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ABSTRACT
In recent years, due to the rapid expansion of the Industrial Internet
of Things (IIoT), substantial amounts of high-dimensional indus-
trial time series data have been generated. Anomaly detection in
such industrial time series data is a challenging task due to com-
plex temporal dynamics. In this paper, we propose multi-branch
transformer with Gaussian mixture model (MBTGMM), a novel
transformer-based framework to address some of these challenges.
In the framework, normal representations are learned with a multi-
branch transformer architecture that comprises of a convolution
branch and a multi-head attention branch in order to learn both
short- and long-term temporal dependencies in the time series data.
These representations are then fed into a Gaussian mixture model
for density estimation and anomaly detection task. Experimental
results on public industrial datasets show the effectiveness of our
proposed framework, and the ablation studies clearly demonstrate
the efficacy of our design choices.
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1 INTRODUCTION
The rapid advancements of Internet of Things technologies have
enabled the collection of a vast amount of industrial time series
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data. This leads to a need for mining this data for valuable down-
stream tasks such as detecting anomalies in a timely fashion from
these data to prevent catastrophic failures and reduce unplanned
system downtime, especially for critical industrial systems, such as
manufacturing plants [1], industrial robots [2], spacecrafts [3], and
water systems [4, 5].

Anomaly detection for industrial time series data aims to find the
individual sample or a sequence of samples that deviates from nor-
mal samples or sequences. It is challenging to develop an effective
anomaly detection method for industrial systems due to the lack
of labeled anomalies and poor data quality. Therefore, supervised
methods are, in general, difficult to apply to this task. Classical
unsupervised approaches such as principal component analysis
[6], k-means [7], and one-class support vector machines [8], have
been applied to deal with this task. However, these methods cannot
capture temporal and multi-variate dependencies simultaneously
without using custom hand-engineered features, which make them
less effective. Another line of work for anomaly detection focuses
on density estimation methods [9, 10]. These methods model the
distribution of normal samples during training and flag samples
located in low-density regions as anomalies. More recently, nor-
malizing flow [11] has been proposed for anomaly detection by
producing tractable distributions.

In recent years, deep learning-based methods have demonstrated
promising results in this area. These methods can mainly be di-
vided into two categories: reconstruction-based [12, 13] methods
and prediction-based methods [3, 14]. Reconstruction-based meth-
ods aim to learn the representations of normal data and detect
anomalies based on the reconstruction error. On the other hand,
prediction-based methods are good at capturing temporal infor-
mation by using historical data to predict future values. The er-
ror between real and predicted value is used to detect anomalies.
More recently, transformer-based architecture [15] has enjoyed
widespread success in natural language processing [16], computer
vision [17], and audio signal processing [18]. Transformer-based
models are usually trained in a self-supervised fashion on unlabeled
datasets, and then the trained models are used to generate repre-
sentations for downstream tasks or fine tuned on a typically much
smaller, task-specific dataset [16–18]. The multi-head self-attention
mechanism provides the ability to capture long-term temporal de-
pendencies and improves computational efficiency and scalability
compared to models based on recurrent neural networks. Recently,
transformer-based methods are also adopted for anomaly detection
tasks [19, 20].
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Motivated by the success of transformer in other domains and
availability of largely untapped, unlabelled data in industrial do-
main, we developed MBTGMM, a novel multi-branch transformer-
based framework for anomaly detection of time series data. In the
framework, a multi-branch transformer encoder block is designed
to capture both long- and short-term temporal dependencies, where
a 1-D convolution branch aims to model the short-term local tem-
poral dependencies, and a multi-head self-attention branch aims to
focus on the long-term dependencies. The framework uses masked
learning strategies to learn representations of normal time series
data, and the learned representations are then fed into a Gauss-
ian mixture model (GMM) for learning the distribution of normal
representations. The anomalies can then be detected if their repre-
sentations fall into low density regions in the distribution.

To summarize, the main contributions of our work are:

• We propose MBTGMM, a novel multi-branch transformer-
based framework for industrial time series anomaly detec-
tion.
• In MBTGMM, a 1-D convolutional branch and a multi-head
self-attention branch are designed to capture short-term and
long-term temporal dependencies respectively.
• We conduct experiments on three publicly available indus-
trial time series datasets and the results show that our pro-
posed framework is competitive with state-of-the-art meth-
ods.
• We design ablation studies that demonstrate the efficacy of
our design choices.

