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Abstract
Machine learning techniques are increasingly being used in the area
of multivariate time series anomaly detection. However, their effec-
tiveness—particularly for supervised approaches—is often limited
by the scarcity of labeled training data. Identifying anomalies in the
unlabeled training data is very challenging without the knowledge
of subject matter experts. Therefore, researchers usually assume
that anomalies in training data are sparse enough to be negligi-
ble—an assumption often violated in real-world scenarios. Conven-
tional attempts to remove anomalies in the training data are based
on simplistic outlier detection methods, such as three standard
deviation thresholds, or methods intended for univariate analy-
sis, which inadequately handles complex multivariate data. This
paper introduces a preprocessing method designed to enhance ex-
isting supervised anomaly detection models. Our method employs
an existing supervised algorithm to localize faults in unlabeled
multivariate training data through a recursive process of partition-
ing and fault inferencing, progressively narrowing down faults to
smaller regions and thereby benefiting supervised detection tasks
in multivariate time series. The method is positioned as an ancillary
technique intended to benefit a broad set of existing supervised
anomaly detection algorithms, as opposed to a standalone anomaly
detection technique. The capability of our method is demonstrated
on both synthetic and published datasets where the labeled ground-
truth defects are available. We show how our method improves
the supervised model with the unlabeled training data, resulting in
greater anomaly detection accuracy.
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1 Introduction
Data-driven machine learning models have been commonly lever-
aged in the area of multivariate time series anomaly detection. One
significant challenge is the unavailability of labeled training data for
all measurements under normal operating conditions of the system
of interest, which degrades anomaly detection tasks downstream
of the training. Labeling anomalies is very difficult and sometimes
even infeasible, mainly because manually labeling the data by sub-
ject matter experts is impractical especially when large scale sensor
network is deployed [2].

Conventional attempts to remove anomalies in the training data
are based on simplistic outlier detectionmethods, such as three stan-
dard deviation thresholds [3]. Unsupervised techniques are often
utilized when no prior knowledge of the training dataset is avail-
able. However, many unsupervised techniques employ clustering
type algorithms that arguably assume the anomalous data reside
inside small clusters [20], or are built through linear projection
and transformation, which is unable to handle non-linearity and
exploit the hidden inter-correlations of the multivariate time series
[15]. More sophisticated unsupervised methods such as Generative
Adversarial Networks (GAN, [6]) have proven helpful, but the fact
that its training objective often results in saddle point convergence
makes the GAN models hard to train.

On the other hand, supervised techniques suffer greater chal-
lenges from analyzing unlabeled training data than the unsuper-
vised techniques. The key prerequisite for creating a proper super-
vised anomaly detection model has always been that the training
dataset has labeled instances for normal as well as anomaly classes
[4]. Otherwise the model will ultimately learn the wrong data distri-
bution, leading to biased training models and causing false alarms
and missed alarms. Supervised techniques for time series anomaly
detection have been intensively studied and widely adopted for
decades, from the conventional approaches such as Support Vector
Machines [16] and Artificial Neural Networks [12], to more recent
Long Short Term Memory (LSTM) models that have been found to
perform well with long term temporal dependencies [11, 14, 22].
However, the availability of labeled training data and the impact
of the unlabeled training data have received little attention. The
state-of-art supervised approaches to anomaly detection commonly
assume that the number of anomalies in the training data is small
enough that its negative impact on the model can be ignored, which
is often not the case. In fact, we found the presence of unlabeled
anomalies in the training data will result in those same anomalies
not being flagged later during the monitoring of the same assets.

Motivated by this issue, we propose a novel preprocessingmethod
aimed specifically at improving existing supervised anomaly detec-
tion models. Our method recursively applies a chosen supervised
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anomaly detection technique to localize anomalous regions within
unlabeled multivariate datasets. Specifically, we subdivide unla-
beled training data into partitions, build supervised models on
combinations of the partitions, and recursively infer the partitions
that are most likely to contain anomalies from the output of these
models. The partitions flagged as anomalous are further subdivided
into smaller partitions in the subsequent iterations, to localize the
smallest segments containing anomalies (thereby maximizing the
non-anomalous data that will be used for model training), while
the partitions flagged as normal are retained. The recursive process
is terminated when certain stopping criteria are met. The combina-
tion of all retained partitions after the recursive process is expected
to constitute a refined training dataset covering the normal operat-
ing status of the system. The proposed method is positioned as an
ancillary technique that benefits supervised anomaly detection al-
gorithms, as opposed to a standalone anomaly detection algorithm.

