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ABSTRACT
As machine learning and deep learning models have become highly
prevalent in a multitude of domains, the main reservation in their
adoption for decision-making processes is their black-box nature.
The Explainable Artificial Intelligence (XAI) paradigm has gained a
lot of momentum lately due to its ability to reduce models opacity.
XAI methods have not only increased stakeholders’ trust in the de-
cision process but also helped developers ensure its fairness. Recent
efforts have been invested in creating transparent models and post-
hoc explanations. However, fewer methods have been developed
for time series data, and even less when it comes to multivariate
datasets. In this work, we take advantage of the inherent inter-
pretability of shapelets to develop a model agnostic multivariate
time series (MTS) counterfactual explanation algorithm. Counter-
factuals can have a tremendous impact on making black-box models
explainable by indicating what changes have to be performed on
the input to change the final decision. We test our approach on a
real-life solar flare prediction dataset and prove that our approach
produces high-quality counterfactuals. Moreover, a comparison
to the only MTS counterfactual generation algorithm shows that,
in addition to being visually interpretable, our explanations are
superior in terms of proximity, sparsity, and plausibility.

CCS CONCEPTS
• Computing methodologies → Machine learning; Causal rea-
soning and diagnostics.
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1 INTRODUCTION
During the last decade, machine learning and deep learning mod-
els have established themselves as the state-of-the-art in multiple
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scientific and data-centric domains. Their high performance in pre-
diction and classification tasks has allowed them to be adopted
in a plethora of fields such as banking, insurance, healthcare, and
meteorology (Angra and Ahuja, 2017, Sarker, 2021, Shinde and
Shah, 2018). Despite this huge success, one of the main issues still
hindering their full deployment is the black-box nature of most
algorithms, and the limitations it imposes in terms of interpretabil-
ity and explainability. This in turn brings on questions about the
fairness of such algorithms, making them difficult to include in
critical decision-making processes. In this context, the EU General
Data Protection Regulation (GDP, 2018), a law that insists on the
importance of fairness, trustworthiness, and privacy, and that urges
companies to provide explanations to users and consumers, has
been introduced in 2016. In addition, initiatives such as DARPA’s
Explainable AI (XAI) (Gunning, 2016) have been started by different
agencies to develop interpretable machine learning solutions. As
a result, more transparent machine learning algorithms such as
decision trees and linear regression have seen increased interest. In
parallel, a novel line of research that focuses on providing post hoc
interpretable explanations generated by extra modules on top of the
complex black-box models was met with great success. While most
of these methods focused on image data (Van Looveren and Klaise,
2019), tabular data (Lundberg and Lee, 2017, Schlegel et al., 2019,
Van Looveren and Klaise, 2019), and text data (Ribeiro et al., 2016),
more recent works started tackling univariate time series (Ates
et al., 2021, Delaney et al., 2020, Guidotti et al., 2020, Parvatharaju
et al., 2021). However, because of their high-dimensionality, multi-
variate time series (MTS) data remain under-explored, with CoMTE
(Ates et al., 2021) being the only counterfactual explanation method
specifically designed for MTS. In this work, we capitalize on the
inherent interpretability of shapelet-based algorithms in time series
classification (TSC) to develop a shapelet explainer for time series
(SETS), a model-agnostic counterfactual generation algorithm for
MTS data. We evaluate our results on an open-source solar-flare
dataset. The rest of this paper is organized as follows. In Section
2, we present the state-of-the-art machine learning explanation
methods, with a particular focus on time series. In Section 3, we
introduce SETS and discuss some important counterfactual eval-
uation measures. In Section 4, we present the experimental setup.
In Section 5, we discuss the results. And in Section 6, we conclude
with a summary.