2 BACKGROUND
2.1 Unsupervised Anomaly Detection of Time

Series Data
Traditional unsupervisedmethods for time series anomaly detection
can mainly be divided into prediction-based and reconstruction-
based methods. Prediction-based methods use historical data to
predict future values based on the learned temporal dependencies.
Anomalies are associated with high prediction errors. Examples of
prediction-based methods include the auto regressive integrated
moving average (ARIMA) [14] and long-short termmemory (LSTM)
recurrent neural networks [3]. LSTM models require sequential
propagation of all samples through the network in order to in-
corporate long-term temporal dependencies. This results in com-
putational inefficiencies and can lead to exploding gradients [21].
Another category of methods uses an encoder-decoder architec-
ture where the encoder learns a low-dimensional representation
of the time series data and the decoder reconstructs the input us-
ing the low-dimensional representation. Anomalies are associated
with high reconstruction errors. Examples of reconstruction-based
methods include LSTM autoencoder (LSTM-AE) [22], convolutional
LSTM-AE [23], VAE [24, 25], and LSTM-VAE [13]. OmniAnomaly
[26] proposed a stochastic recurrent neural network with a pla-
nar normalizing flow to enhance the capability of modeling multi-
variate dependencies. USAD [27] is recently proposed to reconstruct
the normal samples in the training set by incorporating adversarial
training with autoencoders.

Recent methods have further extended their abilities to capture
the temporal dependencies between samples and multi-variate de-
pendencies among features. For example, [28] extends the one-class
classification objective that considers multiple hyperspheres ob-
tained from a hierarchical process to capture multi-scale temporal
dynamics. [29] and [30] use graph neural networks to learn rela-
tionships between features and then use the learned structure and
latent representations for anomaly detection task. [31] introduces
the cycle-consistent generative adversarial network (GAN) archi-
tecture in which generators are used for time series reconstruction,
and then the anomaly scores are calculated with both the recon-
struction errors from the generators and the prediction errors from
the discriminator.

2.2 Transformer-based Anomaly Detection
Transformer architecture utilizes the attention mechanism in an
encoder-decoder structure [15] foregoing recurrence and convo-
lutions and thereby, resulting in a more efficient implementation.
In natural language processing, [16] employs masked language
modeling and next sentence prediction as the two self-supervised
tasks for pretraining BERT. Variants of BERT, such as XLNet [32],
RoBERTa [33], ELECTRA [34] and ALBERT [35], learn the repre-
sentations with encoders, while other models learn that based on
decoders, such as GPT [36] and BART [37]. In computer vision,
pre-trained vision transformers (ViT) [17] treats an image as a se-
quence of patches and processes it with a standard transformer
encoder. Other examples include Video ViT [38], Swin Transformer
[39], Focal Transformer [40], and Pyramid ViT [41]. In audio signal
processing, [18] uses masked modeling techniques with contrastive
learning to learn representations at individual audio signal level.

Recently, transformer-based methods have been adopted for
anomaly detection tasks for many modalities of data including
images, videos [42–46] and time series [19, 20, 47, 48]. The repre-
sentations learned by transformer-based models can be directly
used in downstream anomaly detection task [44]. They can also be
used to reconstruct the input data [20, 46–48] or predict the future
data [42], and compute the reconstruction or prediction error as the
anomaly scores. Several transformer-based models are designed for
time series data, which combine transformers with VAEs [47, 49],
GANs [20], and graph-based learning architecture [46], for better
representation learning and anomaly detection.

3 METHODOLOGY
3.1 Problem Formulation
We consider the problem of anomaly detection for a time series,
denoted as X = [𝑥1, 𝑥2, ..., 𝑥𝑡 , ..., 𝑥𝐿], where 𝐿 is the total length
of the time series. At timestamp 𝑡 , 𝑥𝑡 ∈ R𝑚,∀𝑡 , where𝑚 = 1 for
univariate time series data and𝑚 > 1 for multivariate time series
data.

Detecting anomalous timestamps: Given an input time seriesX, at
timestamp 𝑡 , we aim to predict an anomaly score 𝑠 (𝑡). If 𝑠 (𝑡) exceeds
a predetermined threshold 𝑇 , then the data point is considered
anomalous.

