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ABSTRACT
Recent time series forecasting tasks often involve large sets of
related time series that can be naturally organized by various at-
tributes of interest, e.g. a retailer that sells products for a variety of
markets. In that case, forecasts for the most disaggregated series
are required to add-up to the forecasts of the aggregated series.
Gaussian Processes are a powerful tool for modeling time series
behaviors, but recent work showed that prior knowledge was re-
quired in order for them to be competitive in automatic time series
forecasting. The usage of prior knowledge can be considered an
unfair advantage and not very useful in most real-world scenarios.
We introduce a new hierarchical time series forecasting algorithm,
Gaussian Process Hierarchical Forecaster (GPHF), that uses Gauss-
ian Processes to jointly learn and forecast hierarchical time series.
We propose a covariance mixture that, on one hand, allows the
covariance matrices of the Gaussian Processes to share parameters
and learn dependencies between series and, on the other hand,
reduces the overall number of parameters required. Additionally,
our approach uses a combination of a composition of kernels and
a mean function that is able to fit time series patterns, while not
requiring any complex kernel selection task. We show that Gauss-
ian Processes are suited for automatic time series forecasting when
working with hierarchical time series datasets and do not require
any prior knowledge. Moreover, they can compete with methods
that have an additional step of reconciliation. Finally, the introduc-
tion of the covariancemixture shows very significant improvements
across hierarchical levels consistently for all datasets.
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1 INTRODUCTION
Recent time series forecasting tasks often involve large sets of re-
lated time series. Thus, besides the traditional problem of learning
the temporal dependencies, there is interest in modelling the cross-
series information to improve the univariate models. Additionally,
in many real-world situations, the time series have inherent hi-
erarchical relations and structures. Examples include time series
forecasting of the Gross Domestic Product [3], epidemics [9], sales
demand data [15] and others. Hierarchical time series forecasting
focuses on effectively modeling multiple time series that are consis-
tent with given hierarchical relations. When the generated forecasts
satisfy these relations, they are called coherent and this is usually
required in many applications [16]. In this setting, the combina-
tion of leveraging cross-series information and the hierarchical
relations can further increase the performance of algorithms ([13],
[28]). Additionally, in several businesses settings, forecasts need be
generated automatically, i.e. without any human intervention [14],
and there is no prior information to rely on such as in [5].

Classical methods [11] for this type of problem typically use a
Bottom-Up (BU) or a Top-Down (TD) approach where all time series
for a single level of hierarchy (usually top-most or bottom-most)
are modeled independently. The values of time series of other levels
are derived using the respective aggregation function governing
the hierarchy. Another approach relies on producing forecasts for
all aggregation levels and then reconcile the forecasts using linear or
non-linear models (e.g. [16], [27] or [21]). There are also approaches
that address the dependencies between all the time series in the
dataset without specifically addressing the hierarchical structure
([26], [7]).

Gaussian Processes are very flexible, expressive, interpretable
and inherently probabilistic. A Gaussian Process is a generaliza-
tion of the Gaussian probability distribution in the sense that it is
governing the properties of functions instead of scalar or vector
values. In simple terms, it works by defining prior probabilities over
functions, before actually seeing any data. After observing new
data points, we update our belief and increase the probability of
the functions that we consider to be more likely to explain our data.
Notice that it is not a parametric model, so we do not have to be
worried whether it is possible for the model to fit the data. We can
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sample functions at any point and not only compute the mean value
but also the variance (i.e. the variability of the sample functions).
This variance is often referred as uncertainty and the way Gaussian
Processes are built ensures that uncertainty reduces around obser-
vations as we are more informed about the real value of the process
at that instant. This is a nice property and very helpful in a time
series forecasting setting, since when we extend the forecasting
horizon we should be less confidence about our predictions.

Gaussian Processes are powerful when modeling correlated ob-
servations, which is the reality of a time series. Nevertheless, there
are no competitive approaches for automatic forecasting based on
Gaussian Processes [5]. In the same article, the authors presented
the idea that prior knowledge is required for a Gaussian Process to
be competitive against classical statistic forecasting methods such
as Autoregressive Integrated Moving Average (ARIMA) and Expo-
nential Smoothing (ETS). Furthermore, the fitting of a Gaussian
Process depends on the choice of kernel functions and these have a
strong impact on model performance. Moreover, algorithms which
automatically optimize the kernel composition [20] do not scale,
given the need for training a large number of competing GP models.
Finally, there is no clear way to present a hierarchical structure to
a Gaussian Process. While there are Multi-Output Gaussian Pro-
cesses (MOGP) stragies [17], these tend to be extremely expensive
computationally. The reason is that besides learning multiple co-
variances, one for each output, it usually requires learning cross
covariances across pairs of outputs. Additionally, in a hierarchical
setting, there would be the need to use several MOGP strategies (e.g.
for each group) and then combine them using some other strategy.
An example of a MOGP strategy applied in a financial time series
analysis can be found here [6].