2 RELATEDWORK
One of the most popular model-agnostic explanation methods is
LIME, developed by Ribeiro et al. (2016). To explain a dataset sam-
ple, LIME generates random neighboring instances around it by
performing small perturbations. Then, a surrogate linear model
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that mimics the behavior of the original black-box model is trained
on the generated instances, and its feature importance values are
used to explain the model decision. One of the main drawbacks of
LIME is its assumption of linearity, which rarely holds true when it
comes to high-dimensional and complex time series datasets (Par-
vatharaju et al., 2021). Inspired by game theory, SHAP (Lundberg
and Lee, 2017) is another feature-based explanation method that
overcomes this linearity limitation. It computes the importance of
features by deriving their additive Shapley values. Although more
robust than LIME, both methods raise concerns about their stabil-
ity, as slight perturbations can totally change the model decision
(Adebayo et al., 2018, Delaney et al., 2020, Nguyen et al., 2020).
Instance-based explanation methods were developed as an alter-
native to feature-based approaches. In particular, counterfactuals,
artificial instances generated as close as possible to the original
dataset sample in such a way that the model prediction changes
have gained increased popularity. In general, counterfactuals are
generated by introducing perturbations from a representative sam-
ple of the target class or guided by an objective function (or both).
Wachter et al. (2018) were among the first to generate counterfactual
explanations. Their method consists in minimizing a loss function
consisting of a prediction term to reach the target class label, and a
distance term to ensure the counterfactual lies close to the original
instance. Mothilal et al. (2020) extend this approach by adding a
diversity constraint to allow the generation of different counterfac-
tuals. Dhurandhar et al. (2018) introduced an autoencoder-based
loss term to enforce interpretability by keeping the counterfactuals
within the target class data distribution. In addition, Van Looveren
and Klaise (2019) add a prototype loss term to ensure interpretability
and speed up the search process. Even though none of the tech-
niques mentioned so far have been proposed for time series data,
they might in theory be used in this context. For example, an apriori
segmentation of the data –although it results in some information
loss– has made it possible for SHAP and LIME to be applied to time
series (Schlegel et al., 2019). In the work by Ates et al. (2021), 11
statistical features have been extracted from the data. However,
the results have not been satisfactory (Ates et al., 2021). Similarly,
instance-based explanation methods do not yield the best results
when employed for time series (Delaney et al., 2020). More recently,
a few techniques designed for time series datasets have made their
way to the literature. Guidotti et al. (2020) build a decision tree
using shapelets (Grabocka et al., 2014) extracted from the dataset.
Then, they extract shapelet-based rules from the decision tree to ex-
plain the black-box model decisions. In native guide (NG) (Delaney
et al., 2020), the original instance’s nearest-unlike-neighbor (nun) is
extracted from the target class and used to perturb the original in-
stance. When possible, the most important contiguous subsequence
is found using Class Activation Mapping (Zhou et al., 2015), and the
perturbations are introduced at its level. Otherwise, dynamic time
warping barycenter averaging (DBA) (Petitjean et al., 2011) is used.
Ates et al. (2021) introduced CoMTE, a counterfactual multivariate
time series explainability method. CoMTE extracts a nun for each
feature variable using KD-trees, and replaces entire dimensions
to build a counterfactual. The authors proposed a heuristic search
method based on hill climbing to select the feature variables to be
modified. In case the heuristic fails to provide a counterfactual, a
greedy search is performed to find the optimal feature set. To our

knowledge, this is the first counterfactual generation algorithm
developed for MTS.

3 METHODOLOGY
3.1 Shapelet Transform
A shapelet is a phase-independent, characteristic subsequence that
occurs repeatedly in a time series dataset. Since the first shapelet-
based classification algorithm was introduced by Ye and Keogh
(2011), multiple works followed suit (Fang et al., 2018, Grabocka
et al., 2014, Lines et al., 2012, Rakthanmanon and Keogh, 2013).
In a recent time series classification benchmark study by Bagnall
et al. (2017), shapelet transform (ST) (Bostrom and Bagnall, 2015,
Hills et al., 2014, Lines et al., 2012) proved to be among the best
algorithms. Therefore, we use it to extract shapelets for our algo-
rithm. Moreover, shapelet discovery and classification in ST are
performed in two separate steps, which makes its choice even more
convenient.
The first step involved in mining shapelets using ST is to extract
all candidate shapelets 𝑆𝑖 from each dataset sample, i.e. all subse-
quences of the desired predefined lengths. In the next step, each 𝑆𝑖
is slided across each dataset sample, and the minimum distance that
separates it from all subsequences𝑤 of similar length is recorded as
the distance to that dataset sample. Equation 1 defines the sliding
window function, such as the set of all subsequences of length equal
to that of 𝑆 is represented by𝑊 . Then, the final set of shapelets is
selected based on their information gain.

