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ABSTRACT
In many forecasting applications (e.g. retail demand, electricity load,

weather, finance, etc.), the forecasts must obey certain properties

such as having certain context-dependent and time-varying season-

ality patterns and avoiding excessive revision as new information

becomes available. Here we propose a new forecasting neural net

architecture that addresses some of these issues, MQ-Transformer,

by incorporating three architectural improvements to the current

state-of-the-art: 1) a novel decoder-encoder attention that aligns

the historical and future time periods 2) a novel positional encod-

ing that learns seasonality from the historical time series and 3) a

novel decoder-self attention that allows the network to minimize

the forecast volatility. We then define a new measure of forecast

volatility, Bregman Volatility, to understand one major source of

the improvement from our model. Bregman Volatility allows us to

compute the optimal volatility of a sequence of forecasts in terms

of the improvement in forecast accuracy over that time period. We

show both theoretically and empirically that the decoder-self atten-

tion module optimizes Bregman volatility and thereby improves

forecast accuracy as well.
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1 INTRODUCTION
Time series forecasting is a fundamental problem in machine learn-

ing with relevance to many applications including supply chain

management, finance, healthcare, etc. Modern forecasting appli-

cations require predictions of many correlated time series over

multiple horizons. In multi-horizon forecasting, the learning ob-

jective is to produce forecasts for multiple future horizons at each

time-step. Beyond point estimation, decision making problems re-

quire ameasure of uncertainty about the forecasted quantity. Access

to the full distribution is often unnecessary and several quantiles

are sufficient (e.g. many problems in Operations Research use the

50
𝑡ℎ

and 90
𝑡ℎ

quantiles).

As an example, consider a large e-commerce retailer with a

system to produce forecasts of the demand distribution for a set of

products at a target time 𝑇 . Using these forecasts as an input, the

retailer can then optimize buying and placement decisions. Accurate

forecasts are important, but – perhaps less obviously – forecasts that

don’t exhibit excess volatility as a target date approaches minimize

costly effects in a supply chain [4, 5].

Recent work applying deep learning to time-series forecasting

focuses primarily on the use of recurrent and convolutional archi-

tectures [12, 20, 21, 30, 32]
1
. These are Seq2Seq architectures [26]

– which consist of an encoder that summarizes an input sequence

into a fixed-length context vector, and a decoder which produces

an output sequence. This line of work has led to major advances in

forecast accuracy and real-world forecasting systems increasingly

rely on neural nets. Accordingly, a need for black-box forecasting

system diagnostics has arisen. In this paper, we develop a new no-

tion called Bregman Volatility to quantify the amount of forecast

volatility beyond the forecast changes required to incorporate new

information and improve forecast accuracy. While tools such as

Bregman Volatility can detect flaws in forecasts, the question of how

to incorporate that information into model design is unexplored.

Existing multi-horizon forecasting architectures do not explicitly

handle excess variation, since forecasts on any particular date are

not made aware of errors in the forecast for previous dates.

Another limitation in many existing architectures is the well

known information bottleneck, where the encoder transmits infor-

mation to the decoder via a single hidden state. To address this,

Bahdanau et al. [1] introduce a method called attention, allowing

1
For a complete overview see Benidis et al. [3]
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the decoder to take as input a weighted combination of relevant

latent encoder states at each output time step, rather than using

a single context to produce all decoder outputs. While NLP is the

predominant application of attention architectures to date, in this

paper we use novel attention modules and positional embeddings

to introduce the proper inductive biases for probabilistic time-series

forecasting to the model architecture.

Summary of Contributions In this paper, we are concerned

with both improving forecast accuracy and reducing excess forecast

volatility.We present a set of novel architectures that seek to remedy

some of inductive biases that are currently missing in state of the

art MQ-Forecasters [30]. Our main contributions are

• Positional Encoding fromEvent Indicators: CurrentMQ-

Forecasters use explicitly engineered holiday “distances"

to provide the model with information about seasonality.

We introduce a novel positional encoding mechanism that

allows the network to learn a context-dependent seasonality

function specific that is more general than conventional

position encoding schemes.

• Horizon-Specific Decoder-Encoder Attention: Current
MQ-Forecasters learn a single encoder representation for all

future periods being forecasted. We present a novel horizon-

specific decoder-encoder attention scheme that allows the

network to learn a representation of the past that depends

on the period being forecasted.

• Decoder Self-Attention for Forecast Evolution: To the
best of our knowledge, this is the first work to consider the

impacts of network architecture design on forecast evolution.
Importantly, we accomplish this by using attention mech-

anisms to introduce the right inductive biases, and not by

explicitly penalizing a measure of forecast variability so that

we do not need to make trade-offs between accuracy and

volatility.

• Bregman Volatility: We develop a new notion of forecast

volatility called “Bregman Volatility” and show how our De-

coder Self-Attention module optimizes Bregman Volatility.

Bregman Volatility shows how forecast volatility and accu-

racy are closely linked and may be of independent interest

in other contexts.

By providing MQ-Forecasters with the structure necessary to

learn context information dependent encodings, we observe major

increases in accuracy (5.5% in overall P90 quantile loss throughout

the year, and up to 33% during peak periods) on our demand fore-

casting application. In terms of excess volatility, we see a reduction

of 68% in Bregman Volatility for the mean forecast.

In addition, we apply MQTransformer to four public datasets and

show parity with the state-of-the-art on simple univariate tasks.

On a substantially more complex public dataset (retail forecast-

ing) we show a 38% improvement over the previously reported

state-of-the-art, and a 5% improvement in P50 QL, 11% in P90 QL

versus our baseline. Because our innovations are compatible with

efficient training schemes, our architecture also achieves a signif-

icant speedup (several orders of magnitude greater throughput)

over earlier transformer models for time-series forecasting.

2 BACKGROUND AND RELATEDWORK
Time Series Forecasting We consider the high-dimensional

regression problem

𝑝 (𝑦𝑡+1,𝑖 , . . . , 𝑦𝑡+𝐻,𝑖 |y:𝑡,𝑖 , x(ℎ)
:𝑡,𝑖
, x(𝑓 )

:𝑡,𝑖
, x(𝑠)
𝑖

), (1)

where 𝑦𝑡+𝑠,𝑖 , y:𝑡,𝑖 , x
(ℎ)
:𝑡,𝑖

, x(𝑓 )
𝑡 :,𝑖

, x(𝑠)
𝑖

denote future observations of the

target time series 𝑖 , observations of the target time series observed

until time 𝑡 , the past covariates, known future information, and

static covariates, respectively.

For sequence modeling problems, Seq2Seq [26] is the canonical

deep learning framework and it has been adapted to time series

forecasting [12, 20, 21, 23, 29, 30, 32]. The MQ-Forecaster frame-

work [30] solves (1) by treating each series 𝑖 as a sample from a joint

stochastic process and feeding into a neural network which predicts

𝑄 quantiles for each horizon. These types of models have limited

contextual information available to the decoder – a drawback inher-

ited from the Seq2Seq architecture – as it produces each estimate

𝑦
𝑞

𝑡+𝑠,𝑖 , the 𝑞
𝑡ℎ

quantile of the distribution of the target at time 𝑡 + 𝑠 ,
𝑦𝑡+𝑠,𝑖 . Seq2Seq models rely on a single encoded context to produce

forecasts for all horizons, imposing an information bottleneck and

making it difficult to learn long term dependencies.

Our MQTransformer architecture uses the direct strategy: the

model outputs the quantiles of interest directly, rather than the

parameters of a distribution fromwhich samples are to be generated.

