
the first sequence are recorded (see Appendix A for details on the
experimental setting).

We assess the faithfulness of explanations based on accuracy.
Specifically, we consider an explanation to be correct if the feature
with the highest local importance falls within an index range of +1
from an actual spike, as identifying a spike requires comparing its
value to its neighboring data points. We evaluate ROCKET-XGBoost
and ROCKET-LR on time series of lengths 30 and 60, comparing
the accuracy of different explanation methods.

Table 3: Explanation Accuracy for ROCKET-XGBoost on
Spike

Method Length 30 | Length 60
ROCKET-LRP 98.06 94.80
KernelSHAP 65.12 38.66
Permutation 83.72 86.52
LIME 6.59 4.09

Table 4: Explanation Accuracy for ROCKET-LR on Spike

Method Length 30 | Length 60
ROCKET-LRP (SHAP) 99.22 98.48
ROCKET-LRP (Coefficient) 100.00 98.48
KernelSHAP 84.71 77.65
Permutation 90.59 80.68
LIME 8.63 10.61

The results in Table 3 and Table 4 show that ROCKET-LRP per-
formed significantly better than KernelSHAP, Permutation, and
LIME for both ROCKET-XGBoost and ROCKET-LR. In this experi-
ment, ROCKET-LRP (LinearSHAP) and ROCKET-LRP (Coefficient)
achieved comparable performance, with accuracies in the range of
98% to 100%. These results indicate that ROCKET-LRP effectively
explains the behavior of the ROCKET-based TSC model.



5 Experiments on Real Manufacturing Dataset

The datasets used in this study come from a manufacturing facility.
The manufacturing process undergoes multiple processing stages
before inspection. Sensors placed along the production lines record
parameters such as temperature and pressure, while defects, in-
cluding scratches and foreign objects, are documented during the
inspection. As the production is continuous and lacks unique iden-
tifiers to directly link sensor readings to specific anomaly values,
the model needs to learn to correlate anomaly inspections with
earlier sensor readings from the time series data.

The dataset spans two years and consists of four components:
sensor data, inspection data, stability data, and sensor information.
Sensor data captures readings from various sensors at 10-second
intervals. Inspection data records detected anomalies at correspond-
ing timestamps. Stability data tracks system and product stability,
with only periods where both are stable being used, resulting in
some data gaps. Sensor information included unit specifications
and time corrections, which represented the expected time gap
between the time a product passes a sensor and the time it reaches
the inspection.

In this experiment, we developed a model that predicts the num-
ber of anomalies in the next hour’s inspections based on sensor
data from the previous 12 hours, aggregated into one-hour bins by
using the mean.

5.1 Data Preparation

To mitigate the impact of highly correlated sensor values, we applied
Pearson Correlation Filtering to the sensor data. Pearson correlation
[39] quantifies the linear relationship between two variables. Let the
full set of sensor data be defined as Xg,;; = {X1, X, ..., X}, where
each X; represents a time-series sensor reading from sensor i. After
standardizing the training data, we computed pairwise correlations
and identified the most highly correlated sensor pair. The sensor
closest to the end of the pipeline (based on time correction) was
removed, as downstream sensors are more likely to be influenced
by upstream ones. This process was repeated iteratively until the
highest correlation between any remaining sensor pair fell below
a threshold of 0.65. The resulting filtered sensor set was used for
subsequent analysis.

Due to the temporal nature of the data, we performed a monthly
train-validation-test split [21]. Each 30-day period was treated as a
unit, with the first 55% used for training, the next 15% for validation,
and the remaining 30% for testing.

After data splitting, the sensor and inspection data were aligned
based on timestamps, and unstable hours were removed. To ensure
temporal continuity, a rolling window approach with a step size
of 1 was applied, generating 13-hour segments for the training,
validation, and testing sets. In each segment, the first 12 hours of
sensor data were used as input, while the anomaly count in the
final hour served as the target.

5.2 Quantile-based Classification

The accurate prediction of anomaly counts is challenging. In manu-
facturing, higher anomaly counts require greater attention, and fac-
tory managers are typically more concerned with anomaly ranges
rather than exact counts. We, therefore, opt to categorize anomalies
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into four quantiles based on the distribution in the training set [38].
The goal is to use the 12-hour historical sensor data to predict the
probability of the next hour’s anomaly count falling into a specific
quantile. Mathematically, this can be represented as:

fX) =P(QilX),i € {1,2,3,4}
where f is the model, and X € R33*12 represents the input 12-hour
data from 35 sensors.

5.3 Experiment Setting

Hyperparameter tuning is conducted using GridSearch [30]. Due to
the stochastic nature of the random convolutional kernel transfor-
mation, each model is trained three times for three random seeds,
and we report the average performance for evaluation. For simplic-
ity, hyperparameter tuning is performed only on the first seed, and
the selected parameters are fixed for the subsequent runs.

For models based on the LR classifier, we applied standardization
scaling to the input before feeding it into the classifier [25]. For
the LR baseline, this scaling is applied to the original data, while
for ROCKET-LR, it is applied to the latent space features enter-
ing the classifier. Notably, standardization preserves the relative
importance of features.

In our experiments, the number of random convolutional kernels
is set to 10,000, with kernel sizes randomly selected from {5, 7, 9}.

5.4 Results

Due to the temporal nature of our dataset, a classifier that can effec-
tively utilize temporal patterns is crucial. We first evaluate ROCKET
by comparing its performance against LR and XGBoost. Accuracy
(ACC) and Mean Absolute Error (MAE) were used for evaluation,
with MAE chosen due to the ordinal nature of our quantile-based
class definitions, where adjacent classes are considered more simi-
lar [20]. MAE, therefore, ensures that misclassifications involving
distant classes are penalized more heavily than those involving
closer classes.