The case studies presented to demonstrate and validate our pro-
posed technique utilize a nonlinear multivariate pattern recognition
approach known as the Multivariate State Estimation Technique
(MSET, [21]), but the methodology is designed to be easily adapt-
able to any existing multivariate techniques. We illustrate the risk
of using unlabeled training data for supervised detection, and val-
idate the performance of our technique with both synthetic data
and published data with known ground-truth defects available. We
demonstrate that, after removing the suspect regions flagged by our
technique from the unlabeled training data, the same supervised
anomaly detector used in our method achieves improved detection
performance—specifically, a significant reduction in missed alarms.

The paper is organized as follows. In Section 2, the multivari-
ate time series anomaly detection model and the datasets used in
this work are introduced. Section 3 introduces the methodology
and mathematical derivation of our proposed method. In Section
4, we present two case studies using both synthetic and real world
datasets, examine the performance of our technique through de-
tailed analysis, and discuss the results, applications, and benefits of
our technique in detail. Finally, Section 5 concludes the paper.

2 Background and Data
2.1 Multivariate Time Series Anomaly

Detection Model
The supervised model used in this work employs a nonlinear, non-
parametric, multivariate pattern recognition technique, called the
Multivariate State Estimation Technique (MSET). It was originally
developed byArgonneNational Laboratory (ANL) to discover anom-
alies in time series sensor data in nuclear power applications [7, 10].
Over the years, MSET has been evolved and scaled to the big data
prognostic applications commonly seen in safety-critical industries
including aerospace, utilities, and computer systems [8, 9]. The
mathematical derivation of the latest MSET algorithm is outlined
in this section.

The main objective of MSET is to make a quantitative assessment
of the current operation status by using the degree of similarity be-
tween historical normal operating data and the current surveillance
observations. First, the degree of similarity between two matrices
𝐴 and 𝐵 of the same column size is defined by 𝐴 ⊗ 𝐵, where ⊗
represents a proprietary non-linear matrix operator.

Assume the historical data D from the monitored system under
normal operation consisting of𝑚 measurements and 𝑛 sensors is
available. A data subset 𝐷 , consisting of𝑚′ measurements and 𝑛
sensors that preserves prominent non-linear dynamic and inter-
correlations between the sensors, is selected:

𝐷 =


X1,1 . . . X1,𝑛
.
.
.

. . .
.
.
.

X𝑚′,1 . . . X𝑚′,𝑛

 ∈ R
[𝑚′×𝑛] (1)

To proceed, the pairwise correlation between the measurements
in 𝐷 can be quantified by:

𝐷⊤ ⊗ 𝐷, (2)

resulting in a symmetric and positive definite matrix.
To minimize the Euclidean norm between the estimated and

measured data vectors 𝑋 obs, a weight𝑤 is defined by:

𝑤 = (𝐷⊤ ⊗ 𝐷)∗ (𝐷⊤ ⊗ 𝑋 obs), (3)

where sign ∗ indicates pseudoinverse calculation, which can accom-
modate a singular matrix caused by two or more repeated or highly
correlated sensor signals in the dataset (i.e., high collinearity).

MSET estimates 𝑋 est are produced for new observations 𝑋 obs

by:

𝑋 est = 𝐷𝑤 = 𝐷 (𝐷⊤ ⊗ 𝐷)∗ (𝐷⊤ ⊗ 𝑋 obs) . (4)

The residual errors between the MSET estimates and the actual
observations are:

𝑒 = 𝑋 est − 𝑋 obs . (5)

Finally, the residuals 𝑒 go through a statistical binary hypothesis
test called Sequential Probability Ratio Test (SPRT, [23]), which
makes the anomaly detection decisions considering the log likeli-
hood ratio (LLR) as a function of the number of observations:

LLR = log
[ ∏𝑛

𝑖=1 𝑃 (𝑒𝑖 |normal)∏𝑛
𝑖=1 𝑃 (𝑒𝑖 |abnormal)

]
. (6)

The SPRT algorithm quantifies both mean and variance shifts
between the normal distribution and any degraded distribution to
flag anomalies.

2.2 Benchmark Dataset
A number of public benchmark datasets have been commonly used
to evaluate various anomaly detection techniques. However, Wu
et al. [25] recently did a careful evaluation of these datasets and
concluded that the majority of the faults in the datasets suffer
from one or more of four flaws. To address the reasonable concerns
outlined in [25], we have developed a compendium of realistic types
of time series sensor fault signatures that we have observed over
the years in real anomaly detection use cases across a variety of
industries, which provides a reliable test bed with “known ground
truth" injected faults and “known ground truth" absence of faults,
for evaluating our proposed technique.