This has been shown [30] to outperform parametric models, like

DeepAR [23], on a wide variety of tasks. Recently, Lim et al. [18]

consider an application of attention to multi-horizon forecasting,

but their method still produces a single context for all horizons

and by using an RNN decoder, does not enjoy the same scaling

properties as MQ-Forecaster models.

AttentionMechanisms Bahdanau et al. [1] introduced the atten-

tion mechanism to solve the information bottleneck and sequence

alignment problems in Seq2Seq architectures for NMT. Recently,

attention has enjoyed success in many applications including nat-

ural language processing (NLP), computer vision (CV) and time-

series forecasting [7, 11, 15, 17, 18, 25, 31]. Many variants have

been proposed including self-attention and dot-product attention

[6, 9, 19, 28], and transformer architectures (end-to-end attention

with no recurrent layers) achieve state-of-the-art performance on

most NLP tasks.

Time series forecasting applications exhibit seasonality and the

absolute position encodings commonly used in the literature cannot

be applied. Our work differs from previous work on relative position
encodings [8, 14, 24] in that we learn a representation from a time

series of indicator variables which encode events relevant to the

target application (e.g. holidays and promotions). Existing encoding

schemes either involve feature engineering (e.g. sinusoidal encod-

ings) or have a maximum input sequence length. See Appendix A

for more background on attention mechanisms.

Notation We denote by 𝐻 and 𝑄 the number of horizons and

quantiles being forecast, respectively. Bolded characters are used to

indicate vector and matrix values. The concatenation of two vectors

v and u is denoted as [u; v].
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3 METHODOLOGY
Here we present our MQTransformer architecture, building on

the MQ-Forecaster framework [30]. We extend the MQ-Forecaster

family of models because it, unlike many other architectures in the

literature, can be applied to millions of samples due to its use of

forking sequences – a technique to dramatically increase throughput

during training and avoid expensive data augmentation.

For ease of exposition, we reformulate the generic probabilistic

forecasting problem in (1) as

𝑝 (𝑦𝑡+1,𝑖 , . . . , 𝑦𝑡+𝐻,𝑖 |y:𝑡,𝑖 , x:𝑡,𝑖 , x(𝑙)𝑖 , x(𝑔) , x(𝑠)
𝑖

),

where x:𝑡,𝑖 are past observations of all covariates, x
(𝑙)
𝑖

= {x(𝑙)
𝑠,𝑖

}∞
𝑠=1

are known covariates specific to time-series 𝑖 , x(𝑔) = {x(𝑔)𝑠 }∞
𝑠=1

are the global, known covariates. Here known signifies that the

model has access to (potentially noisy) observations of past and

future values. Note that this formulation is equivalent to (1), and

that known covariates can be included in the past covariates x:𝑡 .
When it can be inferred from context, the time series index 𝑖 is

omitted.

Learning Objective We train a quantile regression model to

minimize the quantile loss, summed over all forecast creation times

(FCTs) and quantiles

∑
𝑡

∑
𝑞

∑
𝑘 𝐿𝑞

(
𝑦𝑡+𝑘 , 𝑦

(𝑞)
𝑡+𝑘

)
, where 𝐿𝑞 (𝑦,𝑦) =

𝑞(𝑦 −𝑦)+ + (1 − 𝑞) (𝑦 −𝑦)+, (·)+ is the positive part operator, 𝑞 is a

quantile, and 𝑘 is the horizon.

3.1 Network Architecture
The design of the architecture is similar to MQ-(C)RNN [30], and

consists of encoder, decoder and position encoding blocks. The

position encoding outputs, for each time step 𝑡 , are a representa-

tion of global position information, r(𝑔)𝑡 = PE
(𝑔)
𝑡 (x(𝑔)

𝑖
), as well as

time-series specific context information, r(𝑙)𝑡 = PE
(𝑙)
𝑡 (x(𝑙)

𝑖
). Intu-

itively, r(𝑔)𝑡 captures position information that is independent of the

time-series 𝑖 (such as holidays), whereas r(𝑙)𝑡 encodes time-series

specific context information (such as promotions). In both cases,

the inputs are a time series of indicator variables and require no
feature-engineering or handcrafted functions.

The encoder then summarizes past observations of the covariates

into a sequence of hidden states h𝑡 := encoder(y:𝑡 , x:𝑡 , r(𝑔):𝑡 , r(𝑙)
:𝑡 , s).

Using these representations, the decoder produces an 𝐻 ×𝑄 matrix

of forecasts Ŷ𝑡 = decoder(h:𝑡 , r(𝑔) , r(𝑙) ). Note that in the decoder,

the model has access to position encodings.

In this section we focus on our novel attention blocks and posi-

tion encodings; the reader is directed to Appendix A.2 for additional

architecture details.

MQTransformer Following the generic pattern given above, we
present the MQTranformer architecture. First, define the combined

position encoding as r := [r(𝑔) ; r(𝑙) ]. In the encoder we use a stack

of dilated temporal convolutions [27, 30] to encode historical time-

series and a multi-layer perceptron to encode the static features as

(2).

Our decoder incorporates our horizon specific and decoder self-

attention blocks, and consists of two branches. The first (global)

branch summarizes the encoded representations into horizon-specific

Table 1: MQTransformer encoder and decoder

Encoder

h1𝑡 = TemporalConv(y:𝑡 , x:𝑡 , r:𝑡 )
h2𝑡 = FeedForward(s)
h𝑡 = [h1𝑡 ; h2𝑡 ],

(2)

Decoder Contexts

c𝑡,ℎ = HSAttention(h:𝑡 , r)
c𝑎𝑡 = FeedForward(h𝑡 , r)
c𝑡 = [c𝑡,1; · · · ; c𝑡,𝐻 ; c𝑎𝑡 ]

c̃𝑡,ℎ = DSAttention(c:𝑡 , h:𝑡 , r),

(3)

(c𝑡,ℎ) and horizon agnostic (c𝑎𝑡 ) contexts. Formally, the global branch

c𝑡 :=𝑚𝐺 (·) is given by (3).

The output branch consists of a self-attention block followed

by a local MLP, which produces outputs using the same weights

for each horizon. For FCT 𝑡 and horizon ℎ, the output is given

by (𝑦1
𝑡+ℎ, . . . , 𝑦

𝑄

𝑡+ℎ) = 𝑚𝐿 (c
𝑎
𝑡 , c𝑡,ℎ, c̃𝑡,ℎ, r𝑡+ℎ). Next we describe the

specifics of our position encoding and attention blocks.

3.2 Learning Position and Context
Representations from Event Indicators

Prior work typically uses a variant on one of two approaches to

provide attention blocks with position information: (1) a hand-

crafted representation (such as sinusoidal encodings) or (2) a matrix

M ∈ R𝐿×𝑑 of position encoding where 𝐿 is the maximum sequence

length and each row corresponds to the position encoding for time

point.

In contrast, our novel encoding scheme maps sequences of in-

dicator variables to a 𝑑-dimensional representations. For demand

forecasting, this enables our model to learn an arbitrary function

of events (like holidays and promotions) to encode position in-

formation. As noted above, our model includes two position en-

codings: 𝑟
(𝑔)
𝑡 := 𝑃𝐸

(𝑔)
𝑡 (x(𝑔) ) and 𝑟 (𝑙)𝑡 := 𝑃𝐸

(𝑙)
𝑡 (x(𝑙) ), one that is

shared among all time-series 𝑖 and one that is specific. For the de-

sign we use in Section 4, 𝑃𝐸 (𝑔) is implemented as a bidirectional

(looking both forward and backward in time) 1-D convolution and

𝑃𝐸 (𝑙) is an MLP applied separately at each time step. For reference,

MQ-(C)RNN [30] uses linear holiday and promotion distances to

represent position information.