Detecting anomalous time series: Given an input time seriesX, we
aim to predict an anomaly score 𝑆 for the entire time series, based
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on 𝑠 (𝑡) of individual time stamps. If 𝑆 exceeds a predetermined
threshold 𝑇 , then the time series is detected as anomaly.

3.2 Overall Architecture of Proposed MBTGMM
To solve the anomaly detection task illustrated above, we propose
MBTGMM, an anomaly detection framework using the representa-
tions learned by amulti-branch transformerwith a GMM for density
estimation. Fig. 1 shows the overall architecture of the proposed
MBTGMM. Firstly, a multi-branch transformer-based model is used
to learn the representations of input time series. The multi-branch
transformer encoder is designed to capture both short-term and
long-term temporal dependencies in the time series while learning
the representations. Secondly, the learned representations are fed
into a GMM, which detects anomalies by assigning higher scores
to samples that in low-density regions. GMM is an efficient and
flexible model that helps approximate mixture distributions [9].
Thus, it is suitable to be deployed in systems with multiple underly-
ing sub-populations that require fast processing such as industrial
applications. In the following subsections, we will introduce each
part of our proposed MBTGMM in detail.

3.3 Multi-branch Transformer for Time Series
Representation Learning

MBTGMM comprises of an encoder-only structure 𝜙𝑒 , with stacked
multi-branch transformer blocks, that learns the representation
of a time series. Given an input window w which consists of 𝑙
timestamps, the input linear projection layer linearly projects the
input window to a feature space of the same dimension as the
transformer encoder. To make transformer encoder aware of the
order of the input data to better capture temporal dependencies, we
add positional encodings to the output of the input layer. We use
the sinusoidal encodings [15] as the initial positional encodings,
while making the encodings learnable [17].

The encoder of the proposed MBTGMM consists of a stack of
𝑁 identical blocks, each with a multi-head self-attention branch
in parallel with a 1-D convolution branch, and a fully connected
feed-forward layer. A residual connection and a layer normaliza-
tion are applied to each layer. The design of a multi branch trans-
former encoder can encourage the multi-head attention to focus
on the global, long-term dependencies and the 1-D convolution
to focus on the local, short-term dependencies [50]. The input to
the multi-branch transformer encoder of dimension 𝑑 is split into
two equal-size parts, with each passing through the 1-D convolu-
tion branch and the multi-head self-attention branch separately.
This can save the computational cost by 2×. Let the input to the
multi-head self-attention branch be denoted as 𝑒1 ∈ R𝑙×𝑑/2. The
multi-head self-attention branch first projects the input to three
intermediate representations, query (𝑄), key (𝐾 ), and value (𝑉 ) of
𝑑𝑘 , 𝑑𝑘 , and 𝑑𝑣 dimensions respectively:

𝑄𝑖 = 𝑒
1
𝑖𝑊𝑖

𝑄 , 𝐾𝑖 = 𝑒
1
𝑖𝑊𝑖

𝐾 ,𝑉𝑖 = 𝑒
1
𝑖𝑊𝑖

𝑉 (1)

where 𝑒1
𝑖
is the input to i-th head;𝑊𝑖𝑄 ∈ R𝑑/2 ×𝑑𝑘 ,𝑊𝑖𝐾 ∈ R𝑑/2 ×𝑑𝑘 ,

and𝑊𝑖𝑉 ∈ R𝑑/2 ×𝑑𝑣 are the trainable weight matrices of i-th head.
The self-attention captures the dependencies amongst these posi-
tions, through a scaled-dot product attention of 𝑄𝑖 , 𝐾𝑖 , and 𝑉𝑖 :

Figure 1: Overall architecture of proposed MBTGMM for
anomaly detection.

Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) = softmax(
𝑄𝑖𝐾

𝑇
𝑖√︁
𝑑𝑘

)𝑉𝑖 (2)

The multi-head design further enables computing such repre-
sentations and extracting information from different feature spaces
jointly:

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, ..., headℎ)𝑊𝑀 (3)

where head𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ), ℎ is the total number of heads,
and𝑊𝑀 ∈ Rℎ𝑑𝑣×𝑑/2.