𝑠𝐷𝑖𝑠𝑡 (𝑆,𝑇 ) =𝑚𝑖𝑛𝑤∈𝑊 (𝑑𝑖𝑠𝑡 (𝑆,𝑤)) (1)

3.2 Shapelet Explainer for Time Series
In this section, we present SETS, an instance-based, model-agnostic
counterfactual generation algorithm.

3.2.1 Model Fitting. Given the inherent interpretability of shapelets
and the success of shapelet-based algorithms, we consider the
shapelets extracted using ST as the building blocks of our coun-
terfactual generation algorithm. During the computation of the
distances separating shapelets from dataset instances, we store the
distances between every shapelet and its potential occurrences (sub-
sequences of the same length) and retain the closest ones according
to a predefined threshold. These retained shapelets occurrences
are then used to select class-shapelets: shapelets characteristic of
each dataset class, i.e. those that happen under that class only. The
remaining shapelets are discarded. Then, for each shapelet, the
occurrence distribution is computed as the average of all its occur-
rences.

3.2.2 Counterfactual Generation. Given a dataset instance 𝑥 of
class 𝐴, generating a counterfactual instance 𝑥𝑐 𝑓 of class 𝐵 starts
with the extraction of the nearest-neighbor 𝑥𝑛𝑛 of 𝑥 from class 𝐵
instances using the k-Nearest-Neighbor (kNN) algorithm. Next, the
dataset dimensions are sorted in descending order according to their
highest scoring shapelets. Then, steps 𝑎 and 𝑏 below are performed
for each dimension, class-shapelet by class-shapelet and until a
valid counterfactual 𝑥𝑐 𝑓 is found, i.e. until 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓 (𝑥𝑐 𝑓 )) = 𝐵,
where 𝑓 is the prediction function of the black-box model. Figure 1.



Shapelet-Based Counterfactual Explanations for Multivariate Time Series MiLeTS ’22, SIGKDD, August 15, 2022, Washington DC, USA

Input Multivariate Time Series 𝐱

Original Class-Shapelets

Nearest-Neighbor from Target Class

Original Class-Shapelets Removal

1. Detect original shapelets

2. Replace next best shapelet with 
Nearest-Neighbor

3. If all original shapelets removed 
and no counterfactual is found 

Check if 
perturbed 𝐱
changed label

Target Class-Shapelets

Target Class-Shapelets Introduction

1. Introduce next best target shapelet

Time series predictive model   f

Figure 1: SETS single dimension perturbation process

illustrates the process for a single dimension. If none of the dimen-
sions succeed in creating a valid counterfactual, the perturbations
from all possible subsets of dimensions are combined until a valid
counterfactual is found.

Original Class-Shapelets Removal. 𝑥𝑐 𝑓 is constructed by replacing
each 𝐴 class-shapelet –by descending order of information gain–
contained in 𝑥 by the values of 𝑥𝑛𝑛 at the same time steps, scaled to
the original feature range using min-max scaling. The motivation
behind this step is to remove the shapelets that swayed the model
prediction 𝑓 (𝑥𝑐 𝑓 ) toward label 𝐴.

Target Class-Shapelets Introduction. 𝑥𝑐 𝑓 is constructed by intro-
ducing each 𝐵 class-shapelet –by descending order of information
gain– into the time steps defined by its occurrence distribution,
scaled to the original feature range using min-max scaling. The
motivation behind this step is to influence the model prediction
𝑓 (𝑥𝑐 𝑓 ) towards label 𝐵.

3.3 Evaluation Measures
By relying on shapelets in the counterfactual generation process, we
are able to build highly interpretable explanations. On the one hand,
performing changes at the level of shapelets only creates meaning-
ful perturbations. This adds value to the counterfactuals by making
them easily interpretable by stakeholders. On the other hand, being
able to visualize the shapelets and see their impact on tasks such as

classification and prediction, independently of the counterfactuals,
increases the confidence in the SETS algorithm. However, there is
still a need for quantitative evaluation, particularly when it comes
to comparing different counterfactual generation approaches. Al-
though there is no standard to evaluate explanation methods (Ates
et al., 2021, Lipton, 2016, Schmidt and Biessmann, 2019), proximity,
interpretability, and sparsity have been used repeatedly in the lit-
erature (Ates et al., 2021, Delaney et al., 2020, Karimi et al., 2019,
Mothilal et al., 2020, Van Looveren and Klaise, 2019). In this section,
we introduce the three measures and describe how we compute
them to evaluate our approach.

