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Multi-Modal Interpretable Graph for Competing Risk Prediction
with Electronic Health Records

Anonymous Author(s)

Abstract
We present a novel multi-modal graph learning framework for
competing risks survival analysis from electronic health records
(EHRs). While recent work has demonstrated the power of deep
learning for dynamic risk prediction, most models are constrained
to unimodal inputs or static graph structures and cannot model
competing clinical endpoints. We introduce a unified, end-to-end
model that learns modality-specific spatio-temporal graph repre-
sentations for time-series, demographics, diagnostic histories, and
radiographic text, and fuses them via hierarchical attention into a
global patient graph. This design enables dynamic construction of
informative substructures both within and across modalities, offer-
ing interpretable predictions for multiple competing outcomes. We
further propose a composite training objective combining survival
likelihood, temporal ranking, and graph regularisation losses to
improve risk discrimination, calibration, and structural consistency
over time. Our model outperforms state-of-the-art baselines across
five real-world EHR datasets, achieving up to 8% gains in cause-
specific concordance, while offering fine-grained interpretability
across temporal and modality dimensions. These results establish a
new foundation for trustworthy and data-efficient risk estimation
in clinical settings.

CCS Concepts
• Applied computing→ Health informatics.

Keywords
machine learning for healthcare, survival analysis, graph neural
networks, multimodal learning, competing risks, interpretability
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1 INTRODUCTION
The rapid increase in the availability of electronic health records
(EHRs), coupled with advanced machine learning models, has led
to an eruption of proposed solutions to clinical risk prediction chal-
lenges [8, 31]. One of the challenges is the generation of robust
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and dynamic risk profiles that capture the patient state accurately.
Time-to-event modelling allows us to model not just whether an
event, like death in the hospital, happens or not, but also the time
distribution of the risk of death [27]. This enables the comparison
of patients with different risk profiles throughout time using lon-
gitudinal measurements instead of solely the last measured value
to inform prioritisation, treatment, and lifestyle decisions [16]. To
holistically assess dynamic risk requires learning the complete pic-
ture of the patient’s state beyond just one set of measurements,
especially in evolving scenarios of intensive care [10]. To that end,
multi-modal deep learning empowers the incorporation of multiple
modalities like demographics, vital signs, laboratory measurements,
medical history, and clinical text reports to inform decision-making
with machine learning.

A limiting factor of time-to-event modelling is its often restric-
tion to single-risk scenarios and constraining assumptions on the
behaviour of the covariates over time. The most popular example
is the Cox Proportional Hazards model, which assumes a single
static modality for covariates and fixed proportionality of change in
risk over time between patients [23]. Extensions of the Cox model
exist for dynamic covariates and competing risk scenarios, however,
they make independence assumptions on the risks themselves or
do not perform as well on longitudinal time-series scenarios as
deep learning models [2, 39]. Multi-modal deep learning with a
competing risk extension, in which multiple risks or complications
are affecting the patient, can address these challenges and avoid dis-
carding important information about the patient when estimating
risk distributions for several events.

Recent multi-modal deep learning proposals for electronic health
records use the fusion of separate and different neural networkmod-
ules for each modality to make single-event predictions [11, 30, 38].
These approaches rely on different encoding embeddings for differ-
ent modalities that might not be self-cohesive and have to account
for irregularity between the time-series and the clinical notes over
time. They also often do not encode the times of the reports, which
can lead to missing temporal patterns from text sources as well as
leakage if the reports contain information ahead of the risk distribu-
tion estimate. And while they have shown promise at single-label
classification tasks in healthcare, there has been no attempt to
model the challenging yet informative competing risk scenario.

Graph representation learning encodes data into graphs that
graph neural networks (GNNs) can learn to capture the intricate re-
lationships and dependencies between medical entities to generate
rich, context-aware embeddings for further downstream tasks [4].
Spatio-temporal graph solutions have been proposed to construct
learnable graph representations of irregularly sampled EHR data
without any pre-defined graph structures [24]. By modelling each
modality through direct construction of separate learnable spatio-
temporal graphs, graph representation learning offers a promising
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solution to multi-modal integration. As explainability is an impor-
tant requirement for healthcare solutions, structural graph informa-
tion provides an intuitive approach to interpretability challenges
[5, 41]. Using graph attention within a hierarchical framework en-
ables the combining of multiple modalities while securing global
interpretability. We propose constructing learnable parallel graph
representations without any predefined structures of different EHR
modalities with hierarchical graph attention to estimate competing
risk distributions of multiple events simultaneously. Our approach
successfully integrates dynamic graphs for time-series, static graphs
for demographics, similarity graphs for medical history, and text
vectorised graphs for clinical reports to capture patient physiolog-
ical risk over time. The global attention weights also help focus
on the most important patterns between modalities, enabling the
model to learn meaningful representations while providing insight
into clinical feature importance.

In this work, we present a new approach to multi-modal learning
from EHR data for time-to-event modelling and advance the state-
of-the-art by:

• Introducing a novel spatio-temporal graph approach that
cohesively learns from and integrates multiple modalities
in electronic health records, including diagnostic coding of
medical history, static and time-series features, and clinical
text reports.

• Proposing a hierarchical graph attention framework for
multi-modal learning that provides global explainability.

• Combining ranking, longitudinal risk prediction, and struc-
tural losses to estimate competing risk distributions of mul-
tiple events simultaneously and reliably.

We evaluated the proposed model in four real-world health-
care datasets from the intensive care and liver transplant settings,
demonstrating superior performance over state-of-the-art methods
in deep learning for competing risk prediction while providing
robust interpretability.

2 RELATEDWORK
2.1 Time-to-event Modelling
Models for time-to-event prediction under competing risks span
classical statistical methods and modern deep learning approaches.
Traditional techniques such as the Cox proportional hazards model,
the Fine–Gray subdistribution model, and Random Survival Forests
offer interpretable estimates but rely on strong assumptions like pro-
portional hazards and are ill-suited for high-dimensional, longitudi-
nal EHR data [18, 36]. Discrete-time approaches, including logistic
hazard models, provide greater flexibility and are naturally com-
patible with neural network architectures, though they are often
constrained to static inputs and single-risk settings [40]. Deep learn-
ing methods such as DeepSurv, DeepHit, Dynamic-DeepHit, and
DySurv relax many of these assumptions, enabling direct modelling
of cumulative incidence functions and the integration of complex
temporal patterns [12, 16, 17, 25]. In ICU contexts, dynamic models
like Dynamic-DeepHit and DySurv have demonstrated strong pre-
dictive performance by capturing evolving physiological trends and
non-linear feature interactions, albeit with reduced interpretability
and transparency [28]. Except for Dynamic-DeepHit, most models
in EHR provide only independent, cause-specific risk estimates,

failing to model competing events jointly. Furthermore, learning
from longitudinal and multi-modal EHR data remains challenging
due to high dimensionality, irregular sampling, and pervasive miss-
ingness, contributing to poor generalizability. To date, no model
has explicitly addressed the integration of multiple data modali-
ties and the modelling of competing risks in a unified framework,
two critical challenges in machine learning for healthcare. Without
the capacity to capture inter-modal and temporal dependencies,
existing approaches may fall short in representing patient state
accurately for complex prognostic tasks.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) are well-suited to modeling tempo-
ral and structural dependencies in longitudinal health data, partic-
ularly in the presence of missingness and modality heterogeneity
[3, 34]. Spatio-temporal graphs can capture evolving interactions
across features and modalities [35]. Early approaches such as GCNs,
GATs, and GraphSAGE rely on pre-defined graphs for downstream
tasks [9, 13, 33], constructed via heuristics like Dynamic Time
Warping (SimTSC) or convolutional embeddings (MedGNN) [6, 37].
However, such fixed graphs may not reflect task-relevant dynamics.
Recent models like TodyNet and DynaGraph remove this constraint
by learning graph structures directly from data in an end-to-end
manner [22, 24]. While TodyNet struggles with scalability and inter-
pretability, DynaGraph introduces limited temporal interpretability
but remains unimodal.

MM-STGNN represents a recent effort to integrate multi-modal
data such as demographics, time-series, and imaging for hospital
readmission prediction using a shared spatio-temporal graph [32].
However, it fuses modalities via a simple MLP, which underutilises
complex temporal and inter-modality dependencies and constructs
the graph prior to training using Gaussian kernel similarity on static
features, thereby assuming a shared similarity metric across hetero-
geneous data types. This limits its ability to learn modality-specific
dynamics, adapt graph structure during training, or capture fine-
grained inter-feature relationships. Moreover, its interpretability
and flexibility in modelling complex dependencies are constrained
by its reliance on fixed graph topology and global aggregation via
GraphSAGE.