The compendium of fault types is summarized as follows:
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• Ramp: A basic type of anomaly, emulating signal drift, where
degradation initiates “inside" the noise level of the signals,
develops over time, and eventually goes outside of the (un-
degraded) signal’s range.
• Mean Shift: A graduate or abrupt change point in the mean
level of a time series (e.g., caused by sensor decalibration
bias, or sudden changes in the ambient condition, or actual
onset of asset degradation).
• Gain Change: A class of “inlier failures" in IoT industries,
where the physical transducer gradually loses its response
to the physical parameter it is sensing, which the instrumen-
tation specialists call “Loss-of-Gain" failures and cannot be
detected by common outlier detection methods.
• Time Lag: A type of clock-skew error in one or more dis-
tributed Data Acquisition modules.
• Phase Shift: A frequency modulation error in one or more
distributed Data Acquisition modules.
• Signal Dropout: One sensor out of an array of sensors sud-
denly disappears (data acquisition fault) or goes to a perfectly
flat line (transducer “stuck-at" fault), resulting in the loss of
its share in subsequent accumulated measurements.

To create datasets to analyze, a synthetic signal generator is
often used for machine learning tuning and validation[13]. We
leverage the Telemetry Parameter Synthesis System (TPSS) for ma-
chine learning tuning and validation[24], which generates a set
of synthetic time series telemetry signals (based on real measured
signals) using Fourier decomposition and reconstruction, with cus-
tomization of sampling rates, signal-to-noise ratio, degree of serial
correlation, amplitudes, mean, and a “dispersion factor" for distribut-
ing the signals more widely and arbitrarily across a user-defined
range. The synthetic signals exhibit statistically indistinguishable
characteristics from the real-world signals from which they were
derived.

The aforementioned library of fault types are synthesized and
injected individually or collectively into one or more synthetic
signals at the same and/or different times under a wide variety
of single-fault, multiple-sequential fault, and multiple concurrent
fault scenarios. Because the ground truth is known in the synthetic
datasets, they are very useful for tuning, validation, and assessment
of our algorithm.

Additionally, we also use a real world dataset generated and
published by iTrust [5], which contains multivariate time series
measurements from a down-scaled model of Singapore’s water
treatment system (SWaT) built with the aim to publish time series
data dedicated to the anomaly detection research. It has labeled
anomalies in the testing dataset for validation1.

3 Methodology
The proposed technique partitions the data and performs multiple
rounds of analysis to localize the regions that most likely contain
faults. The partitioning strategy is designated by 2𝑅 , where 𝑅 is
the number of rounds. In the first round, it divides the data to
two halves, and then uses a supervised anomaly detection model
(e.g., the MSET model introduced in Section 2) to conduct training

1https://itrust.sutd.edu.sg/itrust-labs_datasets/, accessible as of May 2025.

and testing using the two partitions following a scheme of cross-
validation approach. Anomaly decisions on the measurements are
made by the model during the testing process for each partition,
and then further evaluated through a quantitative “fault inferenc-
ing" method, where the severity of the anomalous measurements
are characterized at the partition level. Afterwards, the partitions
flagged as normal will be included in the model training in the
subsequent rounds of analysis. The partitions flagged as suspect
are concatenated for the next round of partitioning, where either a
cross-validation analysis or sequential testing (more details later)
will be conducted to further narrow down the regions containing
faults. The program stops progressing to the next round when one
of the two terminating conditions is reached. Since our technique
localizes the faults through a recursive procedure of partitioning
and fault inferencing, we call it Recursive Fault Localization Process
(RFLP).

A detailed example is provided for more clarity. Given a train-
ing dataset D, the algorithm starts with splitting the data into two
partitions of equal size. An MSET model is trained using the first
partition, and tested on the second partition. Then the two parti-
tions are swapped and the training-testing procedure is repeated.
From here, two possible scenarios and terminating conditions are
considered:

1) No anomaly is localized in either partition. Both partitions
are assumed to be anomaly-free, but we still perform an additional
round of partitioning and cross-validation process to ensure that
no anomaly is missed due to a possible but unlikely scenario where
an identical unlabeled fault signature is in both partitions. If no
anomaly is found in any of the partitions again, the algorithm
terminates with the entire dataset being considered anomaly-free.