A 1-D convolution branch is placed in parallel with the multi-
head self-attention branch to enhance the capability of the model
to capture the short-term temporal dependencies. The second half
of input to the encoder, 𝑒2 ∈ R𝑙×𝑑/2, is fed into this branch. A
gated linear unit is first applied followed by a 1-D convolution layer
and a linear projection layer. We denote the output of this branch
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Figure 2: Training and inference process of MBTGMM using a masked representation learning strategy.

as Conv1D. The two branches merge together by the following
fully connected feed-forward layer, which consists of two linear
transformations and a ReLU activation.

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (4)

where 𝑥 = Concat(MultiHead, Conv1D).
With the designed multi-branch transformer, our proposed MBT-

GMM is able to learn the context-aware representations from both
short-term and long-term temporal dependencies during training.
The learned representations are then fed into a GMM for the down-
stream anomaly detection task.

3.4 Model Training and Inference
We train the proposed MBTGMM to learn context-aware represen-
tations of the input time series using a masking strategy, as shown
in Fig. 2.

We randomly select input time stamps and mask them to be
all zeros by applying element-wise multiplication with a binary
mask [16, 18]. The mask is created independently for each training
window and epoch. On average, a proportion 𝑟 of the entire time-
series data are masked, and we chose 𝑟 = 0.15 empirically for the
experiments. Each masked segment has a length that follows a
geometric distribution with a mean length 𝑙𝑚 and is succeeded by
an unmasked segment of mean length 𝑙𝑢 [51], which is calculated
by:

𝑙𝑢 =
1 − 𝑟
𝑟

𝑙𝑚 . (5)

Instead of using multi-branch transformer decoder, we use an
output linear projection layer 𝑂 to project the representations
𝑧 ∈ R𝑙×𝑑 generated by multi-branch transformer encoder to the
reconstructed input as 𝑥 :

𝑥 = 𝑧𝑊𝑜 + 𝑏𝑜 (6)
where𝑊𝑜 ∈ R𝑑×𝑚 and 𝑏𝑜 ∈ R𝑙×𝑚 . We used the Adam optimizer
with a warm-up schedule [15] during training. We minimize the
mean square error (MSE) loss L between the reconstructed and
the original samples, and only the samples at masked timestamps
𝑡 ∈ 𝑀 are considered when calculating L.

L =
1
|𝑀 |

∑︁
𝑡 ∈𝑀
(𝑥𝑡 − 𝑥𝑡 )2 (7)

where |M| denotes the number of masked timestamps in𝑀 . Once we
obtain the learned representations 𝑧 using the trained multi-branch
transformer, GMM is applied to fit the distribution of the repre-
sentations. Assuming there are 𝐾 mixture components in GMM,
the mixture probability 𝑝𝑖 , mean 𝜇𝑖 , and variance 𝜎𝑖 of a mixture
component 𝑖 can be estimated using the expectation–maximization
(EM) algorithm, as per Eqs. 8 and 9.

𝑝𝑖 =

∑𝑙
𝑗=1 𝑞 𝑗,𝑖

𝑙
,∀𝑖 ∈ [𝐾] (8)

𝜇𝑖 , 𝜎𝑖 = 𝑓𝐸𝑀 ( [𝑧 𝑗 , 𝑞 𝑗,𝑖 ]𝑙𝑗=1),∀𝑖 ∈ [𝐾] (9)
where 𝑞 𝑗,𝑖 is the probability that representation point 𝑗 belongs
to the mixture component 𝑖 , and 𝑓𝐸𝑀 is the EM estimator. In our
experiments, multiple GMMs with different number of components



Representation Learning Using a Multi-Branch Transformer for Industrial Time Series Anomaly Detection MiLeTS ’22, August 15th, 2022, Washington, DC, USA

𝐾 are estimated, and the model with the lowest Bayesian informa-
tion criterion (BIC) is selected for the anomaly detection task. The
entire training procedure is summarized in Algorithm 1.