In this work, we propose a novel multi-modal spatio-temporal
GNN that dynamically constructs and fusesmodality-specific graphs
with hierarchical attention. Our model learns structural dependen-
cies jointly with survival prediction, incorporates time-series, diag-
nostic codes, demographics, and radiographic text in an end-to-end
framework, and provides interpretable, cause-specific risk estimates
in a competing risks setting, addressing key limitations of prior
GNN-based approaches.

3 Data
We evaluate our model on five real-world EHR datasets spanning
ICU, emergency department (ED), and transplant settings. For all
datasets, laboratory features missing in over 75% of encounters are
removed, and remaining missing values are imputed via forward
and backward filling. We require at least six time-steps per pa-
tient, padding shorter sequences with the most recent observation.
Patients are split 8:1:1 into training, validation, and test sets.
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MC-MED is a multimodal ED dataset comprising 118,385 visits
from 70,545 adults at Stanford Health Care, with time-series vitals,
demographics, ICD9/10 histories, labs, and radiography reports.
Outcomes include ICU admission (2.3%), hospitalisation (24.9%),
and ED observation (13.4%). PBC2 contains monthly longitudi-
nal biomarkers from a primary biliary cirrhosis trial, with death
and liver transplantation as competing risks. MIMIC-IV and eICU
datasets contain high-resolution ICU data and use in-ICU mortality
as the target event; preprocessing follows Mesinovic et al. [25].
The SUPPORT dataset includes static features for 8873 seriously
ill inpatients followed for 6-month mortality. Full details are in
Supplementary Section A.

4 METHODS
4.1 Notation
The input consists of multi-modal clinical data for 𝑃 patients. For
each patient 𝑖 , the data is represented as a collection of modality-
specific feature sets:

𝑋𝑖 =

{
𝑋

(TS)
𝑖

, 𝑋
(Static)
𝑖

, 𝑋
(Xray)
𝑖

, 𝑋
(ICD)
𝑖

}
where:

• 𝑋
(TS)
𝑖

∈ R𝑑×𝑙 denotes multivariate time-series measure-
ments with 𝑑 features over 𝑙 time steps,

• 𝑋
(Static)
𝑖

∈ R𝑑Static denotes static demographic features,
• 𝑋

(Xray)
𝑖

∈ R𝑑Xray denotes textual embeddings of radio-
graphic reports,

• 𝑋
(ICD)
𝑖

∈ R𝑑ICD denotes encoded diagnostic code history.
The entire cohort of𝑚 patients is denoted as:

𝑿 =
{
𝑋1, 𝑋2, . . . , 𝑋𝑝

}
Corresponding labels are given as 𝒀 =

{
𝑌1, 𝑌2, . . . , 𝑌𝑝

}
, where each

𝑌𝑖 is a tuple:
𝑌𝑖 = (𝜖𝑖 , 𝑡𝑖 )

with 𝜖𝑖 ∈ E representing the observed event type and 𝑡𝑖 ∈ R≥0
representing the observed time-to-event. The set of possible events
is defined as:

E = {∅, 1, 2, . . . , 𝐸}
where ∅ denotes right-censoring (i.e., the absence of an event
during the observation window), and 𝐸 is the number of distinct
event types. We assume that censoring is non-informative. The
observed time 𝑡𝑖 is defined as:

𝑡𝑖 = min(𝑇𝑖 ,𝐶𝑖 )
where 𝑇𝑖 is the true event time and 𝐶𝑖 is the censoring time for
patient 𝑖 .

Dynamic Graph Construction for Time-Series. For longitudinal
time-series data, we partition each patient’s sequence into 𝑠 equally-
sized time windows, constructing a dynamic graph representation
for each window. Each adjacency matrix is initialized through learn-
able node embeddings:

𝐴 = ΘT · Ψ ∈ R𝑑×𝑑 ,

where Θ =
[
𝜃𝑡,1, 𝜃𝑡,2, . . . , 𝜃𝑡,𝑑

]
and Ψ =

[
𝜓𝑡,1,𝜓𝑡,2, . . . ,𝜓𝑡,𝑑

]
are

randomly initialized learnable parameters representing source and
target node embeddings for time window 𝑡 .

To promote computational efficiency, the adjacency matrix is
sparsified using top-𝑘 edge selection:

idx, idy = argtopk(𝐴[:, :]) with idx ≠ idy,
𝐴[−idx,−idy] = 0.

Temporal evolution is preserved across windows by dynamically
connecting features over time. For each time slot, new vertices are
introduced to represent features from both the current and previous
time windows, resulting in a vertex set:{

𝑣 (𝑡,1) , 𝑣 (𝑡,2) , . . . , 𝑣 (𝑡,𝐷 ) , 𝑣 (𝑡−1,1) , 𝑣 (𝑡−1,2) , . . . , 𝑣 (𝑡−1,𝐷 )
}
,

where directed edges link 𝑣 (𝑡−1,𝑑 ) to 𝑣 (𝑡,𝑑 ) for each feature 𝑑 =

1, . . . , 𝐷 . To prevent exponential growth in the number of nodes,
node embeddings from previous windows are aggregated, and re-
dundant vertices are pruned.

The final time-series graph representation consists of a set of
adjacency matrices:

𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑠 } ∈ R𝑑×𝑑×𝑠 ,

capturing spatio-temporal patterns across features and time.

Multi-Modal Graph Construction. Our model simultaneously pro-
cesses multiple heterogeneous data modalities, constructing an
independent graph for each. Specifically, we generate graphs for
multivariate time-series measurements, static demographic vari-
ables, radiographic report embeddings (X-ray text), and diagnostic
code histories (ICD9/10). Each modality is represented by its own
adjacency matrix:

𝐴(𝑚) ∈ R𝑑𝑚×𝑑𝑚

where𝑚 ∈ {TS, Static,Xray, ICD} and 𝑑𝑚 is the number of features
in modality𝑚.

Let C = {𝑐1, . . . , 𝑐𝑑ICD } be the top 𝑑ICD = 500 most frequent
diagnostic codes in the training set. Each code 𝑐𝑖 is embedded into
a feature vector 𝑒𝑖 ∈ R𝑑 using a co-occurrence-based embedding
model trained on ICD sequences from the training data only.

We construct a fully connected intra-modality graph 𝐴(ICD) ∈
R𝑑ICD×𝑑ICD using pairwise cosine similarity:

𝐴
(ICD)
𝑖 𝑗

=
𝑒⊤
𝑖
𝑒 𝑗

∥𝑒𝑖 ∥ · ∥𝑒 𝑗 ∥
, ∀𝑖, 𝑗

To reduce computational cost, we apply a spatial pooling operation
using a learnable function 𝑓 ICD

𝜃
to project this graph to a lower-

dimensional representation:

�̃�(ICD) = 𝑓 ICD
𝜃

(𝐴(ICD) )

where �̃�(ICD) ∈ R𝑑
′×𝑑 ′ are the pooled adjacency and node features,

respectively, with 𝑑′ ≪ 𝑑ICD.
For radiographic reports, textual feature embeddings are gener-

ated using Clinical-Longformer, a transformer model pre-trained on
MIMIC-III chest radiograph reports [19, 20]. LetR (𝑖 ) = {𝑟 (𝑖 )1 , . . . , 𝑟

(𝑖 )
𝑇

}
denote the set of radiographic reports for patient 𝑖 , ordered by time.
Each report is encoded via the frozen Clinical-Longformer model
Φ:

𝑥
(𝑖 )
𝑡 = Φ(𝑟 (𝑖 )𝑡 ), 𝑥

(𝑖 )
𝑡 ∈ R𝑑

3
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We construct a patient-specific temporal graph 𝐴(𝑖,Xray) ∈ R𝑇×𝑇

using a Gaussian similarity kernel:

𝐴
(𝑖,Xray)
𝑡𝑡 ′ = exp ©­«−

∥𝑥 (𝑖 )𝑡 − 𝑥
(𝑖 )
𝑡 ′ ∥2

2
𝜏

ª®¬ , ∀𝑡, 𝑡 ′ ∈ {1, . . . ,𝑇 }

where 𝜏 is a temperature hyperparameter. The corresponding node
feature matrix is 𝑋 (𝑖,Xray) = [𝑥 (𝑖 )1 , . . . , 𝑥

(𝑖 )
𝑇

]⊤.
Each intra-modality graph𝐴(𝑚) (including TS, Static, ICD, Xray)

is pairedwith a corresponding interpretabilitymatrix 𝐼 (𝑚) ∈ R𝑑𝑚×𝑑𝑚

as described below. These matrices are trained jointly with the
model and updated based on gradient attribution to quantify feature-
level and structural importance for survival prediction.