2) 𝑘 and 2𝑅 −𝑘 partitions are flagged as anomalous and anomaly-
free respectively. The aggregated anomalous partition 𝑃

(𝑅)
anom and

aggregated clean partition 𝑃
(𝑅)
cln in Round 𝑅 are expressed in Eqn.

(7) and Eqn. (8) respectively.

𝑃
(𝑅)
anom = P (𝑅)1 ++ · · · ++ P (𝑅)

𝑘
, 𝑘 ∈ [1, 2𝑅] (7)

𝑃
(𝑅)
cln = P′ (𝑅)1 ++ · · · ++ P′ (𝑅)2𝑅−𝑘 , 𝑘 ∈ [1, 2

𝑅] (8)

where P and P′ represent the suspicious partitions that are deemed
as anomalous and anomaly-free respectively, and ++ is the symbol for
concatenation operation. To proceed, 𝑃 (𝑅)anom is further subdivided
into smaller partitions, while 𝑃 (𝑅)cln is carried over and included as
part of the training data to build a new model for the next round of
analysis, in which each of the smaller partitions is tested with the
newmodel, followed by the fault inferencing process. The recursive
process propagates up to 𝑅max rounds of analysis, and a detailed
discussion on determining the maximum number of rounds 𝑅max is
provided in Section 4.3.3. At the end of the final round, the partitions
deemed as anomalous across all the signals are concatenated at the
time level before being removed from the dataset, resulting in a
refined dataset for training.

The criteria for a partition to be flagged as anomalous during the
fault inferencing process is introduced. As explained in Section 2.1,
the SPRT algorithm makes a binary decision on whether a given
observation is anomalous. It assigns a decision value of 0 to an
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observation deemed as clean, and 1 to an observation deemed as
anomalous. We characterize the severity of the anomalous observa-
tions at the partition level with an “anomaly severity" metric that is
called “Tripping Frequency" (TF, [17]). It examines the density and
growth rate of the time series anomalous points using a unitless
measure, which is amenable to signals with different units. Specif-
ically, after the SPRT algorithm has made a time series anomaly
decision for the measurements inside a partition, we compute the
cumulative sum of the decision values from the beginning of the
partition up to a time step of every time step of the partition, result-
ing in a continuous function. We then fit a linear regression model
to the cumulative function, and compute the slope of the model,
which is mathematically summarized by Eqns. (9)-(11):

𝑌𝑖 =

𝑖∑︁
𝑗=1

𝑥 𝑗 ,

𝛾 = argmin
𝛾

( 𝐿𝑅∑︁
𝑖

(𝑌𝑖 − 𝑓 (𝑖, 𝛾))2
)
,

𝑓 (𝑖, 𝛾) = 𝑌𝑖 − 𝑖𝛾,

(9)

where 𝑥 𝑗 = 0 or 1 is the SPRT decision value for the 𝑗 th element
of the time series and𝑌𝑖 is the cumulative sum of the decision values
determined at the 𝑖th time step of the time series, 𝛾 ∈ [0, 1] is the
derived slope from the regression model. 𝐿𝑅 indicates the size of
each suspicious partition (i.e., P (𝑅) or P′ (𝑅) ) in round 𝑅:

𝐿𝑅 =
card(𝑃 (𝑅−1)anom )

2𝑅
, (10)

where “card” indicates cardinality, and

𝑃
(𝑅−1)
anom =

{
P (𝑅−1)1 ++ · · · ++ P (𝑅−1)

𝑘
. 𝑅 > 1

Full Dataset D. 𝑅 = 1
(11)

TF characterizes the severity of the anomalous points labeled
by SPRT by discriminating the adjacent or consecutive anoma-
lous points that are indicative of a developing anomaly, from the
sparsely spaced anomalous points that are often caused by the sta-
tistical variations in the data. A TF threshold is needed to define the
severity. A larger TF threshold makes the RFLP algorithm prioritize
removing the obvious anomalies and preserving as much training
data as possible. A smaller TF threshold results in a conservative
decision-making process, which can remove subtle anomalies in
the training data at the cost of some anomaly-free data being unnec-
essarily removed. Through extensive empirical testing on synthetic
data, the TF threshold is determined to be 0.1. Hence, if a parti-
tion containing some anomalous measurements labeled by SPRT
is shown to have 𝛾 > 0.1, it is flagged as anomalous (per P (𝑅) in
Eqn. 7). This empirical TF threshold is found to be sensitive enough
to detect large instantaneous faults, such as spike changes, and
subtle developing faults that span a longer time period, without
being too rigorous by filtering out the partitions with the abnormal
points contained therein appearing to be random noise. Ultimately,
prognostic performance requirements specific to the use case are
needed to determine a more optimal TF threshold. For such cases,
a TF threshold could be developed as a function of the sample size
and the economic-safety profiles of the machine learning users.