We introduce a new algorithm - Gaussian Process Hierarchical
Forecaster (GPHF) - to forecast datasets of hierarchically organized
time series using Gaussian Processes. Our algorithm is able to learn
the dependencies between the related time series that belong to the
same groups. Note that we do not use any reconciliation process, the
dependencies are learned by the Gaussian Processes themselves. By
making use of this information the model improves the forecast of
individual time series. Since a Gaussian Process is completely spec-
ified by its mean and covariance functions, we used both functions
to capture different components of the time series. In fact, we can
think of the way we defined the hyperparameters of both functions
as being at different levels, the first are estimated locally, i.e. for
each time series, while the second are estimated by group element
in the dataset. On one hand, this means that we are learning non-
stationary patterns, such as the trend, per individual time series. On
the other hand, we are sharing the knowledge for each group when
learning the stationary and non-stationary components, namely
irregularities or seasonality. The strategy of exploiting global pat-
terns and coupling them with local calibration has been followed
recently in high-dimensional time series forecasting [25]. Another
motivation to fit the trend separately and locally was that in time
series generated by stochastic processes, the separation between
noise and changes in the trend is hard to capture. Using combina-
tions of kernel functions to model these patterns would require
some degree of prior information on the type of data to achieve
competitiveness [5]. This is due to the flexible nature of Gaussian

Processes, which can work against us in certain settings. The inter-
pretability also improves by using a specific function as the mean
function. In our case, we used a piece-wise linear function, to allow
the model to capture non-linear trend patterns.

To the best of our knowledge, this is the first approach that uses
a formulation of Gaussian Processes to solve a hierarchical time
series forecasting problem.

In summary, our contributions are:
• A new strategy to extend Gaussian Processes to a hierarchi-
cal time series setting by introducing a covariance mixture
that models the hierarchy. This allows learning the depen-
dencies between series in the same group, while reducing
the number of parameters of the model;

• A flexible composition of kernels that learn global stationary
and non-stationary patterns in the data, namely irregularities
and seasonality. The trend is learned by the mean function
of the Gaussian Process applied at the local level, using a
piece-wise linear function;

• An algorithm that fits the data automatically and without
any prior knowledge due to the flexible composition of ker-
nels used together with non-linear mean function and the
covariance mixture;

• An empirical validation of the proposed model in four dif-
ferent real-world datasets indicating that it is competitive
with the state-of-the-art when working with small and large
datasets with typical trend and seasonal patterns varying
between groups. Moreover, our algorithm can compete with
methods that have an additional step of reconciliation. We
also showed that the introduction of the covariance mixture
shows very significant improvements across hierarchical
levels consistently for all datasets.

2 RELATEDWORK
2.1 Time Series Forecasting Methods
Whenwe consider the forecasting process of a single time series and
include constraints such as integer or single seasonality the state-
space exponential smoothing (ETS) [11] and automated ARIMA
[14] procedures are still considered state of the art approaches.
When we extend to non-integer or multiple seasonalities, there
are other methods which become relevant, including TBATS [18]
or Prophet [29]. On the other hand, Recurrent Neural Networks
(RNN) are gaining popularity as an alternative to statistical methods.
Nevertheless, the settings where they can achieve competitiveness
are still very narrow and require user adaptation (see [10] for an
extensive study on the topic).

Traditional Gaussian Processes do not excel in automatic fore-
casting. Currently, to obtain competitive results on single univari-
ate time series, it is necessary to include prior knowledge in GP
methods [5]. There are several challenges when using Gaussian
Processes to do automatic forecasting, namely selecting the right
kernels and the long time required for training different competing
kernels.

2.2 Hierarchical and Grouped Time Series
When working with sets of related time series, the focus is to model
cross-series information to improve univariate models. There are
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cases that address these dependencies in general, while others as-
sume that the dependencies are of a specific kind, e.g. hierarchical.
In the former, the only assumption is that time series are related
by belonging to the same domain ([26], [7]) and these implicit re-
lationships can be learned to improve the forecasts of each time
series. In the case of [7], an autoregressive recurrent neural network
learns a global model from the historical data of all time series in
the dataset, at the same time. It is a probabilistic approach that
produces forecasts in the form of Monte Carlo samples that allow
the computation of quantile estimates. The model is both autore-
gressive, since it consumes the observation at the previous time
step as input and recurrent, in the sense that the previous output
of the network is fed back as an input at the next time step. The
likelihood should match the statistical properties of the data and its
parameters are given by a function of the network output. In the
case of hierarchical time series settings, the hierarchical structure
can be passed as multiple static categorical features to the model.