Together, these modality-specific graphs contribute to the fi-
nal fused multi-modal graph 𝐴Fused and its interpretability matrix
𝐼Fused used in downstream graph learning.

4.2 Hierarchical Attention
To enable interactions between modalities, we introduce learnable
cross-modality attention matrices:

𝑊 (𝑚→𝑛) ∈ R𝑑𝑚×𝑑𝑛

for each ordered modality pair (𝑚,𝑛), where𝑊 (𝑚→𝑛) captures the
directed influence from features in modality𝑚 to features in modal-
ity 𝑛. These matrices are randomly initialised and updated during
training to optimize the survival prediction objective. To capture
the relative importance of features and modalities in the final pre-
diction, we associate each intra-modality adjacency matrix 𝐴(𝑚)

and each cross-modality matrix𝑊 (𝑚→𝑛) with a corresponding
interpretability matrix. These interpretability matrices are updated
end-to-end during training based on the contribution of nodes and
edges to the model’s loss. Details on the gradient computation of the
interpretability weights are in Supplementary section C, and proof
of convergence for the weight matrices in section 4. This hierarchi-
cal attention mechanism allows our model to provide fine-grained
interpretability across individual features, within modalities, and
between modalities.

The full fused multi-modal graph 𝐴Fused ∈ R𝑑Fused×𝑑Fused is con-
structed as:

𝐴(TS) 𝑊 (TS→Static) 𝑊 (TS→Xray) 𝑊 (TS→ICD)
𝑊 (Static→TS) 𝐴(Static) 𝑊 (Static→Xray) 𝑊 (Static→ICD)
𝑊 (Xray→TS) 𝑊 (Xray→Static) 𝐴(Xray) 𝑊 (Xray→ICD)
𝑊 (ICD→TS) 𝑊 (ICD→Static) 𝑊 (ICD→Xray) �̃�(ICD)


where diagonal blocks represent intra-modality graphs and off-
diagonal blocks represent learnable cross-modality interactions.

Each modality-specific adjacency matrix 𝐴(𝑚) and each cross-
modality matrix 𝑊 (𝑚→𝑛) is paired with a corresponding inter-
pretability matrix:

𝐼 (𝑚) , 𝐼 (𝑚→𝑛) ∈ R𝑑𝑚×𝑑𝑛

initialised uniformly and updated during training via gradient at-
tribution with respect to the model’s loss. These interpretability
matrices quantify the importance of nodes and edges within and
between modalities. The final fused interpretability matrix 𝐼Fused
mirrors the structure of𝐴Fused, allowing for fine-grained attribution
of model predictions across heterogeneous feature types.

The adjacency and interpretability matrices are then aggregated
for a final graph representation 𝐺 :

𝐺Final = (𝐴Fused ∥ 𝐼Fused)
capturing intra-modality structures, cross-modality interactions,
and hierarchical feature importance in a unified framework opti-
mised for competing risks prediction. This makes it possible to not
only to model complex multi-modal survival outcomes but also
to identify critical features and cross-modal interactions driving
individual patient risk predictions. Details on graph learning with
Graph Isomorphic Network (GIN) can be found in the Supplemen-
tary section E.

4.3 Model Training
Due to the complexity of the model, we use temporal pooling on
the learned graphs from the GIN layers as described in the Supple-
mentary section F, and we add a regularisation term to help prevent
overfitting and support learning stability:

Lreg = 𝜆
∑︁

(𝑘,𝑙 ) ∈𝐸
∥h𝑘 − h𝑙 ∥2 (1)

where 𝜆 is a hyperparameter controlling the strength of the regu-
larization, (𝑘, 𝑙) represents an edge connecting nodes 𝑘 and 𝑙 , and
h𝑘 , h𝑙 are the feature representations of nodes 𝑘 and 𝑙 , respectively.
Please note that 𝐸 here represents the set of edges in the dynami-
cally constructed graph, where each edge connects a pair of nodes
(features).

For our right-censored setup, we need to estimate the joint dis-
tribution of the first event time and multiple competing events.
We do so by directly estimating the negative log-likelihood of this
distribution. For those patients who have suffered the specific event,
we capture both the outcome and the time at which it occurs. For
censored patients, we capture the censoring time conditioned on
the measurements recorded prior to the censoring. If we assume
𝑎𝑡 = 𝑃 (𝑇 = 𝛿, 𝜖 = 𝜖 | 𝑋 ) represents the estimated probability of
experiencing an event 𝜖 at time 𝛿 , this loss is defined as:

L𝑁𝐿𝐿 = −
𝑁∑︁
𝑖=1

1
(
𝜖𝑖 ≠ ∅

)
· log ©­«

𝑎𝑖
𝜖𝑖 ,𝛿𝑖

1 − ∑
𝜖≠∅

∑
𝑛≤𝑡𝑖

𝑗𝑖
𝑎𝑖𝜖,𝑛

ª®¬
+1

(
𝜖𝑖 = ∅

)
· log

(
1 −

∑︁
𝜖≠∅

𝐹𝜖

(
𝛿𝑖 | 𝑋 𝑖

))] (2)

The second component of the loss is a ranking loss designed
to refine the model’s ability to estimate cause-specific cumulative
incidence functions (CIFs). Inspired by [16], this loss encourages
the model to assign higher risk scores at the true event time for
patients who experience the event earlier compared to those who
survive longer. However, since patients’ longitudinal measurements
may begin at varying points in their clinical trajectory, direct com-
parisons based on absolute event times are often not meaningful.
To address this, we compute relative times with respect to the most
recent measurement. For a subject 𝑖 , we define 𝑠𝑖 = 𝛿𝑖 − 𝑡 ( 𝐽𝑖 )𝑖

, where
𝛿𝑖 is the event time and 𝑡

( 𝐽𝑖 )
𝑖

is the time of the last observation.
We then define a pair (𝑖, 𝑗) as an acceptable pair for event type
𝜖 if subject 𝑖 experiences event 𝜖 at time 𝑠𝑖 , while subject 𝑗 does
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not experience any event until 𝑠𝑖 , i.e., 𝑠 𝑗 > 𝑠𝑖 . For these pairs, the
model’s predicted CIFs should satisfy:

𝐹𝜖

(
𝑠𝑖 + 𝑡

( 𝐽𝑖 )
𝑖

| 𝑋𝑖
)
> 𝐹𝜖

(
𝑠𝑖 + 𝑡

( 𝐽𝑗 )
𝑗

| 𝑋 𝑗
)

ensuring that the estimated risk for subject 𝑖 , who experienced
the event earlier, is higher than that for subject 𝑗 , who survived be-
yond that point. The ranking loss is computed over such acceptable
pairs, allowing the model to learn consistent risk ordering across
patients with heterogeneous measurement histories. For notational
simplicity, let 𝑅 (𝑖 )

𝜖 := 𝐹𝜖

(
𝑠𝑖 + 𝑡

( 𝐽𝑖 )
𝑖

| 𝑋𝑖
)
denote the predicted cu-

mulative incidence for event type 𝜖 at the effective event time for
subject 𝑖 . The ranking loss is then:

L𝑟𝑎𝑛𝑘 =

𝐸∑︁
𝜖=1

𝜇
∑︁
𝑖≠𝑗

𝑀𝜖
𝑖 𝑗 · 𝜂

(
𝑅
(𝑖 )
𝜖 , 𝑅

( 𝑗 )
𝜖

)
where 𝑀𝜖

𝑖 𝑗
= 1

(
𝜖𝑖 = 𝜖, 𝑠𝑖 < 𝑠 𝑗

)
indicates whether the pair (𝑖, 𝑗)

is acceptable for event type 𝜖 , and 𝜂 (·) is a smooth loss function
comparing the predicted CIFs. We adopt the formulation 𝜂 (𝑎, 𝑏) =
exp

(
−𝑎−𝑏𝜎

)
, which penalises incorrect risk rankings in a margin-

sensitive manner. For simplicity, we assume uniform weighting
across event types with 𝜇𝜖 = 𝜇 for all 𝜖 . This ranking term is
integrated into the total loss to improve temporal discrimination
across competing risks, particularly in the presence of censored
and irregular longitudinal data.