Algorithm 1 Training of MBTGMM for time series anomaly detec-
tion
Require:

Training time series data 𝑋 ;
Multi-branch transformer-based model 𝜙𝑒 ;
Output linear projection layer 𝑂 ;
Iteration limit E;
Gaussian mixture model 𝐺
1: Initialize weights of 𝜙𝑒 , 𝑂 , 𝐺
2: 𝑛 ← 0
3: while 𝑛 < E
4: Create masked time-series data 𝑋 ′ from 𝑋 with masked

time stamps𝑀 ;
5: 𝑋 = 𝑂 (𝜙𝑒 (𝑋 ′))
6: L = 1

|𝑀 |
∑
𝑡 ∈𝑀 (𝑥𝑡 − 𝑥𝑡 )2;

7: Update parameters of 𝜙𝑒 , 𝑂 using L
8: 𝑧 = 𝜙𝑒 (𝑋 )
9: Fit multiple GMMs with different number of components using
𝑧, and select the best 𝐺 with the lowest BIC.

During model inference, to get the anomaly score for timestamp
𝑡 , we first find all the windowsW = [wt−l+1,wt−l+2, ...,wj, ...,wt]
that contain timestamp 𝑡 , where wj = [𝑥 𝑗 , 𝑥 𝑗+1, ..., 𝑥 𝑗+𝑙−1]. Then
we generate the representations Z = [zt−l+1, zt−l+2, ..., zj, ..., zt]
using the multi-branch transformer-based model 𝜙𝑒 , where zj =
[𝑧 𝑗, 𝑗 , 𝑧 𝑗, 𝑗+1, ..., 𝑧 𝑗,𝑡 , ..., 𝑧 𝑗, 𝑗+𝑙−1]; and 𝑧 𝑗,𝑡 is the learned representa-
tion at timestamp 𝑡 in zj.

zj = 𝜙𝑒 (wj); (10)
The fitted GMM 𝐺 is used to calculate negative log likelihood

for 𝑧 𝑗,𝑡 in each representation zj ∈ Z to get the anomaly score for
sample at timestamp 𝑡 :

𝐺 (𝑧 𝑗,𝑡 |𝜇𝑖 , 𝜎𝑖 ) =
1

𝜎𝑖
√
2𝜋
𝑒−(𝑧 𝑗,𝑡−𝜇𝑖 )

2/2𝜎2
𝑖 (11)

𝑠 (𝑡) = −1|Z|
∑︁
𝑧 𝑗,𝑡 ∈Z

𝑙𝑜𝑔(
𝐾∑︁
𝑖=1

𝑝𝑖𝐺 (𝑧 𝑗,𝑡 |𝜇𝑖 , 𝜎𝑖 )) (12)

where |Z| denotes the number of learned representations in Z. To
detect anomalous time series, we further compute the median anom-
aly score of all samples in the time series as its anomaly score 𝑆 .

4 EXPERIMENTS
4.1 Experimental Setups

Datasets: Three industrial datasets are used in the experiments to
evaluate our proposed MBTGMM. Mars Science Laboratory (MSL)
and Soil Moisture Active Passive (SMAP) are two datasets that con-
tain telemetry anomaly data provided by NASA [3]. The anomaly
data in these two datasets record the unexpected events during
post launch operations of spacecrafts. Another dataset was recently
released by the Prognostics and Health Management Society data

Table 1: Dataset description.

Dataset SMAP MSL PHM21

Number of subsets 55 26 99
Number of features 25 55 247
Size of training data 2556 2160 367920
Size of testing data 8071 2731 579850
Anomaly % 12.8 10.5 29.3
Anomaly type time stamp time stamp time series

challenge 2021 (PHM21) [52], which contains both normal and
anomalous time series in a fuse quality control pipeline used for in-
dustrial manufacturing production lines. Each time series contains
several steps needed to accomplish the fuse quality examination
task. Anomalies are associated with one or more steps in the anoma-
lous time series. For each dataset, we normalize both the training
and test data using the mean and standard deviation of the train-
ing data. A sliding window is applied on the normalized data to
generate the input data to train the models. For MSL and SMAP,
we detect anomalous timestamps. For PHM21 dataset, we detect
anomalous time series. A summary of the three aforementioned
datasets are provided in Table 1.