By using 1-D convolutions and MLPs over a time-series of in-

dicator variables, our approach is more flexible and can be used

to learn a position representation that is context specific. In the

demand forecasting application, consider two products during a

holiday season where one has a promotion and the other does

not. These two products need different position encodings, else the

decoder-encoder attention (Section 3.3) will not be able to align tar-

get horizons with past contexts. In addition, note that the classical

method of learning a matrix embeddingM can be recovered as a

special case of our approach. Consider a sequence of length 𝐿, and

take x(𝑔) := [e1, . . . , e𝐿], where e𝑠 is used to denote the vector in

R𝐿 with a 1 in the 𝑠𝑡ℎ position and 0s elsewhere. To recover the

matrix embedding scheme, we define PE
matrix

𝑡 (x(𝑔) ) := x(𝑔),⊤𝑡 M.
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3.3 Context Dependent and Feedback-Aware
Attention

Horizon-Specific Decoder-Encoder Attention To motivate

the horizon-specific attention unit, consider a retail demand fore-

casting task. At each FCT 𝑇 , the forecaster produces forecasts for

multiple target horizons, which may contain different events such

as promotions or holidays. Prior work [30] incorporated horizon-

specific contexts with the functional form 𝑐𝑡,ℎ = 𝑓 (ℎ𝑡 , 𝑟𝑡+ℎ) for
each FCT, target horizon. Because events like promotions or holi-

days – which are strong predictors of observed demand – are fairly

sparse, this functional form is insufficient. Instead, a function of

the form 𝑐𝑡,ℎ = 𝑓 (ℎ1, 𝑟1, . . . , ℎ𝑡 , 𝑟𝑡 , 𝑟𝑡+ℎ) allows the model to use

information from many past periods, which is valuable due to the

sparsity of relevant events. Using an attention mechanism to align

target horizons enables this. Figure 1 depicts the difference between

prior work and the horizon-specific attention in MQTransformer.

To do this, we introduce the horizon-specific attention mecha-

nism, which can be viewed is a multi-headed attention mechanism

where the projection weights are shared across all horizons. Each

head corresponds to a different horizon. It differs from a traditional

multi-headed attention mechanism in that its purpose is to attend

over representations of past time points to produce a representa-

tion specific to the target period. In our architecture, the inputs

to the block are the encoder hidden states and position encodings.

Mathematically, for time 𝑠 and horizon ℎ, the attention weight for

the value at time 𝑡 is computed as (4).

Observe that there are two key differences between these atten-

tion scores and those in the vanilla transformer architecture: (a)

projection weights are shared by all 𝐻 heads, (b) the addition of the

position encoding of the target horizon ℎ to the query. The output

of our horizon specific decoder-encoder attention block, c𝑡,ℎ , is
obtained by taking a weighted sum of the encoder hidden contexts,

up to a maximum look-back of 𝐿 periods as in (5).

Decoder Self-Attention Our Bregman Volatility theory below

shows a deep connection between accuracy and volatility. We

leverage this connection to develop a novel decoder self-attention

scheme for multi-horizon forecasting. To motivate the development,

consider a model which forecasts values of 40, 60 when the demand

has constantly been 50 units. We would consider this model to

have excess volatility. Similarly, a model forecasting 40, 60 when

demand jumps between 40 and 60 units would not be considered

to have excess volatility. The first model fails to learn from its past

forecasts.

To ameliorate this, we pass information of the previous forecast

errors to the current forecast. For each FCT 𝑡 and horizon ℎ, the

model attends on the previous forecasts using a query containing

the demand information for that period. The attention mechanism

has a separate head for each horizon. The demand information

at time 𝑡 is incorporated via the encoded context h𝑡 and previous

forecasts are represented via the corresponding horizon-specific

context c𝑠,𝑟 – in the absence of decoder-self attention c𝑠,𝑟 would be
passed through the local MLP to generate the forecasts. Formally,

the attention scores are given by (6). The horizon-specific and

feedback-aware outputs, c̃𝑡,ℎ , are given by (7). Note how we sum

only over previous forecasts of the same period. In Section 4 we

demonstrate the importance of this choice by comparing to a more

traditional decoder-self attention unit that attends over all past

forecasts. See Figure 2 in Appendix A.2 for an illustration.

4 EMPIRICAL RESULTS
4.1 Large-Scale Demand Forecasting
First, we evaluate our architecture on a demand forecasting problem

for a large-scale e-commerce retailer with the objective of producing

multi-horizon forecasts for the next 52 weeks. We conduct our

experiments on a subset of products (∼ 2 million products) in the

US store. Each model is trained using a single machine with 8

NVIDIA V100 Tensor Core GPUs, on three years of demand data

(2015-2018); one year (2018-2019) is held out for back-testing.

To assess the effects of each innovation, we ablate by remov-

ing components one at a time. The architectures we compare are

the baseline (MQ-CNN), MQTransformer (MQT), MQTransformer

without decoder self-attention (MQT-NoDS), and MQ-Transformer

with a decoder self-attention unit that attends over all past forecasts

(MQT-All). MQ-CNN is selected as the baseline since prior work
2

demonstrate that MQ-CNN outperforms MQ-RNN and DeepAR on

this dataset, and as can be seen in Table 4, MQ-CNN outperforms

MQ-RNN and DeepAR on the public retail forecasting dataset. For

additional details see Appendix A.6 (Table 5 describes the decoder-

self attention unit used in MQT-All).

Forecast Accuracy Table 3 summarizes several key metrics that

demonstrate the accuracy improvements achieved by adding our

proposed attention mechanisms to the MQ-CNN architecture. We

consider overall quantile loss, as well as quantile loss for specific

target periods (seasonal peaks, promotions). We also measure post-

peak ramp-down performance – models that suffer issues with

alignment will continue to forecast high for target weeks after a

seasonal peak. By including MQTransformer’s attention mecha-

nisms, we see up to 33% improvements for seasonal peaks and 24.9%

improvements on promotions versus MQ-CNN. Further, the abla-

tion analysis (against MQT-NoDS and MQT-All) shows that both

novel attention units are important to improving accuracy, and that

our decoder-self attention scheme (where we attend only over past

forecasts for the same target period) introduces a powerful induc-

tive bias. Table 8 in Appendix A.6 shows the metrics computed on

only short horizons, where we see even greater gains in accuracy.

4.2 Publicly Available Datasets
Following Lim et al. [18], we consider applications to brick-and-

mortar retail sales, electricity load, securities volatility and traffic

forecasting. In each task, we report the quantile loss summed over

all forecast creation times, normalized by the target values:

2

∑
𝑡

∑
𝑘 𝐿𝑞

(
𝑦𝑡+𝑘 , 𝑦

(𝑞)
𝑡+𝑘

)∑
𝑡

∑
𝑘 |𝑦𝑡+𝑘 |

.

