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ABSTRACT 

Extremely large values often appear in various fields such as 

meteorology, hydrology and financial engineering, which may be 

caused by catastrophic events such as cyclones, flooding, and 

financial crisis. Although such extreme value prediction is crucial 

for risk management, it is difficult to forecast them by 

conventional machine learning because the number of extreme 

values is much smaller than the number of non-extreme values. 

The existing approaches forecast when and how large extremes 

occur, however, for practical use, some errors in forecast time 

may be ignored to take action such as evacuation against 

catastrophic events. In this study, instead of forecasting exact 

timing, we tackle an alleviated problem of predicting the 

maximum values over a certain length period, which are known to 

follow Generalized Extreme Value distribution (GEV). Therefore, 

we introduce GEV into deep learning and propose a method to 

forecast the maxima distribution by predicting of parameters of 

GEV. As a result of experiments, we report that the proposed 

method can correctly predict time series of the maxima for both of 

artificial data and real-world data. 
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1 Introduction 

Time series prediction is one of the classical research topic. With 

the recent development of deep learning, recurrent neural 

networks such as GRU (Gated Recurrent Unit) [7] are attracting 

attention and much applied research has been conducted using 

these networks. These time series prediction methods are widely 

applied in the field of risk management related to extreme climate 

prediction [25, 10, 18, 21, 23], stock price alerts [8, 28], and 

network traffic anomaly detection [31]. 

Such prediction tasks often have a problem in that they involve 

extreme phenomena. For example, in extreme climate prediction, 

an extreme phenomenon corresponds to abnormal weather in 

which the values of temperature, wind speed or precipitation. are 

extremely high or low (called extreme values). Such extreme 

values are also observed in other fields as stock prices and 

network traffics. Since failures of the prediction can lead to 

catastrophic events in risk management, extreme prediction is an 

important task. There are many studies on extreme value 

prediction by typical time series models such as autoregressive 

integrated moving average (ARIMA) models [25, 31] and recent 

Deep Neural Network (DNN) models such as Convolutional 

Neural Network (CNN) and Long-Short Term Memory (LSTM) 

[18, 21], which can handle non-stationary time series. 

However, extreme value prediction is difficult for conventional 

machine learning methods [11]. Since extreme value data points 

occur only rarely, usual time series machine learning methods 

tend to learn mainly non-extreme data points. This is a sort of data 

imbalance problem, which previous studies shows most DNN 

suffer from [13, 20]. Thus, correct learning from extreme value is 

difficult and efforts to forecast extreme phenomena are prone to 

failure. 

On the other hand, extreme values have been studied in statistics 

for a long time, and they are modelled with Extreme Value 

Theory (EVT). According to EVT, extreme values are defined as 

the maximum and minimum values over a certain number of data 

points, and the distribution of these values must be a Generalized 

Extreme Value (GEV) distribution. Although EVT is suitable for 

analysis of stationary data, EVT in non-stationary data is not 

sufficiently established [22, 9]. In recent years, approaches 

combining EVT and prediction techniques with deep learning 

have been studied [11, 8]. According to Ding, Yang, and He [11], 

the difficulty of extreme value prediction arises when the 

distribution of data does not follow a normal distribution. They 

deal with this problem by modelling the data distribution 

according to EVT. They handle the partial problem of predicting 

whether the future data points will exceed a threshold or not so 

that they introduce EVT to prediction model. Using the 

probability that future data points exceed the threshold as a weight, 

they add a correction to predicted values by GRU in order to 

predict future extremes more correctly. 

In most of the research on time series data with extremes, the 

goal is to forecast both accurate timing and values of extreme 

phenomena. However, the accurate timing of extremes may be 

unnecessary for practical use. For example, in the case of disaster 

prevention planning for a reservoir, it may be sufficient to predict 

timing of extreme inflow with an accuracy of half-day to one-day 

for planning a deployment additional monitors to avoid flooding. 
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Since the deployment of monitors is planned on a daily basis, it is 

not needed to predict exact timing of extreme inflow events with 

hourly accuracy. In this case, prediction for exact value of 

maximum of inflow are required rather than its exact timing.  