Baseline methods: We compare the anomaly detection results
of MBTGMM with popular and state-of-the-art methods, includ-
ing isolation forests (IF) [53], autoencoders (AE), MAD-GAN [54],
LSTM [55], LSTM-AE [22], LSTM-VAE [13], DAGMM [12], MTAD-
GAT [56], OmniAnomaly [26], USAD [27], and GTA [30]. We also
compare with the winning teams of PHM21 challenge who use
supervised learning-based (HIRUTEK) [57] and rule-based methods
(LDM) [58] on PHM21 dataset. In our implementation of MBTGMM,
we use input window size 𝑙 of 50; the training batch size is 32; the
number of heads ℎ is 4; the kernel size of 1-D convolutional branch
is chosen as 3; and the input dimension 𝑑 of multi-branch trans-
former model 𝜙𝑒 is selected as 16 for SMAP and MSL, and 128 for
PHM21 dataset. Our proposed MBTGMM and some of the base-
lines, including LSTM, LSTM-AE, are implemented using Pytorch
version 1.6.0 with CUDA 10.1, and we directly take the results of
the rest of the baselines from literature [27, 30]. The experiments
are performed on an Amazon p3.2xlarge EC2 with one NVIDIA
Tesla P100 GPU.

4.2 Evaluation Metrics
We adopt the standard Precision, Recall and F1-Score (F1) as the
evaluation metrics to evaluate and compare the performance of
MBTGMM and other baseline methods. For a fair comparison with
state-of-the-art methods on SMAP and MSL, we adopted the point-
adjusted approach proposed in [25] to calculate the performance
metrics for those two datasets. In this metric, all the samples in
one anomalous event are adjusted to true positives, if at least one
sample in that event is originally correctly detected as true positive.
The negative samples remain the same and no adjustment is applied
to them. After that, the point-adjusted precision, recall, and F1 are
calculated based on the adjusted predictions. We search over all
possible thresholds for the theoretically best F1 during test, and
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Figure 3: An illustrative example of calculating point-
adjusted metrics

Table 2: Experimental results on SMAP and MSL datasets.

SMAP MSL

Method Prec. Rec. 𝐹𝑏𝑒𝑠𝑡 Prec. Rec. 𝐹𝑏𝑒𝑠𝑡

IF 0.442 0.511 0.474 0.568 0.674 0.617
AE 0.722 0.980 0.831 0.854 0.975 0.910
MAD-GAN 0.805 0.821 0.813 0.852 0.899 0.875
LSTM 0.777 0.997 0.873 0.852 0.977 0.910
LSTM-AE 0.795 0.991 0.882 0.853 0.977 0.911
LSTM-VAE 0.716 0.988 0.830 0.860 0.976 0.914
DAGMM 0.633 0.988 0.775 0.756 0.980 0.854
MTAD-GAT 0.891 0.912 0.901 0.875 0.944 0.908
OmniAnomaly 0.759 0.976 0.854 0.914 0.889 0.901
USAD 0.770 0.983 0.864 0.881 0.979 0.927
GTA 0.891 0.918 0.904 0.910 0.912 0.911

MBTGMM 0.916 1.000 0.931 0.911 0.990 0.942

Table 3: Anomaly detection results of proposed MBTGMM
and baselines on PHM21.

Methods Precision Recall 𝐹𝑏𝑒𝑠𝑡
LSTM 0.434 0.793 0.561

Unsupervised LSTM-AE 0.434 0.793 0.561
MBTGMM 1.000 0.793 0.885

Supervised HIRUTEK 1.000 0.897 0.945
LDM 0.862 0.893 0.877

denote it as 𝐹𝑏𝑒𝑠𝑡 . We also report the corresponding precision and
recall for the 𝐹𝑏𝑒𝑠𝑡 . An illustrative example of how to calculate
point-adjusted metrics is provided in Fig. 3.

4.3 Experimental Results
Table 2 shows the results of our proposed methods and baselines
on SMAP and MSL datasets. The table clearly shows MBTGMM

achieves the highest 𝐹𝑏𝑒𝑠𝑡 among all baseline methods. More con-
cretely, our proposed method improves the 𝐹𝑏𝑒𝑠𝑡 by 2.7% and 1.5%
on SMAP and MSL respectively, compared to the second best in the
table. Moreover, our method achieves 1 and 0.99 recall on SMAP and
MSL respectively, which are also the highest among all baselines.
This indicates MBTGMM is able to capture most of the anoma-
lous events, which is critical for industrial anomaly detection tasks.
These results demonstrate the effectiveness of our proposed method
compared with other methods.