Additionally, we define a structural similarity loss to ensure that
the learned graph structure remains close to the original (previous
timepoint) structure:

Lstruct = 𝜇
©­­«1 −

∑
𝑖, 𝑗 𝐴𝑖 𝑗 · 𝐴′

𝑖 𝑗√︃∑
𝑖, 𝑗 𝐴

2
𝑖 𝑗
·
√︃∑

𝑖, 𝑗 𝐴
′2
𝑖 𝑗

ª®®¬ (3)

where 𝐴 is the original adjacency matrix, 𝐴′ is the adjacency ma-
trix after augmentation, and 𝜇 is a hyperparameter. The structural
loss aids in the convergence of the adjacency matrix throughout
learning. The final loss is the sum of the regularisation loss for com-
plexity and overfitting adjustment, the joint negative log-likelihood
of the competing risks, and a ranking loss to fine-tune the model to
each cause accordingly, 𝛼 , 𝛽 , and 𝛾 are considered hyperparameters:

Ltotal = Lreg + 𝛼LNLL + 𝛽Lrank + 𝛾Lstruct (4)
After the final graph embedding is created through graph expan-

sion and overlaying hierarchical attention, 𝐺𝑠 is passed through a
multi-layer temporal graph isomorphism network (GIN) for graph
learning. The output of the GIN is a graph which is pooled tempo-
rally to reduce the number of nodes with convolutional clustering
and decrease the computational costs of the training. The reduced
graph is then flattened and passed through 𝐸 parallel multilayer
perception subnetworks and a joint softmax layer to produce mea-
sures of probability of the estimated joint distribution of the event
times and competing events. For a patient 𝑋 , since the event times
are discretised, the estimated CIF for a specific cause at time 𝛿 is:

𝐹𝜖 (𝛿 | 𝑋 ) =
∑
𝑡 𝐽 <𝛿≤Δ 𝑎𝜖,𝛿

1 − ∑
𝜖≠∅

∑
𝑛≤𝑡 𝐽 𝑎𝜖,𝑛

(5)

5 RESULTS
5.1 Model Comparison
We evaluate our proposed model against two groups of baselines
under both single-risk and competing-risk survival analysis sce-
narios. The first group includes state-of-the-art statistical and deep
learning models for survival analysis, comprising static models
(Cox PH, DeepSurv, DeepHit) and dynamic models capable of pro-
cessing longitudinal time-series data (Dynamic-DeepHit, DySurv).
The second group consists of graph neural network models adapted
for survival tasks, including GCN, GAT, GraphSAGE, TodyNet,
DynaGraph, and MM-STGNN. For MM-STGNN, we replace the
original imaging modality with textual embeddings from radio-
graphic reports to match our input setup, and use the competing
risk loss function for survival adaptation, similarly for MedGNN.
For TodyNet and DynaGraph, we use the time-series and/or static
modalities from the relevant datasets. Details on experimental set-
tings and implementation choices are provided in Supplementary
Section A.

All experimentswere conducted using PyTorch 3.8 and anNVIDIA
A100 Tensor Core GPU. Evaluation is based on three complemen-
tary metrics: time-dependent concordance (including cause-specific
concordance for competing risks), integrated Brier score (IBS), and
integrated binomial log-likelihood (IBLL), as detailed in Supplemen-
tary Section B.

Figure 1 presents spider plots comparing our model against all
baselines across five datasets in the single-risk setting. A com-
plete set of comparisons across models and metrics is available in
Supplementary Section G. As illustrated, our model consistently
outperforms all baselines across different datasets and care envi-
ronments. The largest improvements are observed in concordance
metrics, reflecting our model’s strong temporal discrimination capa-
bilities. The combination of ranking loss and structural regularisa-
tion enables our model to predict both short- and long-term survival
outcomes robustly across diverse clinical settings. Moreover, the
superior IBS and IBLL scores compared to Dynamic-DeepHit and
related methods indicate better generalisation and calibrated event
probability estimates, avoiding the inflated concordance behaviour
seen in prior ranking-based models.

We evaluate our proposed model against several advanced mod-
els applied to competing risk prediction, includingDynamic-DeepHit,
MedGNN, and MM-STGNN. As shown in Table 1, our model out-
performs all baselines across both the PBC2 and MC-MED datasets
in terms of cause-specific time-dependent concordance. On PBC2,
our model improves over MedGNN and MM-STGNN by 2.5 and 2.0
percentage points, respectively, in predicting death, with similar
gains for liver transplant prediction. On MC-MED, the advantage
is most notable in hospital admission prediction, where our model
achieves 0.880 ± 0.010 concordance, outperforming MM-STGNN
(0.798 ± 0.012) and MedGNN (0.791 ± 0.012). These results high-
light the advantage of our dynamic and hierarchical graph for-
mulation, which jointly learns intra- and inter-modality structure
with attention-based interpretability, in contrast to fixed similarity
graphs or late fusion approaches used in prior work.
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(a) The time-dependent concordance index results across five datasets
for the single-risk scenario (higher is better).

(b) The integrated Brier score results across five datasets for the
single-risk scenario (lower is better).

(c) The integrated binomial log-likelihood results across five datasets
for the single-risk scenario (lower is better).

Figure 1: Spiderplots of average model results (for five seeds) across our five datasets for three different common time-to-event metrics,
namely a) time-dependent concordance, b) integrated Brier score, and c) integrated binomial log-likelihood. For MC-MED the event results
highlighted here are for

Table 1: Cause-specific concordance index (𝐶td
ind,𝜖 ) on the PBC2 andMC-MEDdatasets for competing risks. Ourmodel consistently

outperforms all baselines. Higher is better.

Model PBC2 (Death) PBC2 (Transplant) ICU Adm. Hosp. Adm. ED Obs.

Dynamic-DeepHit 0.758 0.740 0.812 0.785 0.773
MedGNN 0.765 0.743 0.816 0.791 0.778
MM-STGNN 0.770 0.749 0.821 0.798 0.781
Ours 0.790 0.766 0.827 0.880 0.797

5.2 Model Interpretability
To better understand the temporal dynamics of model decision-
making, we visualise the interpretability weights associated with
the top 10 time-series features across six time steps for each of the
three competing outcomes in the MC-MED dataset. These weights,
derived from the modality-specific interpretability matrices 𝐼TS,
are normalised and plotted as heatmaps in Figure 2. Each heatmap

reveals how feature importance evolves across the patient’s emer-
gency department stay, with each time step corresponding to a
discrete, regular interval in the model’s prediction window. Higher
weight magnitudes indicate a stronger influence on the model’s loss
during training, and thus on the predicted CIF for each outcome.

The learned interpretability matrices exhibit both temporal vari-
ability and sparsity, demonstrating the model’s ability to identify
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and adapt to transient, yet informative, physiological signals. For
example, features such as respiratory rate (RR) and triage vitals dis-
play early peaks in attention for the ED observation outcome, while
renal markers such as creatinine and BUN grow more predictive
over time for hospital admission. These patterns reflect clinically
plausible trajectories where early vital sign abnormalities inform
short-term disposition decisions, and longitudinal lab abnormalities
guide inpatient escalation.

To further probe how the model fuses heterogeneous clinical
data sources, we visualise the learned attention matrices across
modalities in Figure 3. Each 4 × 4 matrix reflects the modality-level
interpretability scores for the three competing risk outcomes in
MC-MED. These are derived by averaging attention weights over
modality-specific blocks from the final fused adjacency matrix. The
diagonal entries quantify the within-modality contribution, while
off-diagonal values indicate inter-modality influence. We observe
strong attention weights within the time-series and radiography
modalities across all outcomes, consistent with their dense tempo-
ral and semantic signal. Interestingly, ICU admission predictions
exhibit high cross-modality attention from ICD codes to both TS
and radiography, suggesting diagnostic history and clinical context
are essential for identifying escalation risk. Conversely, observation
outcome predictions emphasise more evenly distributed modality
interactions, reflecting the complexity of these clinical profiles.

These visualisations improve the transparency of the model’s
decision logic, offering clinicians a window into what the model
is paying attention to at different points in time. This can help
identify clinically actionable biomarkers and facilitate more nu-
anced risk communication and triage planning in high-stakes ED
settings. A more detailed exploration of these trends is provided in
the Discussion section.