Therefore, this study aims to predict the maximum value over a 

period of a certain length, instead of predicting the exact timing of 

extremes. To tackle the maxima prediction problem, we propose a 

novel loss function to introduce GEV distribution to GRU so that 

GRU can learn based on the GEV distribution-based loss. The 

proposed model predicts the parameters of extreme distribution 

over a period of a certain length through GRU for non-stationary 

time series data. The results of experiments using artificial data 

indicate that the model correctly predicted the change in the 

maximum value distribution. Moreover, the results of experiments 

using real data of water reservoir inflow and energy consumption 

indicate that the model forecast the maximum inflow values more 

accurately than standard GRUs.  

Our contributions concern two points. First, we set up a novel 

alleviated problem by assuming practical use of prediction. We 

relax the problem of traditional extreme value prediction with 

exact timing of extremes and reformulate the problem as 

prediction of extreme values over a period of a certain length. 

This reformulation enables to use the block maxima approach of 

EVT to predict future maxima, which is useful for predicting 

extreme value distribution in practical use. Second, we propose a 

method to predict the maxima by introducing GEV to GRU. We 

define a new loss function so that GRU can learn by GEV 

distribution-based loss function. The proposed method can predict 

the maxima more correctly than simple GRUs and may potentially 

be applicable to a wide variety of data. 

2 Related Works 

Extreme Values have been studied in statistics for a long time and 

have recently been handled as a problem in time series prediction 

with machine learning. In this section, we briefly introduce 

Extreme Value Theory and Deep Learning based approach as 

related works. 

2.1 Extreme Value Theory 

Extreme Value Theory (EVT) describes behaviors of maxima for 

the same number of data points in an approach called Block 

Maxima. Data periods are divided to non-overlapping sub-periods 

with same length and the maximum of each sub-period is defined 

as an extreme value. These extremes are known to follow the 

distribution called Generalized Extreme Value distribution (GEV) 

[17], which cumulative distribution function is written as: 

𝐺𝐸𝑉(𝑦; 𝜇, 𝜎, 𝜉) = exp(− [1 + 𝜉 (
𝑦 − 𝜇

𝜎
)]
−
1
𝜉
)  (1) 

where random variable 𝑦 is the maximum of the sub-period data 

sequence 𝑋, and 𝜇, 𝜎, 𝜉 are its parameters. These parameters vary 

depending on the original distribution which generates original 

data sequence 𝑋. Its probability density function is written as: 

𝑔𝑒𝑣(𝑦; 𝜇, 𝜎, 𝜉)

=

{
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The definition requires the following condition: 

1 + 𝜉 (
𝑦 − 𝜇

𝜎
) > 0 (3) 

When y does not satisfy this condition, we assume that the 

density function 𝑔𝑒𝑣(𝑦;  𝜇, 𝜎, 𝜉) is 0. 

EVT typically handles stationary data and assumed that the 𝑋 is 

generated from stationary distribution. However, time series data 

of our interest are often non-stationary time series data. Since a 

general theory dealing with non-stationary data has yet to be 

formulated [22, 9], many studies proposed techniques to apply 

EVT for non-stationary data. They are roughly divided into two 

following approaches. 

One approach to construct a non-stationary extreme value 

distribution is by introducing time-varying terms into GEV 

parameters 𝜇, 𝜎 and use 𝜇(𝑡), 𝜎(𝑡) [12, 22, 26, 6, 14]. 

𝐺𝐸𝑉(𝑦(𝑡); 𝜇(𝑡), 𝜎(𝑡), 𝜉) = exp(− [1 + 𝜉 (
𝑦(𝑡) − 𝜇(𝑡)

𝜎(𝑡)
)]
−
1
𝜉
)  (4) 

In this model, 𝐺𝐸𝑉(𝑦(𝑡); 𝜇(𝑡), 𝜎(𝑡), 𝜉) varies continuously with 

time  𝑡. Though this approach seems to be a natural extension of 

GEV, no general formulation for the time-varying term 𝜇(𝑡) and 

𝜎(𝑡) is known. Since data analysis and design of time-varying 

terms are done manually one by one, it takes a lot of time to 

construct a prediction model. 

The other method is to slice the non-stationary time series data 

into short subsequences and to apply EVT to each of them 

independently [29]. This approach assumes that the short 

subsequence can be approximated as stationary sequence and 

estimate s stationary GEV distribution for each subsequence. In 

this model, 𝐺𝐸𝑉(𝑦𝑘; 𝜇𝑘 , 𝜎𝑘 , 𝜉𝑘) is estimated separately for each 

subsequence and 𝜇𝑘 , 𝜎𝑘 ,  and 𝜉𝑘 vary discretely with subsequence 

𝑘. This approach has a problem that if the subsequences are too 

short, the number of data points from which the maximum is 

sampled is reduced and it results in instability of estimation. 