IF [53], MAD-GAN [54], and DAGMM [12] have the lowest 𝐹𝑏𝑒𝑠𝑡
on both datasets. The reason is that they mainly model the depen-
dencies in between features while are weak at modeling temporal
dependencies [26]. In our proposed MBTGMM, the design of multi-
branch transformer is able to capture both short- and long-term
temporal dependencies, which makes our methods better in detect-
ing temporal anomalies.

LSTM [55] is a prediction-based model and detects anomalies
based on the residuals of predictions and actual values. However,
for industrial datasets, there are many extraneous factors that make
the datasets unpredictable, which making LSTM less effective [3]. In
MBTGMM, the combination of GMM and multi-branch transformer
are able to learn the normal patterns of the representations, as well
as capture short- and long-term temporal dependencies.

LSTM-VAE [13] utilizes a VAE to learn low-dimensional repre-
sentations by extracting local information from input window, and
then uses LSTM for sequential modeling. However, LSTMs are often
slow and inefficient in learning long-term temporal dependencies,
especially when the data is noisy [56]. OmniAnomaly [26] solves
this problem by using gated recurrent unit and stochastic variable
connection. However, the sequential learning mechanism of recur-
rent network limits the long-term sequence modeling capability of
the model. Transformer architecture with multi-head self-attention
enables MBTGMM to capture long-term temporal dependencies in
an efficient manner.

Recent models such as MTAD-GAT and GTA learn the graph
structure of variables to model relationships along feature dimen-
sion, and achieve the anomaly detection task with transformer-
based models. MBTGMM outperforms those methods because con-
volution branch in the transformer encoding block is able to capture
short-term temporal dependencies, and GMM in the framework
can learn the normal distribution of learned representations.

We also conduct experiments on PHM21 dataset and compare
our results with the winning teams of the challenge. For this dataset,
we detect anomalous time series. Therefore, we split each of the 70
normal time series into two parts without overlap, one of which
is used for training and the other for testing. Thus, we have 70
normal time series for training and 99 time series for testing. Dur-
ing inference, we first calculate the anomaly score for each sample
in the time series using the trained model, and then use the me-
dian of all anomaly scores in that time series as the final anomaly
score. Since the labels are provided in the challenge, top teams
mainly used supervised-based and rule-based methods with custom
feature engineering and trained the model with both normal and
anomalous data. For example, team HIRUTEK [57], who ranks at
1𝑠𝑡 place in the challenge, utilized a combination of decision tree
algorithms and a propagation system by adding a Kalman filter to
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Table 4: Ablation studies on variants of our proposed methods on three datasets.

SMAP MSL PHM21

Method Prec. Rec. 𝐹𝑏𝑒𝑠𝑡 Prec. Rec. 𝐹𝑏𝑒𝑠𝑡 Prec. Rec. 𝐹𝑏𝑒𝑠𝑡

MBTGMM 0.916 1.000 0.931 0.911 0.990 0.942 1.000 0.793 0.885

V1 0.916 0.993 0.928 0.908 0.980 0.924 0.857 0.828 0.842
V2 0.895 0.994 0.912 0.872 0.975 0.902 0.478 0.759 0.587

(a) SMAP A-3 (b) SMAP D-16

Figure 4: Case studies on SMAP dataset to show the effectiveness of proposed method.
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update the probabilities. Team LDM [58] who ranks at 3𝑟𝑑 place
in the challenge designed a rule-based method by comparing the
characteristics of normal and abnormal data in the training set.
The results of PHM21 are shown in Table 3. Note that neither ap-
proaches use deep learning methods. MBTGMM has the highest
score among the unsupervised methods, and is able to improve
𝐹𝑏𝑒𝑠𝑡 by 59% compared to LSTM and LSTM-AE. Moreover, our re-
sults are higher than the supervised rule-based method developed
by team LDM, which shows the competitiveness of our approach
compared to supervised methods.