5.3 Model Evaluation
5.3.1 Ablation Studies. To assess the contribution of individual
components within our proposed model framework, we conducted
a comprehensive ablation study across both competing risk and
single-risk survival settings. On the MC-MED dataset, which in-
volves three competing outcomes (ICU admission, hospital admis-
sion, and in-ED observation), the full model consistently achieves
the highest cause-specific concordance across all outcomes (Ta-
ble 2), demonstrating the effectiveness of integrating architectural,
loss, and input design choices. Removing the ranking loss or the
structural stabilisation term leads to measurable drops in perfor-
mance, highlighting their complementary roles in learning accurate
event-time distributions and stabilising graph evolution, respec-
tively. Excluding either the diagnostic history (ICD9/10 codes) or
radiography embeddings similarly reduces performance, suggest-
ing the value of multi-modal fusion. Furthermore, replacing the
GIN module with a standard GCN results in consistent declines
across outcomes, underscoring the benefit of structure-aware mes-
sage passing in our dynamic graph encoder. To further validate
these findings, we perform additional ablations on the MIMIC-IV
and eICU datasets for ICU mortality prediction in the single-risk
setting (Table 3). We observe that the same trends persist: removing
ranking or structural losses reduces concordance, excluding modal-
ities impairs predictive performance, and replacing GIN with GCN

degrades model accuracy. These results demonstrate the robustness
of the model’s design choices across diverse clinical datasets and
survival prediction regimes.

5.3.2 Calibration Experiments. In addition to ranking-based and
discrimination metrics, we evaluate the probabilistic calibration of
our model compared to Dynamic-DeepHit across two ICU datasets
and three prediction horizons. The Supplementary contains cal-
ibration plots at 48h, 96h, and 144h for both the MIMIC-IV (top
row) and eICU (bottom row) datasets, alongside bootstrap-based
confidence intervals and reported Expected Calibration Error (ECE)
for each model. In both cohorts, our model demonstrates closer
alignment to the ideal calibration line and consistently lower ECE
values. At the 48h prediction horizon, our model achieves an ECE
of 0.024 on MIMIC-IV and 0.030 on eICU, compared to 0.068 and
0.082 for Dynamic-DeepHit, respectively. This performance trend
persists across longer horizons as well, indicating that our model
not only produces better discriminative rankings but also more cal-
ibrated survival probabilities. These results highlight the model’s
robustness across care settings and its suitability for clinical risk
estimation tasks requiring reliable uncertainty quantification.

6 DISCUSSION
Most dynamic survival models, including Dynamic-DeepHit, over-
look the structural and temporal heterogeneity inherent in multi-
modal EHR data. Existing GNN-based approaches either rely on
static graph assumptions or treat modalities as independent streams,
failing to model how relationships between features evolve over
time or across data types. Our approach introduces a novel frame-
work that constructs modality-specific spatio-temporal graphs and
fuses them via hierarchical cross-modality attention, enabling inter-
pretable and dynamic estimation of cause-specific risk in competing
outcomes. Unlike prior multi-modal methods that use early fusion
or fixed graph topologies, our model learns both intra- and inter-
modality structure end-to-end, offering a flexible and expressive
mechanism to capture clinical complexity.

Extensive benchmarking across five datasets shows our model
consistently outperforms strong baselines in discrimination, calibra-
tion, and interpretability. The combination of ranking loss, temporal
structural regularisation, and modality-aware graph attention pro-
vides stable graph learning and improves temporal risk ranking.
Our interpretability framework uncovers clinically meaningful in-
sights at both feature and modality levels, such as rising renal risk
markers and diagnostic history relevance for ICU escalation. These
results establish a new direction for temporal graph learning in
healthcare—one that is multimodal, interpretable, and tailored to
the high-stakes setting of competing risks.
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Figure 2: Temporal interpretability heatmaps of the top 10 time-series features across 6 time steps for each competing outcome
in MC-MED. Scores from 𝐼TS highlight local and global predictive contributions.

Figure 3: Modality-level attention weights for ICU admission, ED observation, and hospital admission. Each 4 × 4 heatmap
shows intra- and cross-modality contributions from the fused attention matrix.

Table 2: Ablation study on the MC-MED dataset. We report the cause-specific time-dependent concordance index (𝐶td
ind,𝜖 ) for

three competing outcomes (ICU admission, discharge, in-hospital observation), averaged over 5 seeds. Higher is better.

Model Variant ICU Admission Hospital Admission Observation

w/o Ranking Loss 0.802 ± 0.012 0.783 ± 0.015 0.776 ± 0.017
w/o Structural Loss 0.808 ± 0.010 0.789 ± 0.013 0.779 ± 0.015
w/o History (ICD9/10) 0.799 ± 0.011 0.831 ± 0.014 0.774 ± 0.016
w/o Radiography Embeddings 0.805 ± 0.009 0.785 ± 0.012 0.775 ± 0.015
GCN backbone 0.811 ± 0.008 0.813 ± 0.011 0.782 ± 0.013
Ours (Full Model) 0.827 ± 0.007 0.880 ± 0.010 0.797 ± 0.012
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Table 3: Ablation study on ICU mortality prediction using MIMIC-IV and eICU. We report the time-dependent concordance
index (𝐶td

ind) for the single-risk setting, averaged over 5 seeds. Higher is better.

Model Variant MIMIC-IV eICU

w/o Ranking Loss 0.814 ± 0.011 0.801 ± 0.014
w/o Structural Loss 0.817 ± 0.010 0.805 ± 0.012
w/o History (ICD9/10) 0.812 ± 0.012 0.798 ± 0.015
w/o Radiography Embeddings 0.816 ± 0.010 0.800 ± 0.013
GCN backbone 0.820 ± 0.009 0.807 ± 0.012
Ours (Full Model) 0.860 ± 0.007 0.810 ± 0.010
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A Code and Data
A.1 Data Description
The pre-processing pipeline for MIMIC-IV was based on previously
published workflows, and eICU was based in part on work done by
[25, 29]. We used the imputation as suggested by the pipeline.

For the time-series variables, we use forward filling as clinicians
in practice would only consider the last recorded measurement. If
the first set of measurements is missing for some time-varying fea-
tures, instead of dropping those features or patients, we backward-
fill from the closest measurement in the future. The time-series
features were resampled to 1-hour intervals. For the ICU datasets,
we considered only observations collected up to 24 hours before
the registered outcome. For MC-MED, since it is an ED dataset,
the entirety of the patient cohort is within 24 hours of stay within
the emergency department, and we include all of this information
before the event time itself. For PBC2, we resampled the data into
a monthly timescale. Patient admissions were randomly split into
train, validation and test sets (8:1:1). Details of the features included
can be found in Supplementary Tables 1, 2, and 3.

For eICU,MIMIC-IV, andMC-MED, the data contains de-identified
patient electronic health records data, which can only be obtained
after the ethical review of the proposed analysis on the PhysioNet
page. Some certification of training modules is also required for
access. We have cited the sources for the datasets in the text accord-
ingly under Data. Consent for data use has been obtained by the
providers, de-identification and licensing are in line with HIPAA
requirements and compatible with the research conducted, which
has passed ethical review and certification for data access.

The most relevant feature distributions for eICU, MIMIC-IV, and
MC-MED can be found in Table 4. The list of all features are in
tables 6, 5 7, and 8.

A.2 Code, Benchmark Models, and Training
Details

Sample data and code implementations can be found here: https://
anonymous.4open.science/r/Multi-Modal-Graph-A1BC/README.
md. The repository includes implementations for all baseline and
proposed models, with a provided requirements.txt specifying
package dependencies and versions.

We evaluate our model against two groups of baselines for both
single-risk and competing-risk survival analysis tasks. The first
group comprises classical and deep survival models: Cox Propor-
tional Hazards (Cox PH), DeepSurv, DeepHit, Dynamic-DeepHit,
and DySurv. The second group includes graph-based survival mod-
els: GCN, GAT, GraphSAGE, TodyNet, DynaGraph, MedGNN, and
MM-STGNN. For MM-STGNN, we replace the original imaging
modality with embeddings from radiographic reports to match our
input setup and adapt it with a competing-risk loss function. The
same adaptation is made for MedGNN. For TodyNet and Dyna-
Graph, we retain only the time-series and/or static modalities as
supported by each dataset.