However, if the variation of the original distribution is sufficiently 

slow compared to the length of the subsequence, this approach 

can obtain an approximation of the non-stationary extreme value 

distribution. 

2.2 Deep Learning-based Extreme Value 
Prediction 

On the other hand, with the recent development of deep learning 

[15, 3], deep learning based approach became to be studied to 

predict extreme values [18, 21]. 

Different from traditional methods such as ARMA [24] and 

ARIMA [4], Recurrent Neural Networks (RNNs) such as Long-

Short Term Memory (LSTM) [16] and Gated Recurrent Unit 



  

 

 

(GRU) [7] are capable of extracting highly abstract patterns as 

features from time series data. Recent studies (e.g., [18, 21]) have 

attempted to predict extremes by extracting features 

corresponding to phenomena (such as typhoon, cyclones, or traffic 

accidents) that generate extreme values using deep learning. 

However, these extremes rarely occur and they are difficult to 

learn because the number of samples to learn is very smaller than 

the number of non-extreme samples. This imbalance leads to a 

model that predicts only non-extremes without extremes. 

Such data imbalance problem is a general problem in the field 

of machine learning and it has been tackled by many studies [13, 

20]. In contrast to these approaches, the study of Ding et al. [11] 

focused on the property of extreme values and analyzed that why 

extremes cannot be learned is because the distribution of the data 

does not necessarily follow a normal distribution. They claimed 

that the distribution of data often has a heavy-tail, and that the 

deference between a normal distribution and a heavy-tail 

distribution results in different performance of RMSE loss, which 

is the loss function usually employed in various machine learning 

methods. 

As partial problem of prediction, they tackled a prediction 

problem of whether a future point will exceed a certain threshold 

or not. According to the Peak over Threshold approach in EVT, 

the distribution of a random variable exceeding a threshold 

follows the Generalized Pareto Distribution (GPD), whatever 

distribution generates the random variable. They utilize this 

property to propose a GPD-based loss function EVL to learn the 

problem of discriminating whether a threshold is exceeded or not. 

They attempt to correctly predict where data will exceed the 

threshold and predict future values containing extremes using the 

probability of exceeding as a weighting factor to revise predicted 

values. 

3 Proposed Approach 

Most of the previous studies attempted to predict the value of a 

certain time point in the future. However, it is known that usual 

machine learning methods cannot learn extremes properly due to 

the rarity of them. Ding et al. [11] analyzes that it is because the 

data do not follow a normal distribution, and they handle the 

exceedance probability following GPD in order to deal with any 

distributions of data. 

Incidentally, is it always required to predict the extreme values 

with their exact time? Extreme value prediction is used for risk 

management in safety design or disaster prevention planning, such 

as prediction for flood [10], hurricanes or cyclones [18, 21], 

drought [23], stock price [8, 27], and anomaly network traffics 

[31]. In these cases, it is not always needed to forecast a time 

series with the same frequency as the sampling of data. For 

example, we consider the flood prediction. From the reservoir 

water level data sampled every minute, we would like to predict 

an event where the water level rises to an extreme level. However, 

for evacuation planning, it is not necessary to predict the exact 

time in minutes: prediction with an accuracy of half an hour or 

even an hour may be sufficient in this case. Moreover, for the 

planning of personnel deployment in the reservoir operation, it is 

sufficient to predict the timing with an accuracy of half a day or 

even a day. 

Therefore, we assume that it is not necessary to predict the exact 

time of the extreme value for practical use. We can alleviate the 

conventional problem of extreme prediction needing both of exact 

timing and values into a new alleviated problem of prediction of 

maxima in a period of certain length. In this study, we aim to 

predict the maximum values in a certain length period in the 

future. Hereby we can introduce the Block Maxima approach of 

EVT to model any distribution of data with GEV distribution. 

Using a loss function based on GEV, we can solve the problem 

shown in [11] that the distribution of the data is not normal, and 

make it possible to learn extreme value data. In this study, we 

propose the method to predict the parameters of the GEV 

distribution of future periods using GRU. 