3.3.1 Proximity. Also referred to as distance or closeness, the prox-
imitymeasure ensures that the counterfactual is close to the original
sample. Ideally, the perturbations should be as small as possible.
However, proximity is not the only criteria sought in a good counter-
factual. Therefore, a balance has to be found with the two measures
below. Following (Delaney et al., 2020, Downs et al., 2020, Karimi
et al., 2019, Keane et al., 2021), we decided to use three distance
metrics to evaluate the proximity of counterfactuals. We use the
Manhattan distance (𝐿1-norm, equation 2) and the Euclidian dis-
tance (𝐿2-norm, equation 3) to measure the distance between the
counterfactual 𝑥𝑐 𝑓 and its original instance 𝑥 , and the 𝐿inf -norm
(equation 3) to get the magnitude of the highest perturbation at a
single time step. 𝐷 is the number of dimensions in the multivariate
dataset, and 𝑇 is the length of the series.
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3.3.2 Sparsity. Another important quality in a good counterfactual
is the sparsity of the perturbed features and in the case of time series,
of the perturbed time steps. Introducing changes to several features
and at different time steps will not only make the explanation
harder to comprehend by stakeholders but might even make it
impossible to perform. Therefore, perturbed features should be
kept to a minimum. In addition, time series data should be changed
at the level of short, contiguous intervals, as perturbations that
affect single, dispersed time steps are not meaningful (Delaney
et al., 2020, Parvatharaju et al., 2021).

3.3.3 Plausibility. Being close to the original sample and having
sparse perturbations might not be enough to warrant the plausi-
bility of a counterfactual. Counterfactual explanations need to be
easily interpretable by humans. Thus, they must be realistic. One
way to quantitatively study the plausibility of a counterfactual is to
check whether it belongs to the same data manifold of the dataset
(Delaney et al., 2020, Karimi et al., 2019, Poyiadzi et al., 2019, Van
Looveren and Klaise, 2019). This can be achieved by applying nov-
elty detection techniques, which detect out-of-distribution (OOD)
instances.
Similarly to the work by Delaney et al. (2020), we adopt three
novelty detection approaches to assess the plausibility of counter-
factuals. In particular, we perform (1) the local outlier factor (LOF)
method (Breuniq et al., 2000, Kanamori et al., 2020) which calcu-
lates the local density deviation of each instance with respect to
its neighbors and flags the ones with lower densities as outliers,
(2) isolation forest (IF) (Liu et al., 2008) which considers how far
a dataset instance is to the rest of the dataset, and the one class
support vector machine (OC-SVM) (Schölkopf et al., 2001) method
(on the raw time and the matrix profile (OC-SVM MP) (Yeh et al.,
2017) representations of the time series).

4 EXPERIMENTAL SETUP
4.1 Dataset
A solar flare is an extremely powerful burst of electromagnetic
radiation originating from the surface of the sun. Because of their
sporadicity, forecasting them remains a big challenge. Furthermore,
solar flares are highly dangerous for astronauts, space equipment,
and can even damage infrastracture at ground surface such as elec-
tric power grids and navigational signals (Boubrahimi et al., 2018,
Martens and Angryk, 2017). Therefore, forecasting solar flare events
is very important to perform critical preventive measures and save
billions of dollars worth of damage (Angryk et al., 2020a). Since solar
flares are rare events, the datasets available for training forecasting
models are small, which makes their outputs less dependable. Thus,

Table 1: Dataset Class Distribution

Class X M B/C Q All
Number of elements 303 350 356 345 1354

generating post hoc explanations in the form of counterfactuals
has the potential of increasing their trustworthiness in the eyes of
stakeholders, including physicists and decision makers.
We evaluate SETS on a real-life, MTS solar flare dataset created
by a research group from Georgia State University (Angryk et al.,
2020a). The dataset contains 1354 samples of 60 time steps, recorded
at 12 minutes intervals for a total of 12 hours. The class distribu-
tion of the dataset samples is shown in Table 1. The four class
labels represent the classification of the most powerful solar flare
recorded in the following 12 hours. The data was captured by the
Helioseismic Magnetic Imager (HMI) (Angryk et al., 2020b, Bobra
et al., 2014, Schou et al., 2012) on the Solar Dynamics Observatory
(SDO) (Pesnell et al., 2012) run by NASA.