For the retail task, we predict the next 30 days of sales, given the

previous 90 days of history. This dataset has a rich set of static,

time series, and known features. At the other end of the spectrum,

the electricity load dataset is univariate. See Section 6 for more

information about these tasks. Table 4 compares MQTransformer’s

2
Wen et al. [30], Figure 3 shows MQ-CNN (labeled “MQ_CNN_wave”) outperforms

MQ-RNN (all variants) and DeepAR (labeled “Seq2SeqC”) on the test set.
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Table 2: Attention weight and output computations for blocks introduced in Section 3.3

Block Attention Weights Output

Decoder-Encoder

Attention

𝐴ℎ
𝑡,𝑠 = qℎ,⊤𝑡 W⊤

𝑞W𝑘k𝑠

qℎ𝑡 = [h𝑡 ; r𝑡 ; r𝑡+ℎ ]
k𝑠 = [h𝑠 ; r𝑠 ]
v𝑠 = h𝑠

(4) c𝑡,ℎ =

𝑡∑︁
𝑠=𝑡−𝐿

𝐴ℎ
𝑡,𝑠W𝑣v𝑠 (5)

Decoder

Self-Attention

𝐴ℎ
𝑡,𝑠,𝑟 = q⊤

𝑡,ℎ
Wℎ,⊤

𝑞 Wℎ
𝑘
k𝑠,𝑟

q𝑡,ℎ = [h𝑡 ; c𝑡,ℎ ; r𝑡 ; r𝑡+ℎ ]
k𝑠,𝑟 = [c𝑠,𝑟 ; r𝑠 ; r𝑠+𝑟 ]
v𝑠,𝑟 = c𝑠,𝑟

(6) c̃𝑡,ℎ =
∑︁

(𝑠,𝑟 )∈H(𝑡,ℎ)
𝐴ℎ
𝑠,𝑡,𝑟W

ℎ
𝑣 v𝑠,𝑟 ,

H(𝑡, ℎ) := {(𝑠, 𝑟 ) |𝑠 + 𝑟 = 𝑡 + ℎ}

(7)

ℎ𝑇−1 ℎ𝑇ℎ𝑇−2ℎ𝑇−3ℎ𝑇−4

Encoder

Decoder (FCT𝑇 )

𝑌𝑇+1 𝑌𝑇+2 𝑌𝑇+3

Promotion

(a) MQTransformer decoder at FCT𝑇 .

ℎ𝑇−1 ℎ𝑇ℎ𝑇−2ℎ𝑇−3ℎ𝑇−4

Encoder

Decoder (FCT𝑇 )

𝑌𝑇+1 𝑌𝑇+2 𝑌𝑇+3

Promotion

(b) MQCNN decoder at FCT𝑇

Figure 1: Example of a demand forecasting task where periods 𝑇 − 3 and 𝑇 + 2 both have promotions. The encoded context
ℎ𝑇−3, the last time the item had a promotion, contains useful information for forecasting for target periods that also have a
promotion. The horizon-specific attention aligns past encoded contexts with the target horizon.

Table 3: P50 (50th percentile) and P90 (90th percentile) quantile loss on the backtest year along different dimensions. Values
indicate relative performance versus the baseline.

MQ-CNN MQT MQT-NoDS MQT-All

Dimension P50 P90 P50 P90 P50 P90 P50 P90

Overall 1.000 1.000 0.977 0.945 0.983 0.963 0.977 0.957

Seasonal Peak 1 1.000 1.000 0.865 0.667 0.881 0.688 0.908 0.729

Seasonal Peak 2 1.000 1.000 0.957 0.884 0.984 0.946 0.953 0.931

Seasonal Peak 3 1.000 1.000 0.838 0.845 0.837 0.892 0.851 0.870

Post-Peak Rampdown 1.000 1.000 0.987 0.978 0.985 0.997 0.990 0.991

Promotion Type 1 1.000 1.000 0.945 0.800 0.969 0.824 0.953 0.842

Promotion Type 2 1.000 1.000 0.868 0.751 0.895 0.762 0.914 0.808

Promotion Type 3 1.000 1.000 0.949 0.837 1.075 1.004 0.960 0.911

performance with DeepAR [23], ConvTrans [17], MQ-RNN [30],

and TFT [18]
3
.

Our MQTransformer architecture is competitive with or beats

the state-of-the-art on the electricity load, volatility and traffic pre-

diction tasks, as shown in Table 4. On the most challenging task, it

dramatically outperforms the previously reported state of the art

by 38% and the MQ-CNN baseline by 5% at P50 and 11% at P90.

3
Results for TFT, MQ-RNN, DeepAR and ConvTrans are from [18].

Because MQ-CNN and MQTransformer are trained using forking

sequences, we can use the entire training population, rather than

downsample as is required to train TFT [18]. To ascertain what

portion of the gain is due to learning from more trajectories, ver-

sus our innovations alone, we retrain the optimal MQTransformer

architecture using a random sub-sample of 450K trajectories (the

same sampling procedure as TFT) and without using forking se-

quences – the results are indicated in parentheses in Table 4. We

can observe that MQTransformer still dramatically outperforms
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TFT, and its performance is similar to the MQ-CNN baseline trained

on all trajectories. See Section 6 for more details and results on the

Favorita forecasting task.

Computational EfficiencyAs an example take the Retail dataset.

[18] was only able to use 450K out of 20M trajectories and the op-

timal TFT architecture required 13 minutes per epoch (minimum

validation error at epoch 6)
4
using a single V100 GPU. Our innova-

tions are compatible with forking sequences so our architecture can

use all available trajectories. To train, MQTransformer requires only

5 minutes per epoch (on 20M trajectories) using a single V100 GPU

(minimum validation error at 5 epochs).Some of the differences in

runtime can be attributed to use of different deep learning frame-

works, but it is clear that MQTransformer can be trained much

more efficiently than models like TFT and DeepAR.

5 ABLATION STUDIES
In the ablation studies, the model MQT-All uses a standard multi-

head attention applied to the concatenated contexts for all horizons

at each period 𝑡 . A separate head is used for each output horizon

(52 heads on the private dataset). Table 6 gives the number of

parameters in each trained model.

5.1 Experiment Setup
In this section we describe the details of the model architecture

and training procedure used in the experiments on the large-scale

demand forecasting application.

Training Procedure. Because we did not have enough history avail-

able to set aside a true holdout set, all models are trained for 100

epochs, and the final model is evaluated on the test set. For the

same reason, no hyperparameter tuning was performed.

Architecture and Hyperparameters. The categorical variables consist
of static features of the item, and the timeseries categorical variables

are event indicators (e.g. holidays). The parameters are summarized

in Table 7.

5.2 Results for shorter horizons
Table 8 shows results for horizons up to 6weeks. Similar to Section 4,

MQTransformer significantly outperforms the baseline.

6 EXPERIMENTS ON PUBLIC DATASETS
We describe the experiment setup used for the public datasets in

Section 4. As mentioned , we display the baseline results published

in Lim et al. [18]. For MQ-CNN and MQTransformer, we use their

pre-processing and evaluation code to ensure parity.

6.1 Datasets
We evaluate our MQTransformer on four public datasets. We sum-

marize the datasets and preprocessing logic below; the reader is

referred to Lim et al. [18] for more details. Lim et al. [18] released

their code under the Apache 2.0 License. Favorita’s terms of use for

their retail dataset allows for it to be used for scientific research. The

Electricity and Traffic datasets are provided by the UCI machine

4
Timing results obtained by running the source code provided by Lim et al. [18]

learning repository [10]. The volatility dataset is sourced from the

Oxford-Man Institute’s realized library v0.3 [13].

Retail. This dataset is provided by the Favorita Corporacion (a

major Ecuador Grocery) as part of a Kaggle
5
to predict sales for

thousands of items at multiple brick-and-mortar locations. In total

there are 135K items (item, store combinations are treated as distinct

entities), and the dataset contains a variety of features including:

local, regional and national holidays; static features about each

item; total sales volume at each location. The task is to predict

log-sales for each (item, store) combination over the next 30 days,

using the previous 90 days of history. The training period is January

1 - December 1, 2015. The following 30 days are used as a validation

set, and the 30 days after that as the test set. These 30 day windows

correspond to a single FCT. While Lim et al. [18] extract only 450K

samples from the histories during the train window, there are in

fact 20M trajectories avalaible for training – because our models can

produce forecasts for multiple trajectories (FCDs) simultaneously,

we train using all available data from the training window.