3.1 Preliminaries 

We formulate the alleviated problem setting here. We take 

multivariate time series data as input, and prediction of the 

maximum value of one dimension of the time series over a certain 

period in the future as output. Let the time series data of length 𝑇 

be  

𝑋𝑇 = [𝒙1, … , 𝒙𝑇]     (𝑇 ∈ ℕ) (5) 

and the length of the period to be predicted be 𝑙 ∈ ℕ. We use the 

partial time series 𝑋𝑘𝑙 of this time series data up to time 𝑘𝑙 (𝑘𝑙 <

𝑇, 𝑘 ∈ ℕ) as input. The target 𝑦𝑘𝑙 of the prediction problem with 

input 𝑋𝑘𝑙  is the maximum of 𝑑 th dimensional values over the 

period from 𝑘𝑙 +1 to (𝑘 + 1)𝑙, described as 

𝑦𝑘𝑙  =  max(𝑥𝑑,𝑘𝑙+1, ⋯ , 𝑥𝑑,(𝑘+1)𝑙) (6) 

where 𝑥𝑑,𝑡 denotes 𝑑th dimensional value of 𝒙𝑡. 

3.2 Proposed Prediction Method 

In order to predict maximum 𝑦𝑘𝑙  from input multivariate time 

series 𝑋𝑘𝑙, we propose introducing GEV distribution into GRU, as 

shown in Figure 1. Using GRU and fully-connected layers, it 

obtains 𝜇𝑘𝑙 , 𝜎𝑘𝑙 and 𝜉𝑘𝑙 as parameters of the GEV distribution of 

the maximum 𝑦𝑘𝑙 from input time series 𝑋𝑘𝑙. 

In the proposed method, prediction is done as follows. First, 

input 𝑋𝑘𝑙 is fed to the GRU to obtain the hidden state 𝒉𝑘𝑙 at time 

𝑘𝑙. 

𝒉𝑘𝑙 = 𝐺𝑅𝑈(𝑋𝑘𝑙) (7) 

Then the hidden state 𝒉𝑘𝑙 is input to a fully-connected two-layer 

neural network to calculate the distribution parameters 𝜇𝑘𝑙 , 𝜎𝑘𝑙 

and 𝜉𝑘𝑙 as written by, 

(𝜇𝑘𝑙 , 𝜎𝑘𝑙 , 𝜉𝑘𝑙)
𝑇 = 𝑊2(𝑊1𝒉𝑘𝑙 + 𝒃1) + 𝒃2 (8) 



  

 

 

 

where 𝑊1, 𝒃1,𝑊2  and 𝒃2  are parameters of the neural network. 

Hereby the predicted GEV distribution is obtained as 

𝐺𝐸𝑉(𝑦𝑘𝑙; 𝜇𝑘𝑙 , 𝜎𝑘𝑙 , 𝜉𝑘𝑙).  

3.3 Learning Process 

The learning process of the proposed method is performed by 

minimizing the negative log likelihood of the extreme value 

distribution 𝐺𝐸𝑉(𝜇𝑘𝑙 , 𝜎𝑘𝑙 , 𝜉𝑘𝑙)  using the observed 𝑦𝑘𝑙 . The 

parameters of the GRU 𝑊𝑧 , 𝑈𝑧, 𝒃𝑧,𝑊𝑟 , 𝑈𝑟 , 𝒃𝑟 ,𝑊ℎ, 𝑈ℎ, 𝒃ℎ and the 

parameters of fully-connected layers 𝑊1, 𝒃1,𝑊2, 𝒃2  are tuned 

through this process. Given the training data of length 𝑇 and when 

1 ≤ 𝑘 ≤ 𝑛(𝑇 − 𝑙 < 𝑛𝑙 < 𝑇𝑙, 𝑛 ∈ ℕ), the negative log likelihood 

loss function 𝐿1 is written as: 

𝐿1 = −∑ ln

𝑛

𝑘=1

𝐺𝐸𝑉(𝑦𝑘𝑙; 𝜇𝑘𝑙 , 𝜎𝑘𝑙 , 𝜉𝑘𝑙) (9) 

However, 𝐺𝐸𝑉(𝑦; 𝜇, 𝜎, 𝜉)  takes 0  when 1 + 𝜉
𝑦−𝜇

𝜎
< 0 , and in 

this case 𝐿1 diverges to infinity. Since the gradient of 𝐿1 is zero in 

this case, it is no longer possible to learn parameters based on 𝐿1 

for data points where 1 + 𝜉𝑘𝑙
𝑦𝑘𝑙−𝜇𝑘𝑙

𝜎𝑘𝑙
< 0 . During the learning 

process, such cases often occur and lead to the failure of learning. 