Last, for added clarity, the pseudocode implementation of the
RFLP technique using MSET as the chosen supervised anomaly
detector is presented in Algorithm 1.

Algorithm 1 Pseudocode implementation of the RFLP technique
using MSET

Input: unlabeled training data D ∈ R[𝑚×𝑛]

𝑃
(0)
anom ← D

for 𝑅 ∈ {1, . . . , 𝑅max} do
𝐿𝑅 ← card(𝑃 (𝑅−1)anom )

2𝑅
for 𝑘 ∈ {1, . . . , 2𝑅} do
// parse partitions for testing
P (𝑅)
𝑘
← [(𝑘 − 1)𝐿𝑅 + 1 . . . 𝑘𝐿𝑅, 𝑗] , 𝑗 ∈ [1, 𝑛]

// parse partitions for training
𝑃
(𝑅)
cln ←

[
D\P′ (𝑅)

𝑘
, 𝑗

]
, 𝑗 ∈ [1, 𝑛]

→ train model on 𝑃
(𝑅)
cln and test P′ (𝑅)

𝑘
→ calculate TF, solve 𝛾
if 𝛾 > 0.1 then
𝑃
(𝑅)
anom ← 𝑃

(𝑅)
anom ++ P

(𝑅)
𝑘

, 𝑘 ∈ [1, 2𝑅]
end if

end for
if 𝑅 = 1 & 𝑃

(𝑅)
anom is empty then

𝑅 = 𝑅 + 1
else if 𝑃 (𝑅)anom is empty then

// No partitions flagged as anomalous
→ Terminate

end if
end for
Output: refined training data D

4 Results and Discussion
4.1 Case Study with Synthetic Data
A detailed example using synthetic data is presented to demonstrate
the performance of the RFLP technique on discerning separate faults
in same signal. Per Section 2.2, we generate 100 synthetic signals,
each of which is composed of three sinusoidal time series of 5k
samples each with different mean, variance and noise ratio. Two
faults of different type, length, and magnitude are synthesized and
deliberately superimposed onto the first half and the second half of
one of the synthetic signals.

Figure 1 illustrates the synthetic signals before (blue) and after
(red) the faults are injected. The visual difference between the two
signals that reveals the faults is in red. The fault on the left half is
a mild phase shift of a small decrease in the wave frequency that
spans 310 data points, and the other fault is a sudden time lag of
300 data points. The magnitude of both faults is close to the noise
band of the original signal (blue), so the anomalous proportions
(red) stay within the normal range of the original signal, and do
not appear obvious to the common outlier detection methods.

Our technique was able to localize both injected faults through
4 rounds of fault localization. At the end of the 3rd round of anal-
ysis, the anomalous measurements that constitute the two faults
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Figure 1: Example validation of the RFLP technique on one of the 100 synthetic signals. Two faults of distinct types (red) reside
in the signal (blue) at different locations. Prior to the final round of partitioning and fault inferencing, the RFLP technique
has successfully narrowed down the anomalous points that constitute the two faults to two suspect regions (black rectangle),
which are then further subdivided in the final round (dashed line). Ultimately, 5 partitions in each region (bracketed by red
rectangle) are deemed as anomalous, with the rest of the partitions flagged as normal (green shade).

have been narrowed down to two regions of the same size (black
rectangles in Figure 1). The data outside the two regions are used
to train a MSET model. In the final round of analysis, each region
is divided into 8 partitions (indicated by the dashed line), resulting
in a total of 16 partitions. After they are evaluated with the MSET
model, and subsequently the fault inferencing process, 5 partitions
in each regions are deemed as anomalous (aggregated and brack-
eted by red rectangle), while the other partitions are deemed as
normal (green highlights). The aggregated partitions completely
bracket the injected faults, demonstrating that the proposed RFLP
technique functions as designed.

While the maximum number of rounds of fault localization needs
to be pre-defined in our work, the number of model training itera-
tions is not fixed, but adapts as the use case requires, which depends
on the complexity and locations of the faults. For example, if the
faults are present in both sides of the signal (Figure 1), then it is a
challenging scenario because one fault resides in the training parti-
tion while another fault is inside the testing partition in the first
round of analysis. This scenario typically requires more iterations
of training-testing to discern both faults than other scenarios where

the faults are close to each other. In our case, 10 MSET models were
built for this example. Nevertheless, with the most lightweight
model settings, this example took less than 30 sec to complete on
an Intel workstation.