Electricity. This dataset consists of time series for 370 customers of

at an hourly grain. The univariate data is augmented with a day-of-

week, hour-of-day and offset from a fixed time point. The task is to

predict hourly load over the next 24 hours for each customer, given

the past seven days of usage. From the training period (January 1,

2014 through September, 1 2019) 500K samples are extracted.

Traffic. This dataset consists of lane occupancy information for 440

San Francisco area freeways. The data is aggregated to an hourly

grain, and the task is to predict the hourly occupancy over the next

24 hours given the past seven days. The training period consist of

all data before 2008-06-15, with the final 7 days used as a validation

set. The 7 days immediately following the training window is used

for evaluation. The model takes as input lane occupancy, hour of

day, day of week, hours from start and an entity identifier.

Volatility. The volatility dataset consists of 5 minute sub-sampled

realized volatility measurements from 2000-01-03 to 2019-06-28.

Using the past one year’s worth of daily measurements, the goal is

to predict the next week’s (5 business days) volatility. The period

ending on 2015-12-31 is used as the training set, 2016-2017 as the

validation set, and 2018-01-01 through 2019-06-28 as the evaluation

set. The region identifier is provided as a static covariate, along with

time-varying covariates daily returns, day-of-week, week-of-year

and month. A log transformation is applied to the target.

7 BREGMAN VOLATILITY DEFINITIONS
Assume that some number 𝑋 ∈ R (e.g. customer demand) is ob-

served at a given time point in the future, 𝑇∞, and forecasts for

𝑋 , denoted 𝑋𝑡 , are created at time points 𝑡 = 1, 2, . . . ,𝑇 < 𝑇∞.

The accuracy of each forecast 𝑋𝑡 is measured by 𝑐 (𝑋𝑡 − 𝑋 ), where
𝑐 : R→ R is some convex cost function that is minimized at 0. We

assume that 𝑐 is differentiable on all of R, except possibly at 0.

Let F𝑡 denote the 𝜎-field of information available at time 𝑡 , so,

in particular, F𝑡 ⊆ F𝑡+1. Define the function 𝑐𝑋 : R → R by

𝑐𝑋 (𝑥) = 𝑐 (𝑥 − 𝑋 ). Our goal is to find forecasts 𝑋𝑡 ∈ F𝑡 that are

5
The original competition can be found here.

https://github.com/google-research/google-research/blob/master/tft
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
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Table 4: Quantile loss metrics with the best results on each task emphasized. Results in parentheses correspond to training
MQTransformer without forking sequences on 450K trajectories only.

P
5
0
Q
L

Task DeepAR ConvTrans MQ-RNN MQ-CNN TFT MQTransformer

Electricity 0.075 0.059 0.077 0.076 0.055 0.057

Retail 0.574 0.429 0.379 0.269 0.354 0.256 (0.2645)

Volatility 0.050 0.047 0.042 0.042 0.039 0.039
Traffic 0.161 0.122 0.117 0.115 0.095 0.101

P
9
0
Q
L

Task DeepAR ConvTrans MQ-RNN MQ-CNN TFT MQTransformer

Electricity 0.040 0.034 0.036 0.035 0.027 0.027
Retail 0.230 0.192 0.152 0.118 0.147 0.106 (0.109)

Volatility 0.024 0.024 0.021 0.020 0.020 0.019
Traffic 0.099 0.081 0.082 0.077 0.070 0.068

Table 5: Attention weight and output computations for MQT-
All decoder self-attention

Attention Weights Output

𝐴ℎ
𝑡,𝑠 = q⊤𝑡 W

ℎ,⊤
𝑞 Wℎ

𝑘
k𝑠

q𝑡 = [c𝑠,1; · · · ; c𝑠,𝐻 ; h𝑡 ; r𝑡 ]
k𝑠 = [c𝑠,1; · · · ; c𝑠,𝐻 ; r𝑠 ]
v𝑠 = [c𝑠,1; · · · ; c𝑠,𝐻 ]

c̃𝑡,ℎ =

𝑡∑︁
𝑠=𝑡−𝐿

𝐴ℎ
𝑡,𝑠W

ℎ
𝑣 v𝑠

Table 6: Parameter counts in trained models for the large
scale demand-forecasting task.

Model Number of parameters

MQ-CNN 9.17 × 10
5

MQT 9.25 × 10
5

MQT-NoDS 9.09 × 10
5

MQT-All 2.82 × 10
6

Table 7: Parameter settings for Large Scale Demand Forecast-
ing Experiments

Parameter Value

Encoder Convolution Dilation Rates [1,2,4,8,16,32]

Position Encoding Dilation Rates [1,2,4,8,16,20]

Static Categorical One-Hot

Time-Series Categorical One-Hot

Static Encoder Dimension 64

Convolution Filters 32

Attention Block Head Dimension 16

Dropout Rate 0.15

Activation Function ReLU

optimal in the following sense:

𝑋𝑡 = argmin

𝑋𝑡 ∈F𝑡
E[𝑐𝑋 (𝑋𝑡 ) | F𝑡 ] . (8)

Observe from (8) the loss function 𝑐 determines the form of the cor-

responding forecast 𝑋𝑡 . For example, if the cost function is squared-

error loss, then the forecasts are conditional means, while if cost

function is quantile loss, then the forecasts are conditional quantile

forecasts.

If the forecasts 𝑋𝑡 satisfy (8), this implies that the evolution of

the sequence of forecasts 𝑋1, 𝑋2, . . . , 𝑋𝑇 should satisfy properties

determined by their Bregman volatility, which is defined in (9). In

particular, the forecast accuracy improvement from time 𝑡 = 1 to

time 𝑡 = 𝑇 should equal the Bregman volatility of the sequence of

forecasts, in expectation. To our knowledge, Bregman volatility is a

new concept, but it builds on Bregman divergence, an important tool

from convex analysis for measuring the distance between points

with respect to a specified convex function (e.g. [2]).

Definition 7.1. Define 𝐷𝑐𝑋 : R2 → R to be the Bregman di-

vergence of 𝑐𝑋 , which is given by 𝐷𝑐𝑋 (𝑥,𝑦) = 𝑐𝑋 (𝑥) − 𝑐𝑋 (𝑦) −
𝑐 ′
𝑋
(𝑦) (𝑥 − 𝑦), for 𝑥,𝑦 ∈ R. If 𝑐 is not differentiable at 0, define

𝑐 ′
𝑋
(𝑋 ) = 0 and observe that 0 is an element of the subgradient

𝜕𝑐 ′
𝑋
(𝑋 ), because 𝑐 is minimized at 0 by assumption.