There are other cases where the data can be aggregated in groups
or a hierarchy. While the models presented above can be used to
produce forecasts for hierarchical datasets, the explicit information
that encodes the hierarchy of the time series is not leveraged. There
are different methods designed to model the hierarchical nature
of these datasets explicitly. The method initially proposed by [12]
and improved in [2] and [16] consists of optimally combining and
reconciling all forecasts at all levels of the hierarchy. A linear re-
gression combines the independent forecasts, guaranteeing that the
revised forecasts are as close as possible to the independent fore-
casts but maintaining coherence. These approaches were further
extended to allow a non-linear combination of the base forecasts
[27]. They were adapted to a Bayesian perspective, that consid-
ers the uncertainty across all levels of the hierarchy to obtain the
revised forecasts [21].

3 PROPOSED APPROACH
3.1 Problem Definition and Notation
We are working with a collection of 𝑆 related univariate time series
Z,Z = {z𝑖𝑡 , 𝑡 ∈ N, 𝑖 = 1 . . . 𝑆}. The training values can be written
as z𝑖1:𝑇 = [𝑧𝑖1, 𝑧

𝑖
2, · · · , 𝑧

𝑖
𝑇
] where 𝑧𝑖𝑡 ∈ R denotes the value of time

series 𝑖 at time 𝑡 and 𝑇 represents the last training point. When
the interpretation is unambiguous and in order to simplify the
notation in specific sections, namely when introducing Gaussian
Processes, we simply refer to time series z𝑖 as the observed time
series. The training range is denoted by x = {1, 2, ...,𝑇 }, while x∗ =
{𝑇 + 1,𝑇 + 2, . . . ,𝑇 + 𝜏} is the prediction range and 𝜏 is the forecast
horizon. We are interested in getting point predictions ẑ𝑖

𝑇+1:𝜏 from
the posterior distributions. The posterior distributions for time
series 𝑖 are denoted as z𝑖∗ = [𝑓 (𝑥∗1), . . . , 𝑓 (𝑥∗𝜏 )]𝑇 . Notice that we
use the star notation in order to ensure consistency with [23]. The
point forecast error for time series 𝑖 and time 𝑡 is denoted by 𝑒𝑖1:𝜏 =

𝑧𝑖1:𝜏 − 𝑧𝑖
𝑇+1:𝜏 .

Forecast accuracy is usually measured by summarizing the fore-
cast errors using a scaled metric – e.g. the Mean Absolute Scaled
Error (MASE) (see [11] for an extended overview on forecast error
metrics). For seasonal time series, a scaled error can be computed
by:

Figure 1: Example of time series aggregated by group.

𝑀𝐴𝑆𝐸 =

1
𝜏

𝜏∑
𝑡=1

|𝑒𝑡 |

1
𝑇−𝑚

𝑇∑
𝑡=𝑚+1

|𝑧𝑡 − 𝑧𝑡−𝑚 |
, (1)

where 𝑒𝑡 is the forecast error for a set of forecasts 𝜏 . The denomi-
nator is the mean absolute error of the one-step naive forecast on
the training set.

The time series are organized into different groups; in fact, each
time series z𝑖 is associated with an element 𝑙 of every group 𝐺

present in the dataset. We sometimes write 𝐿𝑖 = {𝑙 : z𝑖 ∈ 𝐺𝑙 }
to refer to the subset of elements to which time series z𝑖 belongs
to. To give a simple example, consider a dataset with two groups
(𝑔1 and 𝑔2), each one with 2 different elements (𝑎 and 𝑏, 𝑥 and 𝑦,
respectively). We can think of 𝑔1 as being different locations where
a retailer has stores and 𝑔2 categories of the products sold at those
stores. We start with the top level of the data z𝑡 . We can aggregate
the individual series z𝑖𝑡 by group 𝑔1, forming the series z𝑔1,𝑡 , and
by its elements, forming z𝑎,𝑡 and z𝑏,𝑡 . We can do the same for the
second group 𝑔2, forming series z𝑔2,𝑡 , or by its elements, z𝑥,𝑡 and
z𝑦,𝑡 . At the bottom level, this would generate four different series
(i.e. z𝑎𝑥,𝑡 , z𝑎𝑦,𝑡 , etc). Figure 1 illustrates this particular example of
dataset.