All models were implemented in PyTorch and trained on a single
NVIDIA V100 GPU with 50 GB RAM. Data loading and training
were fully reproducible using fixed seeds: 42, 1992, 1709, 250, and
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Table 4: Summary of demographics and clinical variables across three datasets: eICU, MIMIC-IV, and MC-MED. MIMIC-IV was
used exclusively as an external validation set.

Attributes eICU (N = 82,155) MIMIC-IV (N = 71,935) MC-MED (N = 23,128)

Age (mean ± SD) 67.2 ± 12.4 74.1 ± 13.4 58.3 ± 18.9
Sex (male) 64.5% 57.1% 46.7%
Ethnicity (Caucasian) 77.3% 71.1% 40.2%
Ethnicity (African American) 10.6% 8.0% 6.5%
Ethnicity (Hispanic) 3.7% 3.1% 18.6%
Ethnicity (Asian) 1.6% 2.0% 13.3%
Lactate (mmol/L) 2.5 ± 2.3 2.0 ± 1.5 2.4 ± 2.1
SBP (mmHg) 120.0 ± 16.3 126.3 ± 18.8 129.2 ± 17.2
Glucose (mg/dL) 147.3 ± 56.7 136.5 ± 49.3 138.4 ± 51.0
WBC (×109/L) 15.1 ± 9.3 10.6 ± 7.4 9.9 ± 6.1
RDW (%) 15.0 ± 2.0 14.4 ± 2.1 14.1 ± 2.0
Urea Nitrogen (mg/dL) 22.8 ± 13.4 22.8 ± 17.0 24.1 ± 16.8
Bicarbonate (mmol/L) 24.8 ± 4.4 23.3 ± 3.1 23.9 ± 4.2
Mortality 12.0% 9.7% 2.3% (ICU admission)

Table 5: Features extracted from the MIMIC-IV database. The features include demographic data collected for all patients, ICU
unit-specific information like the type of unit, hospital information, vital signs, and biochemical measurements.

Static Variables

Feature Type Feature Type

Sex binary Admission Type categorical
Age integer Insurance categorical
ICU Type categorical Ethnicity categorical

Time-series Variables

Feature Type Feature Type

Anion Gap continuous WBC continuous
Weight continuous Temperature continuous
SBP continuous DBP continuous
Sodium continuous Respiratory Rate continuous
RBC continuous Prothrombin Time PT continuous
Prothrombin Time INR continuous Potassium continuous
Platelets categorical Phosphorous continuous
Phosphate continuous Partial Thromboplastin Time continuous
Oxygen Saturation continuous MCGC continuous
Magnesium continuous Hemoglobin continuous
Hematocrit continuous Heart Rate continuous
Glucose continuous Chloride continuous
Creatinine continuous Calcium continuous
BUN continuous Bicarbonate continuous
Vent binary Vaso binary
Adenosine binary Dobutamine binary
Dopamine binary Epinephrine binary
Isuprel binary Milrinone binary
Norepinephrine binary Phenylepinephrine binary
Vasopressin binary Colloid binary
Crystalloid binary Intervention Duration binary

213. Validation performance was used for early stopping and final
model selection.

The Adam optimizer was used throughout, with a default learn-
ing rate of 0.001 unless otherwise noted. For benchmark models, we

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 6: Features extracted from the eICU database. The features include demographic data collected for all patients, ICU
unit-specific information like type and number of beds, hospital information like regional location and teaching status, vital
signs including respiratory rate and blood pressure, and biochemical measurements including troponin and levels of potassium
and protein in the blood.

Feature Type Feature Type

Sex binary Unit Stay Type categorical
Age integer Num Beds Category categorical
Height continuous Region categorical
Weight continuous Teaching Status binary
Ethnicity categorical Physician Speciality categorical
Unit Type categorical Unit Type categorical
Unit Admit Source categorical Mechanical Ventilation binary
Unit Visit Number categorical

Time-series Variables

Feature Type Feature Type

Base Excess continuous
-basos continuous FiO2 continuous
-eos continuous HCO3 continuous
-monos continuous Hct continuous
-polys continuous Hgb continuous
ALT continuous MCH continuous
AST continuous MCHC continuous
BUN continuous MCV continuous
O2 Sat (%) continuous MPV continuous
PT-INR continuous PT continuous
RBC continuous PTT continuous
RDW continuous WBC continuous
Alkaline ph. continuous Albumin continuous
Bedside Glucose continuous Anion Gap continuous
Calcium continuous Bicarbonate continuous
Creatinine continuous Glucose continuous
Lactate continuous Magnesium continuous
pH continuous paCO2 continuous
paO2 continuous Phosphate continuous
Platelets continuous Potassium continuous
Sodium continuous Bilirubin continuous
Protein continuous Troponin - I continuous
Urinary s. Gravity continuous mean BP continuous
SBP continuous DBP continuous

used a batch size of 32 for eICU, MIMIC-IV, and MC-MED datasets.
For our model, we searched over {8, 13, 32, 64}, with 32 found op-
timal. Epochs were set to 10 for eICU, 11 for MIMIC-IV, and 10
for MC-MED. Each full run on MIMIC-IV takes approximately 23
minutes.

We performed grid search onMIMIC-IV to tune hyperparameters.
Details of hyperparameter ranges and selected values are given
below in Table 9.

B Metrics
In this section, we switch sample notation from superscripts to sub-
scripts, i.e.,X𝑖 becomesX𝑖 for patient 𝑖 . Since ourmodel predicts full

event-time distributions under competing risks and right-censoring,
rather than single-time binary labels, classical classification metrics
are insufficient. We rely on metrics designed specifically for sur-
vival analysis, including both ranking-based and calibration-based
scores.

The most widely used metric in survival modelling is the con-
cordance index (𝐶ind), which estimates the probability that, for a
randomly selected comparable pair of patients, the model correctly
ranks their relative event times [15]. While straightforward under
proportional hazards assumptions, where risk rankings are time-
invariant, we instead use the time-dependent extension 𝐶td

ind that

12
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Table 7: Features extracted from the MC-MED database. The features include demographic data, triage variables, vital signs,
biochemical measurements, as well as ICD diagnosis codes and radiography embeddings.

Static Variables

Feature Type Feature Type

Sex binary Ethnicity categorical
Age integer Triage Acuity Score ordinal

Time-series Variables

Feature Type Feature Type

HR continuous RR continuous
SBP continuous DBP continuous
SpO2 continuous Temp continuous
Pain Score continuous Perfusion Index continuous
1min HRV continuous 5min HRV continuous
BUN continuous Creatinine continuous
Sodium continuous Potassium continuous
Chloride continuous Bicarbonate continuous
Calcium continuous Corrected Calcium continuous
Albumin continuous Globulin continuous
Total Protein continuous Bilirubin (Total) continuous
AST (SGOT) continuous ALT (SGPT) continuous
Alkaline Phosphatase continuous Anion Gap continuous
Hemoglobin continuous Hematocrit continuous
MCV continuous MCH continuous
MCHC continuous RBC continuous
WBC continuous Platelet Count continuous
EGFR (no race) continuous Glucose continuous
Triage Vital Signs (HR, RR, SBP, DBP, Temp, SpO2) continuous – –

ICD Codes multi-hot vectors (500 most frequent codes)

Radiography Embeddings Dense vector representations (768-dim embeddings)

accommodates time-varying survival predictions [1]. Formally:

𝐶td
ind = P

{
𝐹 (𝑡𝑖 | X𝑖 ) > 𝐹 (𝑡𝑖 | X𝑗 ) | 𝑡𝑖 < 𝑡 𝑗 , 𝜖𝑖 ≠ ∅

}
(6)

where 𝐹 (𝑡 | X) denotes the predicted cumulative incidence (for any
event) at time 𝑡 . Only uncensored events (𝜖𝑖 ≠ ∅) are considered
for the evaluation.

In the competing risks setting, each patient may experience one
of multiple mutually exclusive event types. Therefore, concordance
must be evaluated separately for each event type to assess how well
the model ranks time-to-event predictions per cause. The cause-
specific time-dependent concordance index for event 𝜖 is defined
as:

𝐶td
ind,𝜖 = P

{
𝐹𝜖 (𝑡𝑖 | X𝑖 ) > 𝐹𝜖 (𝑡𝑖 | X𝑗 ) | 𝑡𝑖 < 𝑡 𝑗 , 𝜖𝑖 = 𝜖

}
(7)

where 𝐹𝜖 (𝑡 | X) is the predicted cumulative incidence function
(CIF) for event type 𝜖 . Only pairs where patient 𝑖 experienced event
𝜖 before patient 𝑗 are considered.