4.2 Case Study with Published Data
A total of 22 sensor signals are included in the SWaT dataset. The
length of the time series is about 497kmeasurements for the training
data, and 450k measurements for the testing data. The labels for
the ground truth faults are available only for the testing data. The
MSET technique introduced in Section 2 serves as the supervised
anomaly detector in the case study.

It is worth noting that the use of a particular anomaly detector
is not the primary focus of our works. Our method is designed to
supplement any given anomaly detection algorithmwith the goal of
improving its performance by enhancing the quality of the training
data. As such, the relative performance improvement achieved on
a given anomaly detector is of primary interest in our study.

4.2.1 Validation on Unlabeled Training Data. We first showcase
one of the SWaT training signals as an example in Figure 2. The
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signal (blue) starts out from the global minimal value, and then
almost monotonically increases, resembling an up-ramp, until at
a later time when the signal values start to be range-bound. This
up-ramp is present in all 22 signals at the same time, though with
different magnitudes. Although the training dataset lacks explicit
labeling information, the researchers of the SWaT system state in
their work [5] that the system needs some time to stabilize and reach
its normal steady state operation. The system stabilization period
is typically a consequence of the system overcoming inertia-from
static friction-until it reaches its dynamic equilibrium. Therefore,
the system is not in a normal operating state during this time. By
visualizing this signal, it is obvious that the up-ramp at the start of
the data (a 5-hour period, highlighted by red shade) was part of the
system’s stabilization process. As a consequence, the measurements
within this time period exhibit completely different characteristics
and dynamics from the measurements under steady state. Including
this time period in model training would bias the resulting model.

Figure 2: Measurements taken during the system’s stabiliza-
tion period (red shaded) and the anomalous partition (black
bracket) identified by our technique on one of the SWaT
training signals. Only the first 25% of the data is displayed
for readability.

To proceed, we apply the RFLP technique to the dataset, and as a
result, a total of 5 different models were trained2. In the final round
of analysis, two anomalous partitions out of 16 partitions were
flagged, which are aggregated and marked by a black rectangle in
Figure 2 for illustration clarity. The output of the technique com-
pletely brackets the up-ramp, which is deemed successful per the
descriptions about the system stabilization time in [5]. It is worth-
while to note that, although this up-ramp can easily be identified
visually by human operators, our technique autonomously detects
the abnormal measurements caused by the system stabilization so
they can be excluded them from the training data without requiring
expert intervention. The impact of having these abnormal measure-
ments in the training data on the downstream supervised detection
is further investigated in Section 4.2.2.
2models breakdown: 2 models in the first round, and 1 model each in the following
three rounds, per Section 3.

Table 1: Performance comparison of supervised anomaly de-
tection on SWaT testing data between the common approach
(Case 1) and our proposed approach (Case 2)

FAP MAP

Case 1 0.0069 0.4771
Case 2 0.0073 0.1667

4.2.2 Benefits of Removing Abnoarmal Measurements from Training
Data. To further point out the value of the RFLP technique with
respect to the stated objective, two supervised detection use cases
using SWaT data are formulated and benchmarked, in which the
standard use of our method is compared to the commonly adopted
approach under the assumption that the negative impact of unla-
beled training data is negligible [1].

Case 1 presents the commonly adopted approach for super-
vised detection with unlabeled training data: a supervised model
is trained on the entire SWaT training dataset—treating it as fault-
free—and then evaluated using the testing data.

Case 2 describes our proposed approach for improving the super-
vised model: the region flagged as anomalous by the RFLP method
is removed (i.e., the black rectangle in Figure 2), and the remaining
measurements are used to train the supervised model, which is
subsequently evaluated on the testing data.

To quantify how our method improves the performance of the
supervised model, a set of benchmark metrics is needed. While
there has been substantial research dedicated to developing new and
robust benchmarks for evaluating anomaly detection algorithms[18,
19], this study adopts the conventional performance metrics: False
Alarm Probability (FAP) and Missed Alarm Probability (MAP):

FAP =
TP

𝑁fault
,

MAP =
FP

𝑁total
,

(12)

where TP and FP are true predictions and false predictions, re-
spectively, and 𝑁fault and 𝑁total indicate the number of known
anomalous samples and total number of samples, respectively. The
FAP and MAP are computed for each signal in the testing data, and
their averages across all signals are summarized in Table 1.