Therefore we introduced another loss 𝐿2 so that 1 + 𝜉𝑘𝑙
𝑦𝑘𝑙−𝜇𝑘𝑙

𝜎𝑘𝑙
>

0 for all data points. The 𝐿2 is defined as: 

𝐿2 = ∑max (−1 − 𝜉𝑘𝑙
𝑦𝑘𝑙 − 𝜇𝑘𝑙
𝜎𝑘𝑙

, 0)

𝑛

𝑘=1

 (10) 

Thus, the objective function 𝐿 to be minimized in the proposed 

method is written as follows, with 𝜆 as a hyper-parameter. 

𝐿 = 𝐿1 + 𝜆𝐿2    (11) 

The proposed method minimizes this loss function using Adam 

[19] to learn parameters. 

4. Experiments 

We performed computational experiments to verify the 

performance of our proposed method. In this section, we describe 

the experiment setting and present the empirical results. The 

experiments are conducted on two artificial datasets and two real 

datasets. We compared our model with GRU and TPA-LSTM 

[27] as a baseline. 

4.1 Datasets 

We use two artificial datasets and three real-world datasets. 

 Artificial dataset 1: The original artificial dataset 

created by adding noise arising from a Student’s t-

distribution to a sinusoidal wave shown in Figure 2. 

Maxima were sampled with periods 24 points in length. 

The training data are for 0 - 6000, validation data are for 

6000 - 8000, and test data are for 8000 - 10000. 

 Artificial dataset 2: The original artificial dataset for an 

example of a case in which the distribution of data 

widely changes. We created the dataset by adding noise 

alternating between a normal distribution and a 

Student’s t-distribution to base values that ascend and 

descend alternately. These data are shown in Figure 3. 

 Unazuki Reservoir dataset: Water inflow data of 

Unazuki Reservoir and the precipitation at four points 

around Unazuki Reservoir [1]. We used this 5-

dimensional data as input and the maxima of inflow 

over the following 24 hours as a target. The training 

data are for May 1, 2016 – April 30, 2017, validation 

data are for May 1, 2017 - July 31, 2017, and test data 

are for August 1, 2017 - December 31, 2017. 

  Miyagase Reservoir dataset: Inflow data of Miyagase 

Reservoir [2] similar to Unazuki Reservoir dataset. The 

training data are for January 1, 2016 -December 31, 

Figure 1 Illustration of proposed prediction process. Taking multivariate time series 𝑿𝒌𝒍 as input, it 

predicts the distribution parameters 𝝁𝒌𝒍, 𝝈𝒌𝒍, 𝝃𝒌𝒍 of the distribution of a future block maximum 𝒚𝒌𝒍.  



  

 

 

2017, validation data are for January 1, 2018 - 

December 31, 2018, and test data are for July 1, 2019 - 

December 27, 2020. 

  Energy dataset: Data of energy consumption in a low-

energy building [5]. We used 27-dimensional data 

without energy use for lighting as input and the maxima 

of appliances’ energy consumption over the following 

an hour as a target. The Energy consumption data and 

its histogram are shown as Figure 4, which shows that 

the energy consumption is not normally distributed. The 

training data are for January 11, 2016 - March 10, 2016, 

validation data are for March 11, 2016 - April 10, 2016, 

and test data are for April 11, 2016 - May 27, 2016. 

4.2 Experimental Settings  

In this experiment, the goal of prediction task is predicting 

maximum value in the future 24 hours. We used GRU for 

comparison of results of the artificial datasets. For the real-world 

datasets, the TPA-LSTM method was used in addition to GRU as 

a baseline. 

Our method can directly predict the maximum distribution, but 

cannot predict maximum itself. Therefore, we picked a mode 

value of the predicted GEV distribution as a representative value 

of predicted maxima. On the other hand, GRU and TPA-LSTM 

are methods to predict output sequence from input sequence. 

There are two ways to predict future maxima using these sequence 

to sequence method: picking up the maxima from predicted 

sequence or predicting maxima directly. In picking up ways, GRU 

and TPA-LSTM predict future 24 hours’ sequence, and then we 

pick up the maximum of the predicted sequence. We call results 

of this way as GRUPU and TPA-LSTMPU. In the other way, GRU 

and LSTM predict maxima of future sequence directly. The 

results of this directly way are shown as GRUDirect and TPA-

LSTMDirect. GRUs and our method have one hidden layer and the 

number of hidden units is selected from [10,25,50]. We employed 

ADAM for the optimization, which learning rate is selected from 

  
(a) Artificial Dataset 1. (b) Block Maxima of the artificial dataset 1. 

