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ABSTRACT
Dynamic time warping (DTW) is an effective dissimilarity measure
in many time series applications. Despite its popularity, it is prone
to noises and outliers, which leads to singularity problem and bias
in the measurement. The time complexity of DTW is quadratic
to the length of time series, making it inapplicable in real-time
applications. In this paper, we propose a novel time series dissimi-
larity measure named RobustDTW to reduce the effects of noises
and outliers. Specifically, the RobustDTW estimates the trend and
optimizes the time warp in an alternating manner by utilizing our
designed temporal graph trend filtering. To improve efficiency, we
propose a multi-level framework that estimates the trend and the
warp function at a lower resolution, and then repeatedly refines
them at a higher resolution. Based on the proposed RobustDTW,
we further extend it to periodicity detection and outlier time series
detection. Experiments on real-world datasets demonstrate the su-
perior performance of RobustDTW compared to DTW variants in
both outlier time series detection and periodicity detection.
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1 INTRODUCTION
Nowadays, time series (TS) signal processing and mining have re-
ceived lots of research interests [2, 14, 16]. Among them, dynamic
time warping (DTW) [25, 26, 28, 36, 37] is a popular method to
compute the dissimilarity between two TS by finding the optimal
alignment. It has been widely employed in many tasks involving
distance computation such as TS similarity search [27], outlier
detection [5, 12], clustering and classification [17], periodicity de-
tection [13], etc. Due to its simplicity and versatility, it has been an
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effective tool in many areas, including speech recognition, signal
processing, machine learning, and bioinformatics, etc.

Although DTW solves the time warping problem, it suffers from
some limitations. Firstly, in practice time series data is often con-
taminated by noises and outliers. The DTW only considers the
stretching or shrinking along the time axis but ignores to handle
noises and outliers in the value axis, which may bias the distance
between time series and lead to the singularity problem where a
single point in one TS is mapped to a large subsection in the other
TS. The robustness of time series distance is crucial in many time
series applications, such as outlier time series detection and peri-
odicity detection. For example, in outlier TS detection the goal is
to identity outlier TS different from others. In this scenario, some
sporadic noises or outliers in a normal time series may significantly
increase the distance between it and others using DTW, and thus
reporting a false positive outlier TS. Secondly, the time and space
complexity of DTW are quadratic to the length of TS. This make
it difficult to be applied in long sequence analysis. Recently, some
works [11, 15, 18, 21, 29] are proposed to deal with either singularity
or complexity problem. However, existing methods cannot robustly
and efficiently address both challenges simultaneously.

In this paper, we propose a novel dissimilarity measure called
RobustDTW, which addresses the aforementioned challenges. To
handle the noises and outliers in TS, we propose a general temporal
graph trend filtering to estimate the true signal. Compared with
classical DTW and its variants, in RobustDTW we optimize the
time warp function and perform the trend filtering simultaneously.
To further accelerate computation, we propose a multi-level frame-
work to learn the time warp function and perform trend filtering
recursively. We perform downsampling recursively to get different
levels of representations of TS. Then we start from a lower resolu-
tion representation to calculate the time warp function. And the
noises and outliers are handled properly by the proposed temporal
graph trend filtering, where the graph is constructed based on the
learned time warp function. Meanwhile, the singularity problem is
mitigated in this multi-level framework. To the best of our knowl-
edge, this is the first paper to design a general temporal graph trend
filtering extended for time warping, which is further incorporated
into a novel multi-level framework for efficient computation.

To demonstrate the effectiveness of RobustDTW, we apply it
in outlier time series detection by identifying abnormal TS given
a set of TS. By integrating the proposed RobustDTW with the
popular local outlier factor (LOF) algorithm [8, 22, 31], we can
successfully identify these abnormal TS from noisy data. To further
justify our proposed RobustDTW algorithm, we also extend it to the
periodicity detection task. Empirically it outperforms state-of-the-
art periodicity detection algorithms [24, 30, 34], as it can robustly
handle non-stationary TS with noises, outliers, and complicated
periodic patterns.

https://doi.org/10.1145/1122445.xxxx
https://doi.org/10.1145/1122445.xxxx


ACM ’22, XX. xx–xx, 2022, USA anonymous, et al.