Our goal is to forecast accurately all levels of the hierarchy, not
just the bottom or top levels. Using the previous example, we com-
pute the errormetric for all the bottom time series, e.g.MASE(z𝑎𝑥,𝑡 ).
Since we also want to evaluate the performance for the aggregated
levels, we also compute the error metric for every group element
𝑙 , which is the result of the addition of all the bottom series that
belong to the specific group element z𝑎,𝑡 = z𝑎𝑥,𝑡 + z𝑎𝑦,𝑡 . Finally,
to compute a metric for every group 𝐺 we average MASE across
all the elements 𝑙 that belong to the group, e.g. z𝑎,𝑡 and z𝑏,𝑡 for
group 𝑔1. For the most aggregated level of the data the exercise is
similar, but this time we add the values of all the bottom time series
together and evaluate the predictions on those values.

3.2 Gaussian Processes
In a Gaussian Process we directly infer a distribution over func-
tions. Each function can be seen as a random variable assigned to a
finite number of discrete training points x. Any finite number of
these variables have a joint Gaussian distribution. More formally, a
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Gaussian Process is completely specified by its mean and covariance
functions:

𝑓 (𝑥) ∼ 𝐺𝑃
(
𝑚(𝑥), 𝑘𝜃 (𝑥, 𝑥 ′)

)
(2)

where𝑚(𝑥) denotes the mean function and 𝑘𝜃 denotes the kernel
with hyperparameters 𝜃 .

The kernels define the types of functions that we are likely to
sample from the distribution of functions [23]. We can then draw
samples from the distribution of functions evaluated at any number
of points, i.e. cov(𝑓 (𝑥), 𝑓 (𝑥 ′)) = 𝑘 (𝑥, 𝑥 ′). They can be separated
into stationary kernels, such as the squared exponential kernel
(RBF) and the periodic kernel (PER) and non-stationary ones, such
as the linear kernel (LIN). The stationary kernels can be written as

RBF : 𝑘𝑟 (𝑥, 𝑥 ′) = 𝜂2
𝑟 exp

(
− 1

2𝑙2𝑟
(𝑥 − 𝑥 ′)𝑇 (𝑥 − 𝑥 ′)

)
(3)

PER : 𝑘𝑝 (𝑥, 𝑥 ′) = 𝜂2
𝑝 exp

(
− (2𝑠𝑖𝑛2 (𝜋 |𝑥 − 𝑥 ′ |/𝑝)

𝑙2𝑝
)
)
(4)

where 𝜂𝑟 , 𝜂𝑝 , 𝜂𝑙 represent the variances, 𝑙𝑟 , 𝑙𝑝 are the length-scale
parameters which control the smoothness, 𝑐 defines the offset and
𝑝 is the period.

When we are predicting using Gaussian Processes, we want the
training outputs z𝑖 and the test outputs f𝑖∗ to be correlated, so we
can not have them as two independent Gaussian distributions. We
are interested in the joint distribution of z𝑖 and f𝑖∗. For most of the
applications we are faced with approximate function values, since
there is noise to be considered in the form z = 𝑓 (𝑥) + 𝜖 . Assuming
additive independent and identically distributed Gaussian noise
with variance 𝜎2

𝑛 , the joint distribution of the observations and the
function values at the test positions can be written as[

z
z∗

]
∼ N

(
0,
[
K𝑥𝑥 + 𝜎2

𝑛I
K∗𝑥

K𝑥∗
K∗∗

] )
(5)

where K𝑥∗ denotes the matrix of the covariances evaluated at all
pairs of training x and test points x∗, which means that it is a matrix
of size 𝑇 × 𝜏 . For the other entries, K𝑥𝑥 , K∗𝑥 , K∗∗ the same idea
applies. Finally, we can derive the conditional distribution following
[23],

z∗ |x, z, x∗ ∼ N(z̄∗, cov(z∗)) (6)
z̄∗ ≜ E[z∗ |x, z, x∗] = K∗𝑥 [K𝑥𝑥 + 𝜎2

𝑛I]−1z (7)
cov(z∗) = K∗∗ − K∗𝑥 [K𝑥𝑥 + 𝜎2

𝑛I]−1K𝑥∗ (8)

Exact inference for standardGaussian Processes can be intractable
for large datasets. Most of the implementations address the matrix
inversion K−1

𝑥𝑥z using the Cholesky factorization [23], which re-
quires𝑂 (𝑛3) time and𝑂 (𝑛2) memory. Alternative approaches have
been developed based on matrix-vector multiplications, namely us-
ing conjugate gradients. They define an optimization problem that
iteratively approximates K−1

𝑥𝑥z. We are interested in the approach
introduced by [8] and called Blackbox Matrix-Matrix multiplication.
It is a modified batched version of the conjugate gradients algo-
rithm that derives all terms for training and inference in a single
call. The modifications also allow the algorithm to run on parallel
compute hardware. It reduces the asymptotic complexity of exact

Gaussian Processes inference to 𝑂 (𝑛2). The complexity can be fur-
ther reduced with structured data or sparse GP approximations
[30].