Definition 7.2. Define the 𝑡-th Bregman volatility of a sequence

of forecasts 𝑋1, . . . , 𝑋𝑇 to be

Vol
(𝑡 :𝑇 )
𝑐𝑋 =

𝑇−1∑︁
𝑡 ′=𝑡

𝐷𝑐𝑋 (𝑋𝑡 ′, 𝑋𝑡 ′+1) (9)

To connect Bregman volatility and forecast accuracy, observe

that for 𝑡 < 𝑇 ,

E[𝑐𝑋 (𝑋𝑡 )] = E[𝑐𝑋 (𝑋𝑇 )]+
𝑇−1∑︁
𝑡 ′=𝑡

E[𝑐 ′𝑋 (𝑋𝑡 ′+1) (𝑋𝑡 ′ − 𝑋𝑡 ′+1)] + E[Vol(𝑡 :𝑇 )𝑐𝑋 ] (10)

If the forecasts 𝑋𝑡 satisfy (8) for 1 ≤ 𝑡 ≤ 𝑇 and if 𝑐 is differen-

tiable at 0 or𝑋 | F𝑡 ′+1 is continuous with a differentiable probability
density function, then E[𝑐 ′

𝑋
(𝑋𝑡 ′+1) | F𝑡 ′+1] = 0. Under these as-

sumptions, it follows that

E[𝑐 ′𝑋 (𝑋𝑡 ′+1) (𝑋𝑡 ′ − 𝑋𝑡 ′+1)]

= E[(𝑋𝑡 ′ − 𝑋𝑡 ′+1)E{𝑐 ′𝑋 (𝑋𝑡 ′+1) | F𝑡 ′+1}]
= 0

(11)

Rearranging (10) gives our first key result.
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Table 8: Quantile loss on the backtest year along different dimensions. Values are relative performance versus baseline, with
the best result for each dimension emphasized.

MQ-CNN MQT MQT-NoDS MQT-All

Dimension P50 P90 P50 P90 P50 P90 P50 P90

Overall 1.000 1.000 0.962 0.915 0.983 0.963 0.977 0.957

Seasonal Peak 1 1.000 1.000 0.865 0.667 0.881 0.688 0.908 0.729

Seasonal Peak 2 1.000 1.000 0.925 0.850 0.972 0.910 0.932 0.886

Seasonal Peak 3 1.000 1.000 0.798 0.804 0.803 0.872 0.815 0.830

Post-Peak Rampdown 1.000 1.000 0.968 0.956 0.983 0.996 0.967 0.975

Promotion Type 1 1.000 1.000 0.915 0.601 0.929 0.616 0.921 0.628

Promotion Type 2 1.000 1.000 0.764 0.537 0.805 0.561 0.861 0.640

Promotion Type 3 1.000 1.000 0.901 0.746 1.075 0.942 0.941 0.848

Theorem 7.3. Let 𝑐 : R→ R be a convex function minimized at 0,
which is differentiable everywhere except possibly at 0. Assume that
the sequence of forecasts 𝑋1, . . . 𝑋𝑇 satisfies (8). If 𝑐 is differentiable
at 0 or if the distribution 𝑋 | F𝑡 is continuous with a differentiable
probability density function, then

E[Vol(𝑡 :𝑇 )𝑐𝑋 ] = E[𝑐𝑋 (𝑋𝑡 )] − E[𝑐𝑋 (𝑋𝑇 )] (12)

In other words, Theorem 7.3 says that the expected Bregman

Volatility is equal to the expected accuracy gain, if the forecasts are

optimal in the sense of satisfying (8). To operationalize this result,

we point out that if Vol
(𝑡 :𝑇 )
𝑐𝑋 systematically deviates from 𝑐𝑋 (𝑋𝑡 ) −

𝑐𝑋 (𝑋𝑇 ), then this indicates that the forecasts are not optimal and

can potentially be improved. This is addressed in Section 8.1.

Theorem 7.3 covers the case where 𝑐 is differentiable at zero or

𝑋 | F𝑡 is continuous. However, in some important cases neither of

these conditions hold, e.g. where 𝑋 represents discrete customer

demand or inventory units and 𝑐 is quantile loss. In Appendix B.1,

we derive an alternative version of Theorem 7.3 which applies to

non-differentiable 𝑐 and discrete 𝑋 , where the equality in (12) is

replaced with a bound depending on the probability that 𝑋 = 𝑋𝑡 .

7.1 Examples of Bregman Divergence
We work out the Bregman Volatility for some key examples.

Square Loss The Square Loss is defined by 𝑐 (𝑥) = 𝑥2. Then

𝐷𝑐𝑋 (𝑋𝑡 , 𝑋𝑡+1) = (𝑋𝑡 − 𝑋𝑡+1)2 and the corresponding Bregman

volatility is the quadratic variation Vol
(𝑡 :𝑇 )
𝑐𝑋 =

∑𝑇−1
𝑡 ′=𝑡 (𝑋𝑡 ′ − 𝑋𝑡 ′+1)

2
.

Quantile Loss The Quantile Loss is defined by 𝑐 (𝑥) = (1 −
𝑞)𝑥𝐼 {𝑥 > 0} − 𝑞𝑥𝐼 {𝑥 < 0} where 0 ≤ 𝑞 ≤ 1 is fixed. The Breg-

man Divergence for quantile loss is derived in Appendix B.2. The

Bregman Divergence for quantile loss is the same for all 0 ≤ 𝑞 ≤ 1.

Unlike the square loss, the Bregman divergence for quantile loss

depends on the final realized value 𝑋 , which is not observed until

time 𝑡 = 𝑇∞ and not just the forecasts 𝑋𝑡 . However, we can still

compute E[𝐷𝑐𝑋 (𝑋𝑡 , 𝑋𝑡+1) | F𝑡+1] as described in Appendix B.2.

8 FORECAST REGRESSION AND DECODER
SELF-ATTENTION

8.1 A Procedure to Improve Accuracy and
Volatility

The previous section gives us ametric, the Bregman volatility, which

can be used to diagnose forecast optimality (i.e. for an optimal

forecast, the Bregman volatility should equal the accuracy gain).

Now we present a procedure – Forecast Regression – to adjust the

forecast 𝑋𝑡+1 to account for previous forecasts 𝑋1, . . . , 𝑋𝑡 .

Theorem 8.1. Suppose we have a sequence of adjusted forecasts
𝑋1, . . . , 𝑋𝑇 defined by 𝑋1 = 𝑋1 and 𝑋𝑡 =

∑𝑡
𝑡 ′=1 𝛽𝑡 ′,𝑡𝑋𝑡 ′ , where –

denoting 𝒃𝑡 = (𝛽1,𝑡 , . . . , 𝛽𝑡,𝑡 ) –

𝒃𝑡 = argmin

𝒃∈R𝑡
E
[
𝑐𝑋

( 𝑡∑︁
𝑡 ′=1

𝛽𝑡 ′,𝑡𝑋𝑡 ′
)
| F𝑡

]
(13)

for 1 < 𝑡 ≤ 𝑇 . Then (11)–(12) will hold with 𝑋𝑡 ′, 𝑋𝑡 ′+1 in place of
𝑋𝑡 ′, 𝑋𝑡 ′+1 and

∑𝑇
𝑡=1 E[𝑐𝑋 (𝑋𝑡 )] ≤

∑𝑇
𝑡=1 E[𝑐𝑋 (𝑋𝑡 )].

Theorem 8.1 follows immediately from the definition of 𝒃𝑡 and
implies that linear regression can improve both forecast accuracy

and volatility. For quantile loss, Forecast Regression - using quantile

regression to solve (13) - can still be utilized to improve accuracy and

Bregman Volatility, but the analogues of (11)–(12) from Theorem 8.1

do not hold exactly due to the non-differentiability of quantile loss.

Instead, the equalities in (11)–(12) must be replaced with bounds.

This is worked-out in Appendix B.1.

8.2 Decoder Self-Attention Optimizes Bregman
Volatility

Here we justify the claim that the Decoder Self-Attention module

in MQ-Transformer optimizes Bregman Volatility. Specifically, we

show that the Decoder Self-Attention module is a generalization of

the Forecast Regresson procedure, Equation (13). We fix a specific

FTD, so that all forecasts and demand are for that FTD and for clarity

we drop references to the forecasting horizon and position encoding.