We report both per-cause𝐶td
ind,𝜖 and the macro-averaged concor-

dance across all non-censoring events:

𝐶td
ind =

1
𝐸

𝐸∑︁
𝜖=1

𝐶td
ind,𝜖 (8)

where 𝐸 is the total number of event types.

The Brier Score measures the squared difference between the pre-
dicted and true survival probabilities at a given timepoint, similar
to mean squared error, and ranges from 0 (best) to 1 (worst) [7, 14].
To adjust for censoring, we use the inverse probability of censoring
weighted (IPCW) Brier Score:

BSIPCW (𝑡) = 1
𝑛

𝑛∑︁
𝑖=1

[
𝑆 (𝑡 | X𝑖 )21{𝑡𝑖 ≤ 𝑡, 𝜖𝑖 ≠ ∅}

𝐺 (𝑡−
𝑖
)

+

(1 − 𝑆 (𝑡 | X𝑖 ))21{𝑡𝑖 > 𝑡}
𝐺 (𝑡)

] (9)

where 𝑆 (𝑡 | X𝑖 ) is the predicted survival probability, and 𝐺 (𝑡) is
the Kaplan–Meier estimate of the censoring distribution.

The Integrated Brier Score (IBS) averages the Brier Score over
time:

IBS =
1

𝑡max

∫ 𝑡max

0
BSIPCW (𝑡) 𝑑𝑡 (10)

where 𝑡max is the maximum observed time.
13
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Table 8: Summary of features used in the PBC2 and SUPPORT datasets. PBC2 includes liver disease-specific biomarkers and
clinical indicators, while SUPPORT comprises general clinical, physiological, and comorbidity-related variables for hospitalized
patients.

Category PBC2 SUPPORT

Feature Type Feature Type

Demographics

Age continuous Age continuous
Sex binary Sex binary

Race categorical
DNR Status (Day 1) binary

Clinical
Edema categorical Coma Score ordinal
Ascites binary Cancer binary
Hepatomegaly binary CHF binary
Spiders (vascular lesions) binary Cirrhosis binary

Biomarkers / Labs

Albumin continuous Serum Albumin continuous
Bilirubin continuous Serum Sodium continuous
ALP continuous Serum Potassium continuous
AST (SGOT) continuous Serum Creatinine continuous
Prothrombin Time continuous Hematocrit continuous
Platelets continuous WBC Count continuous

PaO2 continuous

Vitals
Systolic BP continuous
Heart Rate continuous
Respiratory Rate continuous
Temperature continuous
Glasgow Coma Scale continuous

Table 9: Hyperparameter search ranges for all models. Bold values indicate optimal parameters found via grid search on the
validation set. All models were trained using the Adam optimiser.

Model Batch Size Learning Rate Dropout Graph Layers MLP Layers

Our Model 8, 16, 32, 64 0.01, 0.001, 0.0001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6

DeepSurv 32, 64, 128 0.01, 0.001, 0.0001 0.5, 0.7, 0.9 – 2, 4, 6
DeepHit 32, 64, 128 0.01, 0.001, 0.0001 0.5, 0.7, 0.9 – 2, 4, 6
Dynamic-DeepHit 32, 64, 128 0.01, 0.001, 0.0001 0.5, 0.7, 0.9 – 2, 4, 6
DySurv 32, 64, 128 0.001, 0.0001 0.5, 0.7, 0.9 – 2, 4, 6
GCN 32, 64, 128 0.01, 0.001, 0.0001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6
GAT 32, 64, 128 0.01, 0.001, 0.0001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6
GraphSAGE 32, 64, 128 0.001, 0.0001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6
TodyNet 32, 64, 128 0.001, 0.0001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6
DynaGraph 32, 64, 128 0.0001, 0.001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6
MedGNN 32, 64, 128 0.0001, 0.001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6
MM-STGNN 32, 64, 128 0.0001, 0.001 0.5, 0.7, 0.9 2, 3, 4 2, 4, 6

Finally, we assess probabilistic calibration using the IPCW-adjusted
binomial log-likelihood (BLL), which measures the accuracy of pre-
dicted survival probabilities as probabilistic forecasts:

BLL(𝑡) = 1
𝑛

𝑛∑︁
𝑖=1

[
log(1 − 𝑆 (𝑡 | X𝑖 ))1{𝑡𝑖 ≤ 𝑡, 𝜖𝑖 ≠ ∅}

𝐺 (𝑡𝑖 )
+

log(𝑆 (𝑡 | X𝑖 ))1{𝑡𝑖 > 𝑡}
𝐺 (𝑡)

] (11)

Its integrated version, the Integrated Binomial Log-Likelihood (IBLL),
is:

IBLL =
1

𝑡max

∫ 𝑡max

0
BLL(𝑡) 𝑑𝑡 (12)

All metrics are computed on the held-out test set. Time integrals
are approximated using numerical integration over 100 uniformly
spaced timepoints, consistent with prior work [15]. Together, 𝐶td

ind,
IBS, and IBLL provide complementary perspectives on model per-
formance, evaluating both temporal discrimination and calibration
under competing risks.
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C Interpretability
To enable transparency in predictions, we integrate a pseudo-attention
mechanism during graph construction. Each graph at time slice
𝑠 is associated with a learnable interpretability matrix 𝐼𝑠 ∈ R𝑑×𝑑 ,
which captures the relative contribution of nodes and edges to
the loss. These matrices are initialised uniformly and updated via
backpropagation based on their influence on the model’s output.

For a node 𝑣 , we define its importance score by combining its
individual gradient saliency and the average importance of its con-
nected edges:

𝐼𝑣 = 𝛼 · ∥∇ℎ𝑣𝐿∥ + (1 − 𝛼) · 1
|N (𝑣) |

∑︁
𝑢∈N(𝑣)

∥∇𝑒𝑣,𝑢𝐿∥, (13)

where 𝛼 ∈ [0, 1] balances node and edge contributions, ℎ𝑣 is the
embedding of node 𝑣 , 𝑒𝑣,𝑢 is the edge from 𝑣 to 𝑢, and 𝐿 is the task
loss. This formulation allows us to attribute model behaviour to
individual clinical variables and their temporal interactions.

These interpretability matrices are computed independently for
each modality (e.g., vitals, demographics, ICD codes, radiography)
and later fused, preserving hierarchical structure. The fused matrix
informs both graph construction and attention-weighted pooling,
offering a consistent mechanism for identifying influential features
over time.

In contrast to traditional post-hoc methods, our integrated ap-
proach ensures interpretability is aligned with the model’s learned
representations and dynamically adapts across training epochs.
This is critical in healthcare, where understanding temporal feature
salience can support trust and accountability in clinical decision-
making.

D Convergence of the Hierarchical
Interpretability Matrix

Definitions and Assumptions
Let 𝐺𝑡 = (𝑉 , 𝐸𝑡 , 𝐼𝑡 ) denote the graph at epoch 𝑡 , where:

• 𝑉 is the set of nodes (e.g., patient-specific features across
modalities).

• 𝐸𝑡 is the set of edges determined by temporal and modality-
level relationships.

• 𝐼𝑡 is the fused interpretability matrix at epoch 𝑡 , derived
from hierarchical attention across modalities and time.

Let 𝐼𝑡 = 𝑓 (𝐼dyn𝑡 , 𝐼 static𝑡 , 𝐼 ICD𝑡 , 𝐼 rad𝑡 ) be the fused matrix at epoch 𝑡 ,
computed from the attention matrices associated with each modal-
ity through a learnable aggregation function 𝑓 (·).

Convergence Definition: The hierarchical interpretability ma-
trix converges if:

lim
𝑡→∞

∥𝐼𝑡 − 𝐼𝑡−1∥𝐹 = 0,

where ∥ · ∥𝐹 denotes the Frobenius norm.
Assumptions:

(1) Each modality-specific attention matrix 𝐼 (𝑚)
𝑡 is optimized

via backpropagation with a differentiable loss function L
and follows gradient descent updates.

(2) The fused interpretability matrix 𝐼𝑡 is differentiable with
respect to all 𝐼 (𝑚)

𝑡 , and the fusion function 𝑓 (·) is smooth
(e.g., weighted sum or attention-based).