2 RELATEDWORK
One issue of the DTW is the singularity introduced by noises and
outliers in time series. To mitigate this problem, the derivative
DTW [20] is proposed to compute the shape information by consid-
ering the first derivative of the sequences. Recently, [11] proposes
to compute the optimal time warp function by solving an optimiza-
tion problem which considers the misalignment of time warping
with two penalization terms for the cumulative warping and the
instantaneous rate of time warping. In [21], an adaptive constrained
DTW is proposed by introducing two adaptive penalties to mitigate
the singularity problem. Another issue of classical DTW algorithm
is the quadratic time and space complexity which makes it a bot-
tleneck in many applications. To mitigate this problem, the most
widely used one is FastDTW [29], which is an efficient approximate
algorithm with linear time and space complexity. It adopts a multi-
level approach to compute the optimal time warp function, from
the coarsest level and refine it repeatedly. Similar works consider
applying wavelet transform in the multi-level framework can be
found in [3, 15, 18]. Another way to speed up DTW is to use search-
ing constraints. In [19], the small constraint and lower bounding
are utilized to skip some computation in DTW. Some empirical
comparisons are reported in [35]. Generally, when the length of
time series is relatively small (less than several thousands), and
the warping path is close to the diagonal path, the constrain-based
methods outperforms. However, as the time series length increases
and the warping path deviate significantly, the multi-level methods
are better choices [29]. Besides, some recent works extend DTW
to differentiable versions like Soft-DTW [10] and DP-DTW [9],
which can be integrated into deep learning networks. Note that
we are not dealing with differentiable DTW in this paper. Instead,
also different from excising work focusing on either mitigating the
singularity problem or reducing time and space complexity, we aim
to solve both problems in one-shot, which are also illustrated in
periodicity detection and outlier time series detection applications.

3 METHODOLOGY
3.1 Proposed RobustDTW Algorithm
To make DTW robust to noise and outliers while preserving its
flexibility of dynamic index matching, we employ the robust trend
to filter out the noises and outliers. Specifically, we propose to
estimate the time warp function and detrend TS in an alternating
manner. We iteratively conduct the following operations: (1) fix the
time warp function and estimate the detrended TS 𝑢 and 𝑣 ; (2) fix
the estimated detrended TS 𝑢 and 𝑣 , and estimate the time warp
function 𝜑 (𝑡) based on 𝑢 and 𝑣 .

To speed up the computation of RobustDTW, we utilize the sim-
ilarity of the shapes and alignments of TS pairs among different
resolutions, and combine alternating of DTW align adjustment and
trend estimate with the progress from low resolution to high resolu-
tion. During this multi-level progress, low resolution trend results
are the starting values for high resolution estimation, as low resolu-
tion index alignment can suggest the constraint of path searching
space for high resolutions. We summarize the detailed procedure of
the proposed RobustDTW algorithm in Alg. 1, followed by detailed
description of each step.

Algorithm 1 RobustDTW with Multi-Level Framework

Input: x, y, input TS; 𝜆 𝑗
𝑖
regularization parameter configurations;

𝑡 , iteration times; 𝑟 , radius.
Output: normalized RobustDTW distance.

Step 1:Robust self-detrending: apply robust trend filter on x,
y, respectively, to get u, v as the filtered trend components.
Step 2:Multi-Level Representation: recursively downsample
u and v, and record the intermediate results.
Step 3:Projection and Upsampling: in the first iteration, run
FastDTW [29] to get warping path and use the highest level
downsampled u and v as initial trend estimates; otherwise, per-
form upsample trend estimates and project DTW warping path
with from previous level to current level.
Step 4:Time Warping Alignment: refine warping alignment
by DTW with projected constraint from step 3.
Step 5:Temporal Graph Detrending: generate graph from up-
dated warping from Step 4 and refine graph detrending with
updated trend estimates.
Step 6: Iterative Processing: repeat Steps (3)-(5) until lowest
level to return normalized RobustDTW distance.

Step 1: Robust Self-Detrending
To roughly remove the effects of outliers and noise, we first adopt
robust trend filtering for individual TS. Let denote the TS of length
𝑛 as y = [𝑦1, 𝑦2, · · · , 𝑦𝑛]𝑇 , which can be decomposed into trend
and residual components [1]

𝑦𝑡 = 𝜏𝑡 + 𝑟𝑡 or y = 𝝉 + r (1)

where 𝝉 = [𝜏1, 𝜏2, · · · , 𝜏𝑛]𝑇 denotes the trend component, and r =
[𝑟1, 𝑟2, · · · , 𝑟𝑛]𝑇 denotes the residual component, which contains
noises and outliers. Motivated by the RobustTrend filter [33], the
trend components of the two input time series x and y can be
robustly obtained by the following self-detrending model

u = argmin𝑢 𝑔𝛾 (x, u) + 𝜆self1 | |D(1)u| |1 + 𝜆self2 | |D(2)u| |1,

v = argmin𝑣 𝑔𝛾 (y, v) + 𝜆self1 | |D(1)v| |1 + 𝜆self2 | |D(2)v| |1,
(2)

where 𝑔𝛾 (x) =
∑
𝑖 𝑔𝛾 (𝑥𝑖 ) is the summation of elementwise Huber

loss function with each element as

𝑔𝛾 (𝑥𝑖 ) =
{
1
2𝑥

2
𝑖
, |𝑥𝑖 | ≤ 𝛾

𝛾 |𝑥𝑖 | − 1
2𝛾

2, |𝑥𝑖 | > 𝛾
. (3)

And the𝐷 (1) ∈ R(𝑁−1)×𝑁 and𝐷 (2) ∈ R(𝑁−2)×𝑁 are the first-order
and second-order difference matrix, respectively:

D(1) =


1 −1

1 −1
. . .