Table 5: Performance comparison of different models based
on Accuracy and Mean Absolute Error

Model ACC1T | MAE |
ROCKET-XGBoost | 0.68 0.36
ROCKET-LR 0.61 0.46
XGBoost 0.63 0.44
LR 0.55 0.50

The results in Table 5 demonstrate that incorporating the ran-
dom convolutional kernel transformation significantly enhances the
performance of both XGBoost and LR, indicated by both higher ac-
curacy and lower MAE. Next, we applied ROCKET-LRP to ROCKET-
XGBoost to determine the feature importances of the inputs. While
ROCKET-LRP can also be applied to ROCKET-LR, we focus on
ROCKET-XGBoost due to its superior performance on this dataset.
As in previous experiments, « is set to 30. Since the manufacturing
dataset lacks ground truth for evaluating explanation accuracy, we
instead selected the top features determined by ROCKET-LRP and
masked the remaining features before retraining ROCKET-XGBoost



ROCKET-LRP: Explainable Time Series Classification with Application to Anomaly Prediction in Manufacturing

on the masked data. Our hypothesis is that if the determined fea-
tures are truly important, a model trained on them should maintain
significant discriminative information and achieve good perfor-
mance [31].

In our experiment, we computed the local feature importances
for each training data instance and retained only the top k% fea-
tures while setting all other features to zero. We then retrained the
ROCKET-XGBoost model on the masked dataset. This approach
allowed us to assess whether the top k% of features contain the
discriminative information necessary for accurate predictions. The
results were compared against those obtained using KernelSHAP,
Permutation, and LIME, as well as a baseline where k% of features
were randomly selected during training.

Table 6: Performance Comparison of Explanation Methods
Based on Accuracy and MAE

Accuracy (ACC) T
Method 75% | 50% | 25%
ROCKET-LRP | 0.66 | 0.62 | 0.52
KernelSHAP 0.63 | 0.48 | 0.33
Permutation 0.59 | 0.51 | 0.28

LIME 0.60 | 0.38 | 0.20
Random 0.48 | 0.40 | 0.36
Mean Absolute Error (MAE) |
Method 75% | 50% | 25%

ROCKET-LRP | 0.40 | 0.48 | 0.52
KernelSHAP 0.44 | 0.81 | 1.18
Permutation 0.48 | 0.68 | 1.37
LIME 046 | 1.07 | 1.17
Random 0.65 | 1.11 | 1.16

The results in Table 6 demonstrate that using ROCKET-LRP for
feature masking consistently outperforms the baselines. We observe
that ROCKET-LRP effectively preserves critical features, indicated
by significantly smaller degradation in performance compared to
other baselines. In particular, when retaining only 25% of the fea-
tures, all explainable baselines perform even worse than the random
baseline, except for ROCKET-LRP.

6 Conclusion

We propose a post-hoc explanation method for the ROCKET model,
designed to capture and analyze the temporal relationships inher-
ent in the data. Our approach integrates LRP with either model-
agnostic post-hoc or intrinsic local explanation techniques and
propagates the local explanations computed for the latent features
in ROCKET back to the original time series data. By leveraging
ROCKET-LRP, we aim to bridge the gap between the strong per-
formance of random convolution-based models and explainability.
Our experiments across two synthetic datasets and a real-world
manufacturing dataset show that ROCKET-LRP effectively identi-
fies important features. Our work raises interesting directions for
future work, including extending ROCKET-LRP to Time Series Ex-
trinsic Regression tasks and exploring additional predictive models
and local explanation techniques.
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A Experimental Setting for Simulated Datasets

Shapelet: A shapelet is embedded within a time series by adding a
sinusoidal wave defined as: shapelet = 0.5xsin (linspace(0, 27, 10)),
at a randomly selected position within the sequence. The shapelet
is further perturbed with Gaussian noise of standard deviation 0.05
to introduce variability. Approximately 60% of the samples contain
shapelets. The number of random convolutional kernels is set to
5,000, with kernel sizes selected from {7, 9, 11}.

Spike: Adapted from [45], with an 80% probability of each se-
quence containing a random number of spikes, drawn from a Pois-
son distribution with a mean of 2. The spike locations are randomly
chosen, and each spike increases the corresponding data point by
0.3. The number of random convolutional kernels was set to 5,000,
with kernel size selected from {2, 4, 6}.

B Hyperparameters for Manufacturing
Experiments

Table 7: Grid Search Tuning Space for Different Models

Hyperparameter Values Applicable Models
Max Depth {6, 8, 10} ROCKET-XGBoost, XGBoost
Num of Estimators {200, 300} ROCKET-XGBoost, XGBoost
Learning Rate (LR) {0.1, 0.2} ROCKET-XGBoost, XGBoost
Subsample {0.8, 1.0} ROCKET-XGBoost, XGBoost
ColSample {0.6, 0.8} ROCKET-XGBoost, XGBoost
C {1,0.1,0.01} ROCKET-LR, LR



http://github.com/TimeSynth/TimeSynth
http://github.com/TimeSynth/TimeSynth
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1098/rspl.1895.0041

	Abstract
	1 Introduction
	2 Related Work
	2.1 Time Series Classification
	2.2 Random Convolutional Kernel Transformation
	2.3 Explainable Machine Learning

	3 Methodology
	4 Experiments on Simulated Datasets
	4.1 Shapelet Data
	4.2 Spike Data

	5 Experiments on Real Manufacturing Dataset
	5.1 Data Preparation
	5.2 Quantile-based Classification
	5.3 Experiment Setting
	5.4 Results

	6 Conclusion
	References
	A Experimental Setting for Simulated Datasets
	B Hyperparameters for Manufacturing Experiments