3.3 Hierarchical Structure
As we saw in Section 2.2, our work is focused on datasets that
have a hierarchical or grouping structure, and thus, there are often
dependencies between the time series nested in the hierarchy. We
defined a set of Gaussian Processes, of which the covariance func-
tions are used to capture seasonality, irregularities and noise, while
the mean functions model the non-linear trend using a piece-wise
linear model.

𝑓𝜙𝑖𝜃𝑖 (𝑥) ∼ 𝐺𝑃
(
𝑚𝜙𝑖 (𝑥), 𝑘𝜃𝑖 (𝑥𝑥 ′)

)
(9)

𝜖𝑖 ∼ N(0, Σ) (10)

Before fitting our hierarchical model, we have standardized each
time series to have mean 0 and variance 1. If we consider z𝑖 to be
generated by a series of independent Gaussian Processes, we can
say that the we have different functions parameters and noise for
each time series 𝑖 . We could evaluate the functions considering two
arbitrary points 𝑥 and 𝑥 ′:

𝑓𝜙𝑖𝜃𝑖 (𝑥) ∼ 𝐺𝑃
(
𝑚𝜙𝑖 (𝑥), 𝑘𝜃𝑖 (𝑥𝑥 ′)

)
(11)

𝜖𝑖 ∼ N(0, Σ) (12)
(13)

Hence, our observations are simply the Gaussian Process func-
tion values plus the independent and identically distributed noise 𝜖
evaluated at the input points x = {1, 2, . . . ,𝑇 }.

z𝑖 = 𝑓𝜙𝑖𝜃𝑖 (x) + 𝜖𝑖 (14)

For the mean function of the Gaussian Processes we defined a
piece-wise linear function that allows learning non-linear trend
patterns in the data. The parameters are all learned locally, i.e. each
time series has its own set of parameters. We followed the proposal
from [29], which we cover in more detail in section 3.5. The authors
defined an initial growth parameter k𝑖 and subsequent changes on
the growth rate were denoted by the rate adjustment parameter 𝛿𝑖𝑐 .
The changes can happen for every change points c that we set. The
expression m𝑠 + 𝐴(−c𝛿𝑠𝑐 ) ensures the function continuity across
the different change points and growth rate changes. Thus, it can
be written as:

p𝑖𝑡 = (k𝑖 + A𝛿𝑖𝑐 )x + (m𝑖 + A(−c𝛿𝑖𝑐 )) (15)

where p𝑖 is the piece-wise linear function used as the mean function
of the Gaussian Process that models the time series 𝑖 .

Following the motivation to model the dependencies nested in
the hierarchy of the data, we want each element 𝑙 of a group 𝐺 to
be explicitly expressed in the covariance matrix of each Gaussian
Process. We applied this mixture by summing covariance functions
k𝜃𝐺𝑙 with hyperparameters defined for each group element. These
covariance functions are summed for all group elements 𝐿 that time
series 𝑖 belongs to, such that 𝐿 = {𝑙 : z𝑖 ∈ 𝐺𝑙 }. Note that the way we
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defined our model reduces significantly the number of hyperparam-
eters required when compared to a standard approach that would
define a Gaussian Process per time series. In fact, the number of sets
of hyperparameters required for each kernel function 𝜃 is reduced
from the number of time series in the dataset 𝑖 to the number of
group elements 𝑙 for every group 𝐺 . The Gaussian Processes can
then be defined as:

𝛾𝑖𝑡 ∼ N(p𝑖𝑡 ,
∑︁

𝑙 :z𝑖 ∈𝐺𝑙

K𝜃𝐺𝑙 ) (16)

Our parameters are approximated using the Blackbox Matrix-
Matrix multiplication algorithm, introduced in Section 3.2.