4.4 Ablation Studies
In this section, we conduct ablation studies to demonstrate the effi-
cacy of the design of each component in MBTGMM. Two variants
of MBTGMM are created by excluding one major component in the
framework and comparing the performance in terms of the 𝐹𝑏𝑒𝑠𝑡 .
To study the effectiveness of multi-branch transformer encoder
block, we create variant V1 of our framework in which the 1-D con-
volutional branch is excluded from the encoder blocks. To show the
effectiveness of detecting anomalies with learned representations,
we design a variant V2 of our framework, in which we directly use
the reconstruction error between the reconstructed and the original
data as the anomaly scores, instead of estimating density of learned
representations and calculating anomaly scores using GMM.

The results of the variants are shown in Table 4. From the table,
our proposed MBTGMM achieves the highest 𝐹𝑏𝑒𝑠𝑡 over all three
datasets. By adding the 1-D convolutional branch in the transformer
encoder, MBTGMM can improve average 𝐹𝑏𝑒𝑠𝑡 by 2.3 % over three
datasets. By using representation with GMM for anomaly detection,
our MBTGMM can achieve an average of 14.9 % improvement
compared with variant V2 which directly uses transformer for
prediction.

Two examples are provided in Fig. 4 to further demonstrate
the advantage of the designs of our framework. Fig. 4 (a) and (b)
show the normalized training data, test data, and anomaly scores
of MBTGMM and its variants for two subsets in SMAP dataset.

For subset A-3, the normal data has a periodic pattern. The
anomaly event highlighted in red rectangle has a constant value
at around 0.6. From the plots of anomaly scores, it is clear that our
proposed method can assign higher anomaly scores by capturing
this short-term temporal dependency change, while its variants fail
to capture this. For data subset D-16, there are two modes in the
normal training data, viz., a) the switching mode during which the
values switch between 1 and -1, and b) the constant mode where
the value is constant at -1. During inference, the value switches
between -1 and other values. Our proposed method consistently
allots high anomaly score within the anomalous region, unlike its
variants. Compared to the anomaly scores of V1, MBTGMM can
assign higher score for points in orange area compared to the green
area, because the 1-D convolutional branch in MBTGMM is able to
capture the short-term dependencies, where the anomalous samples
in the orange area are further away from the cluster containing
switching mode than the samples in the green area. Thus, the
anomaly scores are higher for samples in the orange region. For
both case studies, V2 cannot assign higher anomaly scores for
anomalous events, which demonstrates the importance of using

learned representation for anomaly detection task. The results from
two case studies above clearly demonstrate the effectiveness of
each component in MBTGMM.

To get a more intuitive understanding of the advantage of using
MBTGMM’s learned representations for anomaly detection, we use
the t-distributed stochastic neighbor embedding (t-SNE) [59] to
visualize the features into a two-dimension (2-D) map. The mapped
features of input and output of multi-branch transformer model
𝜙𝑒 from SMAP D-16 subset are shown in Fig. 5. From the plot,
the 2-D feature representations of normal and anomalous input
samples of 𝜙𝑒 are not separable, while the learned representations
are much more separable. These results further indicate that the
multi-branch transformer of the proposed MBTGMM is learning
separable representations of the input features that is necessary for
the downstream anomaly detection task.

In summary, based on the ablation studies, we can conclude the
following: (1) There is a considerable gap between MBTGMM and
the variant V2 without using representation learning and GMM,
which demonstrates the effectiveness of using representation learn-
ing for time series anomaly detection. (2) The 1-D convolutional
branch in transformer encoder helps capture short-term depen-
dencies in the input data, and can detect anomalies that violate
short-term dependencies. These results again support that every

Figure 5: t-SNE visualization of input and output of 𝜙𝑒 for
SMAP D-16 subset.
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component in MBTGMM is valuable for anomaly detection task for
industrial time series.

5 CONCLUSIONS
In this paper, we proposed MBTGMM, a multi-branch transformer-
based framework for detecting anomalies from time series data by
learning normal representations. A 1-D convolutional branch was
added in the transformer encoder block to capture short-term tem-
poral dependencies. GMM is utilized in the framework to estimate
density of learned normal representations and detect anomalies in
low-density regions. Results from extensive experiments on three
industrial datasets show the efficacy of the proposed MBTGMM
compared to the state-of-the-art methods on anomaly detection
task.We also provided ablation and case studies to explain how each
component in MBTGMM helps with detecting temporal anomalies.
Future improvements will include exploring advanced architecture
to learn better representations of such time series.
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