We represent the query and key using 𝑓𝑞 and 𝑓𝑘 to represent general

non-linear functions computed by neural nets. Then the query is

𝑓𝑞 (forecast, demand) and the key is 𝑓𝑘 (forecast).
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Table 9: Bregman volatility ablation study

Model Pct of MQCNN’s excess Bregman Vol

MQCNN 100%

MQT-NoDS 202%

MQT-All 63%

MQT 32%

We write the forecasts in the same notation as (13), i.e. 𝑋𝑡 ′ is

the forecast produced by MQ-Transformer before the Decoder Self-
Attention module. It is not required for the Bregman Volatility

results to use the previous demand so we write a simplified De-

coder Self-Attention Weight matrix without the demand term as

𝐴
𝑠𝑖𝑚𝑝𝑙𝑒

𝑡,𝑡 ′ = 𝑓𝑞,𝑡 (𝑋𝑡 )𝑇𝑊𝑇
𝑞 𝑊𝑘 𝑓𝑘,𝑡 ′ (𝑋𝑡 ′), where 𝐴

𝑠𝑖𝑚𝑝𝑙𝑒

𝑡,𝑡 ′ is the atten-

tion weight between weeks 𝑡 and 𝑡 ′ in the output. The output

of the Decoder Self-Attention block is a set of adjusted forecasts

𝑋𝑡 =
∑
𝑡 ′≤𝑡 𝐴

𝑠𝑖𝑚𝑝𝑙𝑒

𝑡 ′,𝑡 𝑋𝑡 ′ . Rewriting the simplified Decoder Self-

Attention optimization problem in the notation of Equation (13):

𝒃𝑡 = argmin

𝒃∈R𝑁
E
[
𝑐𝑄𝐿

( 𝑡∑︁
𝑡 ′=1

𝐴
𝑠𝑖𝑚𝑝𝑙𝑒

𝑡 ′,𝑡 (𝒃)𝑋𝑡 ′
)
| F𝑡

]
(14)

Here we write the Attention matrix 𝐴
𝑠𝑖𝑚𝑝𝑙𝑒

𝑡 ′,𝑡 as 𝐴
𝑠𝑖𝑚𝑝𝑙𝑒

𝑡 ′,𝑡 (𝒃) to em-

phasize the Attention matrix is computed by a neural net with a

large number 𝑁 of parameters, and we reinterpret the 𝒃 coefficients

as neural net weights of MQ-Transformer. Comparing (14) with

(13), Decoder Self-Attention trains a much larger set of 𝑁 parame-

ters as weights of the neural nets represented as 𝐴
𝑠𝑖𝑚𝑝𝑙𝑒

𝑡 ′,𝑡 compared

with linear regression. This suggests that Decoder Self-Attention

generalizes the Forecast Regression procedure and therefore opti-

mizes Bregman Volatility. In practice Bregman Volatility will only

be approximately satisfied: 1) in practice the cost function is only ap-

proximately minimized 2) the result holds in expectation, whereas

for real data we average over many data points 3) there will be

generalization error out-of-sample

9 CONCLUSIONS AND FUTUREWORK
We present three novel architecture enhancements that improve the

state of the art MQ-Forecasters. We also introduce a new notion of

Bregman Volatility that connects forecast accuracy and volatility. To

our knowledge, this is the first work to link model architecture and

forecast volatility. Together, these innovations produced significant

improvements in accuracy and volatility – there was no tradeoff

between these two desiderata, but rather they are closely linked. On

a public retail forecasting task MQTransformer outperformed the

baseline by 5% at P50, 11% at P90 and the previous state-of-the-art

(TFT) by 38%. Ourmodel also achieves large increases in throughput

compared to existing transformer architectures for forecasting.
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A MQ-TRANSFORMER DETAILS
A.1 Attention Mechanisms
Attention mechanisms can be viewed as a form of content based

addressing, that computes an alignment between a set of queries
and keys to extract a value. Formally, let q1, . . . , q𝑡 , k1, . . . , k𝑡 and
v1, . . . , v𝑡 be a series of queries, keys and values, respectively. The

𝑠𝑡ℎ attended value is defined as c𝑠 =
∑𝑡
𝑖=1 score(q𝑠 , k𝑡 )v𝑡 , where

score is a scoring function – commonly score(u, v) := u⊤v. In the

vanilla transformer model, q𝑠 = k𝑠 = v𝑠 = h𝑠 , where h𝑠 is the hid-
den state at time 𝑠 . Because attention mechanisms have no concept

of absolute or relative position, some sort of position information

must be provided. Vaswani et al. [28] uses a sinusoidal positional

encoding added to the input to an attention block, providing each

token’s position in the input time series.

In the vanilla transformer [28], a sinusoidal position embedding

is added to the network input and each encoder layer consists of a

multi-headed attention block followed by a feed-forward sub-layer.

For each head 𝑖 , the attention score between query 𝑞𝑠 and key 𝑘𝑡 is

defined as follows for the input layer

𝐴ℎ𝑠,𝑡 = (x𝑠 + r𝑠 )⊤Wℎ,⊤
𝑞 Wℎ

𝑘
(x𝑡 + r𝑡 ) (15)

where x𝑠 , r𝑠 are the observation of the time series and the posi-

tion encoding, respectively, at time 𝑠 . In Section 3 we introduced

attention mechanisms that differ in their treatment of the position

dependent biases

A.2 MQTransformer Architecture
We describe in detail the layers in MQTransformer, which is based

off of the MQ-Forecaster framework [30] and uses a wavenet en-

coder [27] for time-series covariates. On different datasets, we con-

sider the following variations: choice of encoding for categorical

variables, a tunable parameter 𝑑ℎ (dimension of hidden layers),

dropout rate 𝑝𝑑𝑟𝑜𝑝 , a list of dilation rates for the wavenet encoder,

and a list of dilation rates for the position encoding. The ReLU

activation function is used throughout the network.

A.3 Input Embeddings and Position Encoding
Static categorical variables are encoded using either one-hot encod-

ing or an embedding layer. Time-series categorical variables are

one-hot encoded, and then passed through a single feed-forward

layer of dimension 𝑑ℎ . The global position encoding module takes

as input the known time-series covariates, and consist of a stack of

dilated, bi-directional 1-D convolution layers with 𝑑ℎ filters. After

each convolution is a ReLU activation, followed by a dropout layer

with rate 𝑝𝑑𝑟𝑜𝑝 , and the local position encoding is implemented as

a single dense layer of dimension 𝑑ℎ .

A.4 Encoder
After categorical encodings are applied, the inputs are passed through

the encoder block. The encoder consists of two components: a sin-

gle dense layer to encode the static features, and a stack of dilated,

temporal convolutions. The time-series covariates are concatenated

with the position encoding to form the input to the convolution

stack. The output of the encoder block is produced by replicating

the encoded static features across all time steps and concatenating

with the output of the convolution.

A.5 Decoder
Table 1 describes the blocks in the decoder. The dimension of each

head in both the horizon-specific and decoder self-attention blocks

is 𝑑ℎ/2. The dense layer used to compute 𝒄𝑎𝑡 has dimension 𝑑ℎ/2.
The output block is two layer MLP with hidden layer dimension

𝑑ℎ/2, and weights are shared across time points and horizons. The

output layer has one output per horizon, quantile pair.