  
  

  
  

  
  

  
  

 

 

 

 

 

Figure 2 Artificial dataset 1. Student’s t-distribution noise is added on a sine wave. (a) Raw data of artificial dataset 1. Blue line 

shows the value of the data set, its orange line shows the maximum values for each period of length 24, and the red shading shows 

intervals between 1st to 99th percentiles of the GEV distribution of maxima. (b) Series of maxima over periods of length 24 from 

artificial dataset 1. 

  
(a) Artificial Dataset 2 (b) Block Maxima of the artificial dataset 2. 

  

  

 

Figure 3 Artificial dataset 2. Normal distribution noise is added on an ascending period and Student’s t-distribution noise is 

added on descending period. (a) Raw data of artificial dataset 2. Blue: the value of the data set. Orange: the maximum values for 

each period. Red shading: intervals between 1st to 99th percentiles of maxima. (b) Series of Maxima taken from artificial dataset 

2. 

    
(a) Example of energy 

consumption data of Energy 

Dataset. 

(b) Histogram of energy 

consumption data. Normal 

distribution, and Log-normal 

distribution are fitted and 

plotted as colored lines. 

Figure 4 Energy Dataset.  



  

 

 

 

[0.1, 0.01, 0.001]. These hyper-parameters are selected by grid-

search using validation data. 

4.3 Results 

We evaluate the performance of the proposed method and 

benchmarks using MAE between the maxima of real data and 

predicted maxima. We report the results of datasets in Table 1.  

We confirmed that proposed method can predict GEV 

parameters accurately using artificial datasets results. We 

visualized the predicted distribution of the future maxima and its 

parameters for artificial datasets. For artificial dataset 1, the 

prediction results by the proposed method are shown in Figure 5a. 

The predicted values of the parameters μ, σ, ξ for this dataset are 

shown in Figure 5b. The proposed method can estimate these 

parameters with RMSE 0.91 for μ, 0.013 for σ, and 0.016 for ξ. 

The result of artificial dataset 2 is shown in Figure 6a, b. For this 

dataset, RMSE of predicted parameters is 1.35 for μ, 0.072 for σ, 

and 0.034 for ξ. These results show that the proposed method can 

predict the GEV parameters along changes of the true parameters. 

Although the accuracy of the estimation of the distribution 

parameters is not yet sufficient and remains an issue for future 

work, we confirm that our method can detect the variation of 

future GEV distribution. 

For real-world dataset, we visualize the result for the Energy 

dataset in Figure 7. Although predictions of GRUDirect are high in 

the case of real value of less than 0, our proposed method can 

Table 1 MAE of predicted values 

 GRUPU GRUDirect TPA-LSTMPU TPA-LSTMDirect Proposed method 

Artificial 1 3.85 2.69 - - 2.23 

Artificial 2 2.75 1.51 - - 1.17 

Unazuki 0.702 0.497 0.568 0.661 0.444 

Miyagase 0.653 0.385 0.431 0.368 0.379 

Energy 0.972 0.879 0.964 0.792 0.761 

 

  
(a) Predicted distribution for the 

test data of artificial dataset 2. 

(b) Predicted parameters of μ 

(blue), σ (orange), ξ (green) and 

their true value (dashed line). 

  
(c) Predicted values of GRUPU. (d) Predicted values of 

GRUDirect 

Figure 6 Results of the proposed method for the artificial 

dataset 2. 

  
(a) Predicted distribution for 

the test data of artificial 

dataset 1. 

(b) Predicted parameters of μ 

(blue), σ (orange), ξ (green) and 

their true value (dashed line). 

  
(c) Predicted values of 

GRUPU. 

(d) Predicted values of 

GRUDirect 

Figure 5 Results of the proposed method for the artificial 

dataset 1. 



  

 

 

predict the mode correctly. It seems to have learned too much 

about high values. Our method can avoid this problem and 

correctly predict both high maxima and low maxima. 