4.2 Implementation Details
We used the sktime (Löning et al., 2019) implementation of ST, and
introduced a slight modification to extract the indices of the occur-
rences of each shapelet along with their distances as described in
Section 3.2. Because of the high-dimensionality of the dataset, we
ran the contracted shapelet transform implementation, which does
not significantly hurt the performance of ST (Bostrom and Bagnall,
2017). This approach consists in randomly selecting shapelets for a
user-defined amount of time, instead of trying all possible subse-
quences. For this experiment, we ran the algorithm for a total of 4
hours, including all dimensions. In order to achieve sparse pertur-
bations, the length of the shapelets was restricted to a maximum of
50% of the length of the time series. We provide access to our code
and to the solar-flare dataset on our GitHub repository.

4.3 Compared Methods
4.3.1 NG. It extracts the nearest neighbor to the original instance
from the target class and introduces perturbations from its time
steps. We employ the model agnostic version of the algorithm,
which uses DBA to guide the perturbations. The implementation is
provided by the authors in the original publication Delaney et al.
(2020). Since NG was developed for univariate time series datasets,
we adapt it to the multivariate case by simply reshaping the entire
dataset under one dimension.

4.3.2 CoMTE. To our knowledge, CoMTE (Ates et al., 2021) is the
only counterfactual explanation method developed specifically for
MTS. First, CoMTE finds a distractor from the target class by con-
structing its KD-tree and considering the original instance’s nearest
neighbor. Then, it picks a small set of feature dimensions from the
original sample and replaces it with the distractor’s variables, re-
sulting in a counterfactual with the target class label. Ideally, the
set of feature dimensions should be optimal, which can be achieved
using a greedy search. To speed up the search process, the authors
proposed a heuristic method based on hill climbing, followed by a

https://github.com/omarbahri/SETS
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(a) (b)

Figure 2: Class X Shapelets

post hoc trimming step. In case the heuristic fails to provide a coun-
terfactual, the greedy search is performed. The implementation we
use is provided in the original publication.

5 EXPERIMENTAL RESULTS
We split the solar flare dataset into a training set with 70% of the
instances and a testing set with the remaining 30%. Then, we run ST
on the training set as described in section 4.2, and use the extracted
shapelets to create our explanations as detailed in section 3.2. Since
the dataset contains 4 classes, we generate 3 counterfactuals for
each instance –one for each of the possible target classes– for a
total of 1221 counterfactuals. While we use a simple neural network
as the black-box model, NG, CoMTE, SETS are model agnostic and
can be applied to any other machine learning model.

5.1 Qualitative Evaluation
SETS starts by finding class-shapelets, i.e. shapelets that occur
under one class only. By first examining these shapelets, the user
can have a better understanding of their discriminative power and
their role in the dataset. Domain experts can even go a step further
and draw important insights into the problem at hand. Figure 2
shows two shapelets that happen uniquely under class X, at the
level of the total unsigned current helicity feature. This means
that whenever one of these two shapelets is detected, an extremely
powerful solar-flare event is going to burst.

Then, SETS exploits the class-shapelets to create meaningful
counterfactual explanations. For example, considering the unsigned
current helicity dimension of the original time series sample in
Figure 3.a, SETS generates a counterfactual of class X (from the
original class M) by simply introducing the shapelet from Figure
2.a. The perturbed dimension of the counterfactual is plotted in
Figure 3.b.

In Figure 4, we show 4 more counterfactuals generated using
SETS. For visualization purposes, we select counterfactuals that re-
quired perturbations at the level of one time series dimension only.
However, SETS perturbed an average of 2.62 dimensions through
the testing set. On the other hand, CoMTE substitutes entire di-
mensions to generate counterfactuals, which makes them less qual-
itatively interpretable. Moreover, in this experiment, significantly
more dimensions were perturbed compared to SETS. The original
univariate version of NG perturbs all time steps. Therefore, it suffers
from the same problems as CoMTE in the multivariate adaptation.