(3) The learning rate 𝜂𝑡 satisfies 𝜂𝑡 → 0,
∑∞
𝑡=1 𝜂𝑡 = ∞, and∑∞

𝑡=1 𝜂
2
𝑡 < ∞.

Proof of Convergence
We begin with the gradient update rule for each modality-specific
interpretability matrix:

𝐼
(𝑚)
𝑡 = 𝐼

(𝑚)
𝑡−1 − 𝜂𝑡∇𝐼 (𝑚)L(𝐼 (𝑚)

𝑡−1 ) .

Assuming 𝑓 (·) is differentiable and linear or Lipschitz-continuous,
the fused matrix evolves as:

𝐼𝑡 = 𝑓 (𝐼dyn𝑡 , 𝐼 static𝑡 , 𝐼 ICD𝑡 , 𝐼 rad𝑡 ) .

Applying the multivariate Taylor expansion of L at 𝐼 (𝑚)
𝑡−1 , for

each modality:

L(𝐼 (𝑚)
𝑡 ) ≈ L(𝐼 (𝑚)

𝑡−1 )−𝜂𝑡 ∥∇𝐼 (𝑚)L(𝐼 (𝑚)
𝑡−1 )∥

2
𝐹+

1
2
𝜂2
𝑡 ∥𝐻 (𝑚) ∥𝐹 ∥∇𝐼 (𝑚)L(𝐼 (𝑚)

𝑡−1 )∥
2
𝐹 ,

where 𝐻 (𝑚) is the Hessian of L with respect to 𝐼 (𝑚) . Assuming
bounded Hessians and the learning rate conditions, the second-
order term vanishes faster, so:

lim
𝑡→∞

∥∇𝐼 (𝑚)L(𝐼 (𝑚)
𝑡−1 )∥𝐹 = 0.

Since each modality-specific matrix 𝐼 (𝑚)
𝑡 converges and 𝑓 (·) is

continuous, their composition 𝐼𝑡 = 𝑓 (𝐼 (𝑚)
𝑡 ) also converges. Hence:

lim
𝑡→∞

∥𝐼𝑡 − 𝐼𝑡−1∥𝐹 = 0.

Conclusion: Under standard assumptions on smoothness of the
loss function and learning rates, the fused interpretability matrix
constructed through hierarchical attention converges. This ensures
the interpretability weights used in the model stabilise, making
the model’s explanations consistent and trustworthy over training
epochs.

E Graph Learning with GIN
Continuing from the Methods, we first construct a fused graph
representation for each sample 𝑖 by concatenating the adjacency
matrix 𝐴(𝑖 ) with the corresponding modality-level interpretability
matrix 𝐼 (𝑖 ) :

𝐺 (𝑖 ) =
(
𝐴(𝑖 ) ∥ 𝐼 (𝑖 )

)
(14)

where ∥ denotes concatenation along the feature dimension. This
fusion integrates both structural and attention-based relational
information across modalities and time.

To extract higher-order node representations from these fused
graphs, we employ a multi-layer Graph Isomorphism Network
(GIN), which has been shown to be effective at capturing complex
node interactions and topological patterns [26]. The GIN layers
iteratively update node embeddings through neighborhood aggre-
gation, capturing temporal and multimodal dependencies in the
graph structure. Formally, for a 𝑘-layer GIN, the node embeddings
are updated as:

ℎ
(𝑘 )
𝑣 = MLP(𝑘 ) ©­«(1 + 𝜖 (𝑘 ) ) · ℎ (𝑘−1)

𝑣 +
∑︁

𝑢∈N(𝑣)
ℎ
(𝑘−1)
𝑢

ª®¬ (15)
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where ℎ (𝑘 )𝑣 is the embedding of node 𝑣 at layer 𝑘 , N(𝑣) denotes
the neighbors of node 𝑣 , 𝜖 (𝑘 ) is a learnable scalar, and MLP(𝑘 ) is a
multi-layer perceptron specific to the 𝑘-th layer.

The final node embeddings ℎ (𝐾 ) from the last GIN layer are then
passed into the temporal pooling module described in Section F,
which compresses these embeddings hierarchically while preserv-
ing essential temporal dynamics. This pipeline allows the model to
produce rich, temporally-aware, and topologically-grounded repre-
sentations for downstream competing risks survival prediction.

F Temporal Pooling
After obtaining spatio-temporal embeddings from the hierarchical
GIN module, we apply a learnable temporal pooling mechanism
to compress the temporal graph representation while preserving
salient temporal and relational structures across time. Instead of
flattening the node-time embeddings, which risks losingmeaningful
temporal dependencies, we adopt a hierarchical 2D convolution-
based pooling strategy inspired by [21]. This approach enables the
model to learn soft assignments of temporal nodes into clusters,
producing compact graph representations suitable for downstream
survival prediction.

Formally, given an input tensor 𝑋 𝑙 ∈ R𝑁
𝑙×𝑑 at the 𝑙-th pooling

layer (where 𝑁 𝑙 is the number of temporal graph nodes and 𝑑

the embedding dimension), we apply a 2D convolution over the
temporal axis (treated as channels), producing an output 𝑋 𝑙+1 ∈
R𝑁

𝑙+1×𝑑 :

𝑋 𝑙+1 =

𝑁 𝑙−1∑︁
𝑗=0

𝑊 (𝑁 𝑙+1, 𝑗) ★𝑋 𝑙 + 𝑏 (𝑁 𝑙+1)

where𝑊 are learnable convolution weights, 𝑏 is a bias term, and ★
denotes cross-correlation. This operation yields new cluster-level
node embeddings while reducing the node count from 𝑁 𝑙 to 𝑁 𝑙+1.

To propagate structural information through the hierarchy, we
reconstruct lower-level adjacency matrices based on the learned
soft clustering. Let𝑊 𝑙 ∈ R𝑁

𝑙+1×𝑁 𝑙×1×𝑘 be the 2D convolutional
weights reshaped into a matrix 𝑀𝑙 ∈ R𝑁

𝑙+1×𝑁 𝑙
using a learnable

vector𝑉 𝑙 ∈ R1×𝑘 such that𝑀𝑙 =𝑊 𝑙 ·𝑉 𝑙 . The coarsened adjacency
matrix is then computed as:

𝐴𝑙+1 = 𝑀𝑙𝐴𝑙𝑀𝑙⊤ ∈ R𝑁
𝑙+1×𝑁 𝑙+1

This allows the model to maintain a graph structure at each
level of abstraction, where 𝐴𝑙+1 captures the weighted connectivity
between temporal clusters. Crucially, both node and edge repre-
sentations evolve jointly and hierarchically, enabling end-to-end
optimisation of both temporal resolution and relational importance.
The final pooled representations 𝑋 𝑙+1 and 𝐴𝑙+1 are passed to cause-
specific multi-layer perceptions for competing risk survival predic-
tion.

G Full Model Evaluation Results
We provide a comprehensive assessment of all evaluated models
across three standard metrics in survival analysis: cause-specific
time-dependent concordance index (C-index), Integrated Brier Score
(IBS), and Integrated Binomial Log-Likelihood (IBLL). These metrics

respectively measure the discriminative performance, calibration,
and probabilistic accuracy of survival models.

Our proposed model achieves consistently superior performance
across all five datasets (MIMIC-IV, eICU, PBC2, MC-MED, SUP-
PORT) when compared to both traditional survival methods (e.g.,
Cox PH), temporal deep learning models (e.g., DeepHit, Dynamic-
DeepHit, DySurv), and graph-based approaches (e.g., GCN, GAT,
GraphSAGE, MM-STGNN, MedGNN, DynaGraph, TodyNet). This
robustness across diverse settings underscores the effectiveness of
our model’s dynamic, multi-modal graph architecture with hierar-
chical attention and temporal pooling.

Figure 4a shows a spider plot of concordance scores across
datasets, clearly illustrating our model’s consistent edge in dis-
criminative power. Supplementary Figures 4b and 4c provide the
corresponding plots for IBS and IBLL metrics, revealing strong
calibration and generalisation performance across datasets as well.

In all metrics, performance gains are especially pronounced on
complex, multi-modal datasets like MIMIC-IV and MC-MED, where
our model benefits from its ability to jointly represent static, tempo-
ral, diagnostic, and radiographic modalities. These improvements
are also evident in smaller datasets like PBC2 and SUPPORT, demon-
strating the model’s adaptability to varying cohort sizes and clinical
settings.

H Calibration Plots
Results of calibrations can be seen in Figure 5.
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