In both cases, FAP is small and nearly identical. The small differ-
ence can be attributed to minor statistical variations between the
original and the RFLP-processed training data used in the models.
However, in Case 2, the MAP improves by a large margin (31 per-
centage points) because a fault in form of a big step change that is
present in 6 signals (one of them is shown in the center of Figure
3) was missed in Case 1 but was successfully captured in Case 2.
Other faults in form of pulse and mean shift that were successfully
detected in Case 1 were still detected in Case 2.

The cause of that severe but “obvious" step-change fault being
missed in Case 1 is due to the large up-ramp in the beginning of
the training data (red shade in Figure 2) not being excluded from
the model. The step-change fault in the testing data consisting of a
big up-ramp and a down-ramp was not flagged during the testing
in Case 1, because the model had “learned" a similar pattern that
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appears in the training data. This strengthens our assertion that the
presence of unlabeled anomalies in the training data for a system
can lead to the same types of fault signatures being missed during
subsequent monitoring of the same system.

4.2.3 Additional Validation. Sections 4.2.1 and 4.2.2 validate the
standard use of RPLP – remove anomalies in the training data and
build a model with the remaining “clean" data, and then use the
model to predict anomalies in the testing data. In this section, we
apply the RFLP method to the labeled SWaT testing data to evaluate
its performance from a different perspective—by comparing its
output to the ground truth anomalies. Essentially, we treat the
labeled testing data as if it were unlabeled training data, providing
an additional validation of the RFLP method’s ability to localize
anomalies without prior labeling. This approach further verifies
the capability of the RFLP technique to isolate faults from normal
data.

Figure 3: The comparison between the output of the RFLP
technique and provided ground truth faults on one of the
SWaT testing signals. Blue and red colors distinguish nor-
mal and anomalous measurements, and green and white
highlights differentiate the partitions flagged as normal and
anomalous, respectively, by the RFLP technique.

Figure 3 shows one of the SWaT testing signals in blue with
the known ground truth faults in red. Green and white highlights
differentiate the partitions deemed as normal and anomalous, re-
spectively, by the RFLP technique. Due to the wide distribution
of faults, the algorithm continued using the entire testing dataset
to localize faults into narrower partitions. As a result, in the final
round of analysis, the signal was evenly divided by 16 partitions.
The anomalous partitions identified by the algorithm were able to
bracket all ground truth faults. Notably, none of the 3 partitions that
contained no ground truth faults were falsely labeled as anomalous,
and all 13 partitions containing ground truth faults were correctly
identified. The same results were observed in other 21 signals. Some
normal measurements were included within the partitions flagged
as anomalous, which relates to the maximum number of rounds
𝑅max defined in our experiment. By progressing to more rounds

of partitioning (i.e., smaller partition sizes) and fault inferencing,
our procedure could increase the amount of anomaly-free data
available to train a model, but that comes with a computational
overhead trade-off, which is discussed in Section 4.3.3. Nevertheless,
the results presented in Figure 3 provide further evidence that our
method functions as intended.

4.3 Discussion
4.3.1 Contribution and Positioning. Although our work employs a
supervised anomaly detector to localize faulty regions in unlabeled
training data, its core contribution is a complementary preprocess-
ing method designed to support supervised anomaly detection in
multivariate time series. As such, it is positioned as an ancillary
technique that improves the performance of the existing anomaly
detectors, rather than operating as a standalone anomaly detector.
Therefore, the method itself cannot substitute the anomaly detec-
tion model. To the best of the authors’ knowledge, this method
is new and has not been presented before, and the research work
presented by Aubet et al. [1] is the closest competing approach
that shares the same objective, though it is distinctly different from
our work in that it focuses on the univariate signals and identifies
the anomalous regions through an interpolation approach. The
concept of our method can also be applied to the univariate time
series, though we would have to develop a different recursive frame-
work if a univariate kernel is employed. We were motivated to start
out with multivariate time series because we found multivariate
anomaly detection is more susceptible to ignoring the faults in the
unlabeled training data than the univariate counterpart.

In this work, a multivariate anomaly detection technique (MSET)
is selected as the supervised anomaly detector. However, the pro-
posed method is readily adaptable to other ML models including
regression based multivariate techniques. Ultimately, our technique
is designed to enhance, rather than replace existing supervised
anomaly detection detectors when labeled training data is unavail-
able.