(a) (b)

Figure 3: Counterfactual generation using target
class-shapelet introduction

(a) From class B/C to class Q (b) From class X to class B/C

(c) From class B/C to class M (d) From class B/C to class X

Figure 4: Counterfactual explanations generated using SETS

5.2 Quantitative Evaluation
Out of the 1221 counterfactuals generated by NG, 11 are largely
out-of-distribution. This is an expected outcome, as NG keeps in-
crementing the DBA weights until a counterfactual found. There-
fore, the average evaluation measure values are highly affected by
these 11 samples. In order, to fairly compare the three methods,
we present both the means and medians of the the proximity and
sparsity measures, and we show the plausibility results with and
without these 11 outliers. However, it is important to note that 0.9%
of NG counterfactuals are significantly worse than average.

5.2.1 Proximity. As shown in Table 2, the counterfactuals gener-
ated by SETS are significantly closer to the original instances than
those created using NG and CoMTE. This can be observed in all
three metrics: the Manhattan distance (𝐿1-norm), the Euclidian
distance (𝐿2-norm), and the 𝐿inf -norm. This means that not only
are the counterfactuals closer to the original instances but that the
perturbations are also much smaller in magnitudes; which suggests
that NG and CoMTE counterfactuals contain more pronounced
spikes. Table 2 also shows that NG produces closer counterfactuals
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Table 2: Proximity comparison

L1-norm L2-norm Linf-norm
Mean Median Mean Median Mean Median

NG 1.42 x 1012 836.68 1.38 x 1012 28.50 1.37 x 1012 4.17
CoMTE 2132.17 2148.37 60.81 6.95 6.96 6.96
SETS 90.64 86.41 10.11 10.95 2.64 2.47

Table 3: Sparsity comparison

Sparsity
Mean Median

NG 135.69 130.01
CoMTE 159.38 159.65
SETS 9.29 8.11

Table 4: Plausibility comparison

NG CoMTE SETS

IF w/ NG outliers 0.28 0.004 0.0
w/o NG outliers 0.20 0.005 0.0

LOF w/ NG outliers 0.05 0.0 0.0
w/o NG outliers 0.04 0.0 0.0

OC-SVM w/ NG outliers 0.08 0.82 0.06
w/o NG outliers 0.06 0.82 0.06

OC-SVM MP w/ NG outliers 0.076 0.816 0.057
w/o NG outliers 0.065 0.816 0.058

than CoMTE, except for the 11 outliers discussed above (very high
mean and lower median compared to CoMTE’s).

5.2.2 Sparsity. We compute sparsity as the total number of per-
turbed time steps throughout all time series dimensions. Again,
Table 3 shows that the counterfactual explanations generated by
SETS are superior to NG’s and CoMTE’s.

5.2.3 Plausibility. Table 4 shows that all plausibility measures con-
sistently point to the fact that SETS generates significantly more
plausible counterfactuals. The OC-SVM method on both the raw
time space and the matrix profile favorises NG’s counterfactuals
over those generated by CoMTE. However, the IF and LOF methods
have detected fewer outliers among CoMTE’s.

6 CONCLUSION
In this work, we proposed SETS, a model agnostic MTS counter-
factual explanation algorithm. SETS makes use of shapelets to in-
troduce meaningful perturbations to the original dataset instance,
and to create highly interpretable counterfactuals. In particular, the
perturbations introduced by SETS are contiguous, which makes the
counterfactual explanations more plausible than the sparse ones
generated by CoMTE. In addition, the use of shapelets provides
SETSwith the added quality of visual explainability. Indeed, plotting
the counterfactuals and visualizing the perturbations can provide
important insight as to which shapelets influenced the black-box
model decision. We tested our approach on a real-life solar flare
prediction dataset using a neural network as the black-box model
and compared it to two state-of-the-art time series counterfactual

generation algorithms, including the only one specifically devel-
oped for MTS. The results show that SETS’ counterfactuals are
superior in terms of proximity, sparsity, and plausibility, with the
additional visual interpretability edge. In the future, we would like
to experiment with an optimization-based approach, guided by a
shapelet-based loss function.
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