3.4 Covariance Mixture
Gaussian Processes were already defined as latent processes in a
time series forecasting context [24]. The problemwith this approach
is that we cannot take advantage of the nice properties of the
marginal likelihood of a Gaussian Process, namely the fact that it
has a closed form. In this case, the observed data needs to be the
sum of a Gaussian Process 𝑓 (𝑥) ∼ 𝐺𝑃

(
𝑚(𝑥), 𝑘 (𝑥, 𝑥 ′)

)
and random

noise 𝜖 in the following form z = 𝑓 (𝑥) + 𝜖 . The unknown latent
function can be analytically integrated out, which gives us the
marginal likelihood:

𝑝 (z|x) =

∫
𝑝 (z|f, x)𝑝 (f|x)𝑑f (17)

The log of the marginal likelihood 𝑝 (z|x) can, thus, be written
as:

log𝑝 (z|x) = −1
2
(z −m𝑥 )𝑇 (K𝑥𝑥 + 𝜎)−1 (z −m𝑥 ) (18)

−1
2

log(K𝑥𝑥 + Σ) − 𝑛

2
log(2𝜋)

where Σ is the covariance matrix of the Gaussian noise.
In order to move from the latent approach to one that we could

assume that the Gaussian Process was actually observed, we re-
expressed our model in a different way, using the addition property
of Gaussian Processes:

𝐺𝑃 (𝜇1 + 𝜇2,K1 + K2) = 𝐺𝑃 (𝜇1,K1) +𝐺𝑃 (𝜇2,K2) (19)

Instead of applying the mixtures directly to the Gaussian Pro-
cesses and then adding them together, as it is shown in the right
side of the equation above, we applied the mixture to the covariance
matrices and added these, as it is shown in the left side of the equa-
tion. This way, we can assume that each of our Gaussian Processes
is observed as a single time series. The trick is in the way that we
define the covariance matrix for each of the Gaussian Processes,
since they are the ones encoding the hierarchical structure of the
data.

𝛾𝑖𝑡 ∼ N(0,
∑︁

𝑙 :z𝑖 ∈𝐺𝑙

K𝜃𝐺𝑙 ) (20)

Finally, we can write our covariance functions as:

K𝜃𝐺𝑙 = K𝜃𝐺𝑙 ,𝑅𝐵𝐹 + K𝜃𝐺𝑙 ,𝑃𝐸𝑅 = K
𝑙
𝐺𝑙
𝑟 ,𝜂

𝐺𝑙
𝑟

+ K
𝑝𝐺𝑙 ,𝑙

𝐺𝑙
𝑝 ,𝜂

𝐺𝑙
𝑝

(21)

where 𝑙𝑟 , 𝑙𝑝 , 𝜂𝑡 , 𝜂𝑝 and 𝑝 are the hyperparameters to learn.
As a final note regarding kernel design, our algorithm can be

trivially extended to have multiple seasonalities. This is useful
when, for example, there is a weakly seasonality pattern in the
data aside from the main pattern. It can be done by adding a new
component to our covariance function. A second periodic kernel
𝑃𝐸𝑅 can be added on and the prior for its period 𝑝 can be defined
for the specific seasonality.

3.5 Mean Function
Preliminary experiments with different kernel compositions that
included a kernel to model trend patterns in the data lead to un-
convincing results. Therefore, we have decided to not use kernel
functions to model that particular pattern very common in time
series data. We decided to model the trend of the data using a piece-
wise linear model, following the definition in [29]. The authors
proposed two different formulations, one for saturated growth and
one for linear growth. We are interested in estimating linear growth
but, in a specific use case where saturated growth could be useful,
our model could be trivially extended. We start by defining a pa-
rameter 𝑘 that accounts for the initial growth. To allow differences
in the trend, we set evenly distributed change points c at times
𝑐 𝑗 , 𝑗 = 1, ...,𝐶 . Note that the location of the change points is fixed,
what we learn is the vector of trend adjustments 𝛿 ∈ R𝑐 . At each
change point 𝑐 𝑗 our trend is allowed to change with a certain 𝛿 𝑗 .
The way to express this idea is by using a vector a𝑗 (𝑡) to indicate,
for every time point, if the change point had already happened:

a𝑗 (𝑡) =
{

1, if 𝑡 ≥ 𝑐 𝑗 ,
0, otherwise. (22)

To simplify the notation we define a matrix A = a𝑗 (𝑡)𝑇 of size
𝑛 x 𝑐 , number of time points per number of change points. The
growth changes are then defined by A𝛿 . An offset that it is not
time dependent but only change point dependent is added to avoid
having non-continuous function. The piece-wise linear function
can thus be written as

p = (k + A𝛿)x + (m + A(−c𝛿)) (23)

where 𝑘 is the initial growth.
We will not be focusing on the effect change of using a different

number of change points, nor on the automatic selection of the
number of change points. Nevertheless, it is possible to address this
problemwith the current formulation. If one chooses a large number
of potential points and uses a sparse prior on the 𝛿 parameter, it is
the equivalent of performing a L1 regularization.