A.6 Large Scale Demand Forecasting
Experiments

A.7 Training Procedure
We only consider tuning two hyper-parameters, size of hidden layer

𝑑ℎ ∈ {32, 64, 128} and learning rate 𝛼 ∈ {1×10−2, 1×10−3, 1×10−4}.
The model is trained using ADAM [16] with parameters 𝛽1 = 0.9,

𝛽2 = 0.999, 𝜖 = 1𝑒 − 8 and a minibatch size of 256, for a maximum

of 100 epochs and an early stopping patience of 5 epochs. We

train a model for each hyperparameter setting in the search grid (6

combinations), select the one with the minimal validation loss and

report the selected model’s test-set error in Table 4.

A.8 Architecture Details
Our MQTransformer architecture contains a single tune-able hyper-

parameter – hidden layer dimension 𝑑ℎ . Dataset specific settings

are used for the dilation rates. For static categorical covariates we

use an embedding layer with dimension 𝑑ℎ and use one-hot en-

coding for time-series covariates. A dropout rate of 0.15 and ReLU

activations are used throughout the network. The only difference

between this variant and the one used for the non-public large scale

demand forecasting task is the use of an embedding layer for static,

categorical covariates rather than one-hot encoding.

A.9 Reported Model Parameters
The optimal parameters for each task are given in Table 10.

B BREGMAN VOLATILITY DETAILS
B.1 Non-Differentiable Cost Functions
We state an alternative version of Theorem 7.3 for non-differentiable

cost functions and discrete random variables 𝑋 .

Theorem B.1. Assume that 𝑐 : R→ R is a convex function, which
is minimized at 0 and differentiable everywhere except possibly at
0. Assume that the subgradient of 𝑐 at 0 is contained in the interval
[−𝐿,𝑈 ], i.e. 𝜕𝑐 (0) ⊆ [−𝐿,𝑈 ], for constants 𝐿,𝑈 ≥ 0. Further assume
that for each 𝑡 = 1, . . . ,𝑇 , the distribution of 𝑋 | F𝑡 is discrete and
supported on the points 𝑥1,𝑡 , . . . , 𝑥𝐾𝑡 ,𝑡 ∈ R, and Pr{𝑋 = 𝑥𝑘,𝑡 | F𝑡 } =
𝑝𝑘,𝑡 for 𝑘 = 1, . . . , 𝐾𝑡 . Then

E[Vol(𝑡 :𝑇 )𝑐𝑋 ] = E[𝑐𝑋 (𝑋𝑡 )] − E[𝑐𝑋 (𝑋𝑇 )] + err, (16)

where

|err| ≤ (𝐿 +𝑈 )
𝑇∑︁
𝑡=1

E
[
|𝑋𝑡−1 − 𝑋𝑡 |𝑝𝑘𝑡 ,𝑡

]
and 𝑝

𝑘𝑡 ,𝑡
= 𝑝𝑘,𝑡 , if 𝑋𝑡 = 𝑥𝑘,𝑡 for some 𝑘 = 1, . . . , 𝐾𝑡 , and 0 otherwise.
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Figure 2: The decoder attends over past forecasts for the same target horizon – the context ℎ𝑡 contains feedback information
(demand and other encoded signals), allowing the model to adjust forecasts that are too volatile or not volatile enough as the
target date approaches.

Table 10: Parameter settings of reported MQTransformer model on each public dataset.

Name 𝑑ℎ 𝛼 Enc. Dilation Rates Pos. Dilation Rates

Electricity 128 1 × 10
−3

[1,2,4,8,16,32] [1,2,4,8,8]

Traffic 64 1 × 10
−3

[1,2,4,8,16,32] [1,2,4,8,8]

Volatility 128 1 × 10
−3

[1,2,4,8,16,32,64] [1,1,2]

Retail 64 1 × 10
−4

[1,2,4,8,16,32] [1,2,4,8,14]

Next wework out how to apply Theorem B.1 for quantile loss and

the Forecast Regression methodology, in the case where replicate

observations and forecasts are available. Assume that 𝑐 is quantile

loss, i.e. 𝑐 (𝑥) = (1 − 𝑞)𝑥𝐼 {𝑥 > 0} − 𝑞𝑥𝐼 {𝑥 < 0} for some fixed

0 ≤ 𝑞 ≤ 1. Then 𝑐 is non-differentiable at 0 and 𝜕𝑐 (0) = [−𝑞, 1 − 𝑞].
Assume further that we have replicates 𝑋 (𝑖)

, 𝑖 = 1, . . . , 𝑁 and

corresponding forecasts 𝑋
(𝑖)
𝑡 ∈ F𝑡 , 𝑡 = 1, . . . ,𝑇 . As in Section 8.1,

we consider the alternative forecasts 𝑋
(𝑖)
𝑡 =

∑𝑡
𝑠=1 𝛽𝑡 ′,𝑡𝑋

(𝑖)
𝑡 ′ , where

𝒃𝑡 = (𝛽1,𝑡 , . . . , 𝛽𝑡,𝑡 ) satisfies

𝒃𝑡 ∈ argmin

𝒃∈R𝑡
1

𝑁

𝑁∑︁
𝑖=1

𝑐𝑋 (𝑖 )

(
𝑡∑︁
𝑡 ′=1

𝛽𝑡 ′,𝑡𝑋
(𝑖)
𝑡 ′

)
.

Then, by (16),

1

𝑁

𝑁∑︁
𝑖=1

{
Vol

(1:𝑇 )
𝑐
𝑋 (𝑖 ) (𝑋

(𝑖)
1
, . . . , 𝑋

(𝑖)
𝑇

) − [𝑐𝑋 (𝑖 ) (𝑋 (𝑖)
1

) − 𝑐𝑋 (𝑖 ) (𝑋 (𝑖)
𝑇

)]
}
= err,

where

|err| ≤ 1

𝑁

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=1

|𝑋 (𝑖)
𝑡 − 𝑋 (𝑖)

𝑡+1 |𝐼 {𝑋
(𝑖)
𝑡+1 = 𝑋

(𝑖) }.

B.2 Quantile Loss Bregman Divergence
We provide the result for Bregman divergence for quantile loss.

𝐷𝑐𝑋 (𝑋𝑡 , 𝑋𝑡+1) =


|𝑋𝑡 − 𝑋 | if sgn(𝑋𝑡 − 𝑋 ) = −sgn(𝑋𝑡+1 − 𝑋 ),
0 if sgn(𝑋𝑡 − 𝑋 ) = sgn(𝑋𝑡+1 − 𝑋 ),
𝑐𝑋 (𝑋𝑡 ) if sgn(𝑋𝑡 − 𝑋 )sgn(𝑋𝑡+1 − 𝑋 ) = 0.

(17)

Now let 𝐹𝑡 denote the cumulative distribution function of 𝑋 | F𝑡 .
The expected Bregman divergence is

E[𝐷𝑐𝑋 (𝑋𝑡 , 𝑋𝑡+1) | F𝑡+1] =
∫ 𝑋𝑡

𝑋𝑡+1
𝐹𝑡+1 (𝑢) − 𝐹𝑡+1 (𝑋𝑡+1) 𝑑𝑢

+ (1 − 𝑞) (𝑋𝑡 − 𝑋𝑡+1) Pr{𝑋 − 𝑋𝑡+1 | F𝑡+1}

This shows that we can still compute E[𝐷𝑐𝑋 (𝑋𝑡 , 𝑋𝑡+1) | F𝑡+1]
even though for quantile loss the Bregman volatility depends on

the final demand. Note that the quantity on the right-hand side,

the expected Bregman divergence for quantile loss is similar to

the quantile divergence defined in [22] and studied in [29] and

elsewhere.
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