4.3.2 Cost of Using Unlabeled Training Data in Supervised Detec-
tion. The RFLP technique employs a recursive procedure to localize
faults in the unlabeled training data for supervised detection appli-
cations. As a consequence, the computational cost can be significant
as the number of partitions grows. The alternative options are to
use unlabeled training data or to use a manual, labor intensive pro-
cess to identify anomalies. Using unlabeled training blindly often
leads to many missed alarms causing expensive unplanned out-
ages or maintenance. The missed alarms can even be catastrophic
failure in safety-critical applications. Manually removing anom-
alies is labor intensive and often infeasible. The data users would
need to 1) consult with the subject matter experts for the assets
under surveillance to try to identify the possible faults, or 2) cross
reference the Service Request log database for the assets under
surveillance. Thus, we believe that the training compute cost of the
RFLP technique is much cheaper than the other options for most ap-
plications. Also, the computational cost of our technique represents
a one-time upfront expense for the use cases where the customer
has no anomaly labeling. It does not increase the operational cost
for the supervised detection downstream of the training, but does



MILETS ’25, August 03–07, 2025, Toronto, Canada Matthew Gerdes and Guang Wang

significantly enhance the detection performance, as demonstrated
in Section 4.2.2.

4.3.3 Limitations and Future Work. The limitation of the RFLP
approach is the maximum number of rounds of partitioning 𝑅max
needs to be predetermined upfront. This introduces a trade-off
between computational cost and the amount of “clean” training
data recovered, warranting further discussion.

The overall strategy of the RFLP technique is to localize faults
to one or more suspect regions through recursive rounds of parti-
tioning. These suspect regions become narrower as the algorithm
progresses, and by the time it progresses to the final round, the
goal is to conservatively ensure that the faults have been narrowed
down to one or several small regions. The rationale behind this
strategy is that removing a small percentage of normal data along
with the anomalous region does not penalize MAPs, as sufficient
clean data remains available for training the model. However, leav-
ing a small percentage of abnormal data in the region flagged as
normal can negatively impact MAPs. Therefore, the algorithm is
expected to terminate conservatively, allowing some normal ob-
servations to remain within the region flagged as anomalous to
minimize the risk of retaining undetected faults. Further shrinking
the suspect region through additional rounds of partitioning would
increase computational cost while offering only marginal benefit,
as the small amount of additional clean data recovered is unlikely
to substantially enhance model performance (per the FAP metric
in Table 1).

Therefore, an optimal number of rounds 𝑅max needs to be deter-
mined to halt the recursive subdividing process and save compute
cost while ensuring that the suspect region in the beginning of the
final round is longer than the fault duration. Although a univer-
sally optimal 𝑅max couldn’t be derived in this study, we have found
after empirical experimentation across many permutations of fault
types, duration, and severity, that a 𝑅max of 4 is usually adequate to
localize the anomalous behavior without excessively conservative
inclusion of normal observations in the final anomalous partitions.
This 𝑅max has been validated on a variety of datasets including the
synthetic data with small sample size (5k) and real world data with
much bigger sample size (497k) that are used in this work. Never-
theless, a logical extension to this work is to derive an adaptive
𝑅max for any given multivariate dataset in an automated fashion.

5 Conclusions
In this paper, we address the challenge posed by the lack of labeled
training data and highlight the impact of blindly using unlabeled
training data in supervised anomaly detection. We present a prepro-
cessing strategy that mitigates the challenges by localizing the most
likely anomalies within the unlabeled training data to small regions
through a recursive process of partitioning and fault inferencing.
By excluding these suspect regions from training, the resulting su-
pervised model demonstrates significantly improved performance.
A mathematical multivariate technique is used as the supervised
anomaly detector in this work. However, the proposed method is
readily adaptable to other anomaly detection models, including
heuristic based models that have been used in many research work.
The capability of our technique has been validated on both syn-
thetic and published datasets with ground truth fault signatures

available. For the published dataset, we demonstrate that our tech-
nique effectively localizes the abnormal regions in the unlabeled
training data, and as a result, the anomaly detection performance is
improved with the Missed Alarm Probability reduced by 31%. While
our method is capable of narrowing down the faults to regions that
contain faults, it does not produce definitive anomaly decisions at
the timestamp level. Therefore, it is not intended to function as
a standalone anomaly detection model, but rather as an ancillary
technique that enhances the performance of supervised anomaly
detection. In summary, our contribution complements—rather than
competes with—existing anomaly detection algorithms, and offers
a practical solution for handling unlabeled time series training data
in supervised multivariate machine learning applications.
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