4 EMPIRICAL VALIDATION
4.1 Datasets
The empirical evaluation uses four public datasets for our evalua-
tions (see Table 1). We chose datasets with different characteristics
to asses whether our algorithm is able to capture different types of
trend and seasonal patterns, that vary across groups, while working
with either small or large number of series. Notice that the third
and fourth datasets are a subset of the original ones ([19], [1]. The
former was downsampled to a weekly basis, and, for both datasets,
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Dataset Source Characteristics Groups

Prison Australian Bureau
of Statistics

Quarterly values,
32 time series
with 48 time points

8 states,
2 genders,
2 legal status

Tourism Australian Bureau
of Statistics

Monthly values,
304 time series
with 228 time points

8 states, 27 zones,
76 regions,
4 travel purposes

M5 Wallmart
sales

Weekly values,
500 time series
with 275 time points

5 departments,
3 categories,
10 stores,
3 states,
160 items

Police Houston
police

Daily values,
500 time series
with 334 time points

19 types of crimes,
79 beats,
10 streets,
67 zip codes

Table 1: Datasets and respective summary. The respective
sources are: [11], [4], [19] and [1].

we have selected the 500 bottom series with higher count levels.
We took this decision due to the fact that the bottom level time
series were very sparse and consistently showed intermittent pat-
terns. These are in themselves two active subsets of the time series
forecasting research, which we would rather avoid for now. Also,
it allowed us to increase the speed of the experimentation process.
Given that all methods were tested on the same datasets, this does
not affect the validity of the results.

4.2 Experimental Setup and Baselines
The experiments assess how the performance of the proposed
method compares to the performance of the state-of-the-art meth-
ods when forecasting a set of hierarchical time series. We were
interested in understanding if any of the methods showed a trade-
off between fitting the bottom level time series and the top level
ones. Also, as we are forecasting several time series per group of
the dataset, we wanted to evaluate if any of the models showed
higher variability within a group.

In designing our GPs, the goal was to define a set of kernels that
is flexible enough to be used in different settings. The combination
of kernels that we used included the squared exponential kernel
(RBF) and the period kernel (PER). The equations for each kernel
were presented in Section 3.2. The RBF kernel was selected to model
medium term non-linear irregularities in the data. We explored the
selection of prior distributions and parameters for the kernel hyper-
parameters, which can help the model convergence, nevertheless,
it affects negatively the model scalability. After preliminary experi-
mentation, we decided to only supply the mean values proposed
in our preliminary work to each of the hyperparameters. For the
length-scales 𝑙𝑟 , 𝑙𝑝 , we defined 1 and 0.5 respectively. For the scale
parameters, we supplied 𝜂𝑡 with 0.5 and 𝜂𝑝 with 1.5. To model
the main seasonal pattern of the data we selected 𝑝 based on the
seasonality of the dataset.

For every dataset, we compare our model with the following
approaches (see Figure 2 and Table 2):

• Standard GP: the equivalent of applying one Gaussian Pro-
cess to each time series individually. Note that the Gaussian
Processes have exactly the same kernel selection and mean
function defined for our proposed algorithm - GPHF;

• DeepAR: a model that produces probabilistic forecasts based
on training an auto regressive recurrent network model on
related time series, introduced in Section 2. The hierarchy of
the dataset was passed as multiple static categorical features
to the model;

• ETS + BU: the ETS method was applied to the bottom time
series and then the BU strategy was followed to aggregate
the forecasts to the upper hierarchical levels;

• ETS + MinT: once again the ETS method was used as the
base forecaster but this time for all the time series (including
the upper levels). To ensure the coherency of the forecasts,
MinT, the reconciliation method proposed by [16], was used.

4.3 Results and Discussion
Table 2 presents the MASE for the combination between all the dif-
ferent methods: our proposed method GPHF, the standard Gaussian
Processes, DeepAR, ETS using the BU strategy and ETS using the
MinT reconciliation method. It also includes all the datasets and
all the hierarchical levels. The results indicate that the proposed
method obtains competitive results, outperforming in several oc-
casions the state-of-the-art methods. This is somewhat surprising,
given previous work results using Gaussian Processes for time se-
ries forecasting, and taking into account that no prior information
was used. Even for the bottom level series, that Gaussian Processes
usually struggle against classical methods, GPHF is able to be con-
sistently at the benchmark across all datasets. We can also see that
this competitiveness comes from the introduced covariancemixture,
since there are significant differences between the results of GPHF
and the ones from the standard Gaussian Processes. The differences
are significant not only for the bottom levels but also for the upper
levels in the hierarchy. It shows that there is valuable information
that the method is capturing from the hierarchical structure of the
data. In fact, the magnitude of the increased performance surpasses
largely the improvement that MinT had over a simple BU strategy.
And recall that our method does not require any additional recon-
ciliation step. Furthermore, our method is reliable at establishing
a compromise between the bottom and top level prediction errors.
The same can be said regarding the dataset size, our method is able
to keep a good balance there also. DeepAR, for example, struggles
more often in both dimensions.