5 Discussion 

Results of GRUPU and GRUDirect indicate that picking-up approach 

cannot predict maxima. In the results for the artificial datasets, 

their predictions are close to the original signals before adding 

noise to create the artificial datasets rather than the maxima of 

noised signals. The direct approach can predict maxima more 

correctly because they are trained using only maxima as target 

data so that the imbalance of extremes and non-extremes are 

improved somewhat. This property is confirmed also in the results 

of real-world data. TPA-LSTMDirect also has this property.  

Compared to direct approach of baselines, Figure 5 and Figure 6 

shows that our proposed method can predict maxima more 

correctly even if the data do not follow a normal distribution. The 

result of artificial dataset 2 indicates that although GRUDirect can 

predict on the period of ascending values with normal distribution 

noise, it cannot predict correctly on the period of descending 

values with t-distribution noise. We consider that this is because 

the maxima distribution of the former period is closer to normal 

distribution than that of the latter period; since the GRUDirect with 

RMSE loss can handle normal distribution data, it is better at 

maxima distribution from normal distribution noise. When the 

number of data points are small, the maxima distribution does not 

sufficient follow the GEV, so that GRU can predict maxima in 

this case. However, they cannot predict maxima and cannot 

capture decreasing trend on the latter period because GRU with 

RMSE cannot handle heavy tail distribution such as t-distribution. 

On the other hand, our proposed method can predict both of the 

former period and latter period. The proposed method maintains 

similar distribution parameters in the latter period, which implies 

that the loss function based on GEV distribution is less affected 

by the peak value generated by the t-distribution. This property is 

consistent with what was claimed in the previous study [11], and 

we believe that the proposed method has an advantage on extreme 

prediction of heavy tail distribution data. 

The similar phenomenon was confirmed in the Energy, Unazuki 

Reservoir and Miyagase Reservoir datasets and also in artificial 

 
(a) Predicted maxima distribution of the proposed method for the test data. Mode (blue), 10th percentile (orange), 90th 

percentile (green), interval between 10th and 90th percentiles (yellow shade) and real data (black). 

 
(b) Predicted values by GRUDirect (blue) and real data value (black) for the test data. 

Figure 7 Results for Energy dataset. 

 



  

 

 

 

dataset 1. For these datasets, prediction values of GRU and TPA-

LSTM tend to have a small range of change and cannot keep up 

with actual data, which changes intensely at extremes. This is 

because they tend to be affected by large values of extremes, 

which has a too small number of samples to learn patterns of 

change. This weakness results in failure of prediction that 

predicted values are higher than actual non-extremes and lower 

than actual extremes. These results indicate that the EVT-based 

approach is valid for deep learning to improve the prediction for 

block maxima of real data. 

However, it can be confirmed that a problem remains 

concerning proposed method with respect to the estimation 

accuracy of the distribution parameters. We can point out the 

possibility that the length of the period over which the maximum 

is taken is too short for maxima to follow GEV distribution. On 

the other hand, if a long period is assumed, there may be cases in 

which the distribution varies greatly within the period. In addition, 

increasing the number of data per period leads to a decrease in the 

number of maxima. This leads to a decrease in the amount of 

supervisor data that can be used for training, which causes 

overfitting. To avoid this, in future work we intend to consider 

improvement by suppressing the time variation of the hidden state 

of the GRU so that the predicted GEV changes more slowly, as in 

slow feature analysis (SFA) [30]. 

6 Conclusion 

In this work, we set up the novel problem of predicting the 

maximum value of time series data in a certain period in the future. 

For practical use it can be unnecessary to predict the exact timing 

of extremes, and we tackle alleviated problem of predicting 

maxima on period of certain length. 

We proposed a method to predict maxima by GEV distribution 

and GRU to solve this problem. Learning parameters using GEV 

distribution-based loss function often fail because GEV 

distribution is positive in a limited area of parameter value. 

Therefore, we introduce a new loss function for the objective 

function. 

In an experiment using an artificial dataset, it was confirmed 

that the proposed method can detect the dynamics of maxima 

distribution, and that it is applicable to non-stationary time series 

extreme value prediction. In experiments using real data, it was 

confirmed that, in the case of using the modes of predicted 

distribution as predicted values, it is more accurate than GRU, a 

commonly used deep learning method. It may have potential for 

application to a wide variety of data. 

On the other hand, the accuracy of parameter estimation is not 

yet sufficient. One of the causes is considered to be that the length 

of periods over which maxima are taken is too short for maxima 

to follow GEV distribution. In future work, we consider to 

employing the concept of SFA in GRU to improve estimation. 
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