Figure 2 helps to get a more detailed perspective on the distri-
bution of the forecast error within groups. Once again, no method
shows a variance significantly higher than the rest, which means
that inside each group the behaviour is also similar. These results
confirm that the proposed method is competitive with the state-of-
the-art. Even in the cases where we see outliers, e.g. in the item
or bottom groups in the M5 dataset or in the beat, crime, zip or
bottom groups in the police dataset, no method shows significant
capacity to overcome those more challenging time series.
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Figure 2: Visual representation of the results (MASE) for the different datasets considered in the experiments. We used box
plots to show the distribution of the error inside each group. In light of these results, our proposed method shows similar
capacity to forecast hierarchical time series as the state-of-the-art approaches.

Dataset Algorithm bottom total state gender legal - - all

Prison GPHF 1.92 0.56 1.48 0.46 1.91 - - 1.74
Standard GP 2.12 2.94 2.31 2.78 2.98 - - 2.24
DeepAR 1.83 1.88 1.60 1.65 1.93 - - 1.79
ETS + BU 1.78 1.30 1.59 1.40 1.52 - - 1.70
ETS + MinT 1.77 0.63 1.50 0.76 1.63 - - 1.64

Dataset Algorithm bottom total state zone region purpose - all
Tourism GPHF 0.84 1.69 1.08 0.89 0.80 1.07 - 0.85

Standard GP 0.89 1.34 1.04 0.89 0.81 1.22 - 0.88
DeepAR 0.84 1.89 1.18 0.94 0.83 1.3 - 0.85
ETS + BU 0.82 1.37 0.97 0.91 0.80 1.00 - 0.83
ETS + MinT 0.82 1.25 0.92 0.86 0.78 0.88 - 0.82

Dataset Algorithm bottom total department category store state item all
M5 GPHF 0.87 1.10 1.02 0.87 1.02 1.06 0.86 0.87

Standard GP 0.96 1.15 1.20 1.01 1.16 1.11 0.94 0.96
DeepAR 0.79 1.32 0.90 0.90 1.08 1.19 0.74 0.79
ETS + BU 0.92 1.20 0.97 0.87 1.18 1.20 0.87 0.92
ETS + MinT 0.93 1.20 0.99 0.87 1.15 1.17 0.88 0.92

Dataset Algorithm bottom total crime beat street zip - all
Police GPHF 0.96 1.04 0.80 0.83 0.77 0.81 - 0.92

Standard GP 1.16 4.92 1.41 1.08 1.53 1.09 - 1.16
DeepAR 0.98 1 0.83 0.84 0.79 0.82 - 0.94
ETS + BU 0.96 0.86 0.80 0.83 0.77 0.81 - 0.92
ETS + MinT 0.96 0.94 0.80 0.83 0.77 0.81 - 0.92

Table 2: Results (MASE) for the different datasets considered in the experiments. Bold values represent the smallest error across
algorithms. The errors are calculated for each group and for the bottom and top level series.



MiLeTS ’22, August 15th 2022, Washington, DC, USA Roque et al.

5 CONCLUSIONS AND FUTUREWORK
We proposed a new algorithm to perform time series forecasting
on datasets of related time series with a hierarchical structure. We
propose a covariance mixture that allows the covariance matrices of
the Gaussian Processes to share parameters and learn dependencies
between series. At the same time, it reduces the overall number of
parameters required. Additionally, our approach uses a combination
of a composition of kernels and a mean function that is able to
fit time series patterns, while not requiring any complex kernel
selection task.

Our method was able to effectively capture the behaviours of the
top level series, while not losing accuracy on the individual ones.We
tested our hypothesis on four real world datasets of different sizes
and frequencies: daily, weekly, monthly and quarterly. Interestingly
enough, the results show that Gaussian Processes can compete with
state-of-the-art methods in time series forecastings tasks.

As future work, an interesting research question to answer is the
quantification of the uncertainty by our approach when compared
to the state-of-the-art methods. Gaussian Processes, besides being
inherently Bayesian, provide out of the box mean and variance
estimates (which is not the case for most machine learning models).
This variance is often referred as uncertainty and the way Gauss-
ian Processes are built ensures that uncertainty reduces around
observations, which is a nice property and very helpful in a time
series forecasting setting. Also, the scalability of the model can be
developed further if we consider approximation methods, such as
sparse approximations (e.g. [22], [30]).

In the interest of reproducible science, our proposed algorithm
and datasets are publicly available1.
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