1 −1


, D(2) =


1 −2 1

1 −2 1
. . .

1 −2 1


.

Note that the Huber loss in the self-detrending model (2) brings
robustness to outliers, while the two spare L1 regulations in (2)
captures both slow and abrupt trend changes.
Step 2: Multi-Level Representation
Multi-level representations is achieved by downsampling filtered
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trend TS from Step 1 by factor of 2 iteratively as follows

uℓ−1
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
−−−−−−−−→ u↑

ℓ−1 = uℓ , vℓ−1
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
−−−−−−−−→ v↑

ℓ−1 = vℓ (4)

where u1 = u, v1 = v, ℓ = 1, 2, ..., 𝑡 . This procedure is conducted
until the level 𝑡 representation is obtained, where 𝑡 is the total
levels in the framework. Note that higher level representations
correspond to lower resolution TS.
Step 3: Projection and Upsampling
Starting from level 𝑡 TS, call FastDTW [29] to get warping index
alignment 𝝅𝑡 and use current level representations as the base trend
estimation. In the subsequent iterations, upsample previous level’s
warping path (𝝅 ℓ ) by 2 and add extra searching width defined by
parameter radius 𝑟 to generate the searching constraint, which is
called projection. That is

𝝅 ℓ

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
−−−−−−−−→ 𝝅 ↑

ℓ
, A(u, v)ℓ−1 = {path set|center 𝝅 ↑

ℓ
, radius 𝑟 }.

Step 4: Time Warping Alignment
Refine the warping path by running DTW with projected warping
constrain (A(u, v)ℓ−1) to obtain the time warp function (𝜑 (𝑡)) and
path (𝝅 ℓ−1) at current level as

𝝅 ℓ−1, 𝜑 (𝑡) = min
𝝅 ∈A(u,v)ℓ−1

√︄ ∑︁
(𝑡,𝜑 (𝑡 )) ∈𝝅

𝑑 (𝑢𝑡 , 𝑣𝜑 (𝑡 ) )2 . (5)

Step 5: Temporal Graph Detrending
In this step, we aim to estimate the detrended TS u and v more
accurately by considering not only its neighbors within itself but
also its similar peer time series. Let 𝐺 = (𝑉 , 𝐸) be an graph, with
vertices 𝑉 = {1, · · · , 𝑛} and undirected edges 𝐸 = {𝑒1, · · · , 𝑒𝑠 },
and suppose that we observe y = [𝑦1, · · · , 𝑦𝑛]𝑇 ∈ 𝑅𝑛 over each
node. Similarly, the 𝑘th order graph trend filtering estimates 𝝉 =

[𝜏1, · · · , 𝜏𝑛]𝑇 can be obtained by solving:

argmin𝜏 ∈𝑅𝑛

1
2
∥y − 𝝉 ∥22 + 𝜆∥Δ(𝑘+1)𝝉 ∥1, (6)

where Δ(𝑘+1) is the graph difference operator of order 𝑘 + 1. When
𝑘 = 0, the 1st order graph difference operator Δ(1) penalizes all
local differences on all edges as ∥Δ(1)𝝉 ∥1 =

∑
(𝑖, 𝑗) ∈𝐸 |𝜏𝑖 − 𝜏 𝑗 |. We

can represent Δ(1) in a matrix form as Δ(1) ∈ {−1, 0, 1}𝑠×𝑛 where
𝑠 = |𝐸 |, i.e., number of edges. Specifically, let 𝑒ℓ = (𝑖, 𝑗), then Δ(1)

has the ℓth row as Δ(1)
ℓ

= [0, · · · ,−1, · · · , 1, · · · , 0], i.e., Δ(1)
ℓ

has -1
at the 𝑖th position, and 1 at the 𝑗 th position. Similar to trend filtering
on univariate TS, we can define the higher order graph difference
operators recursively. In particular, the graph difference operators
defined above reduce to the ones defined on the univariate TS in
which 𝑉 = {1, 2, · · · , 𝑛} and 𝐸 = {(𝑖, 𝑖 + 1) : 𝑖 = 1, 2, · · · , 𝑛 − 1}.

In this paper, we design a general temporal graph detrending for
multivariate TS by extending the idea of the graph-based detrending
in Eq. (6). The key idea is to incorporate the relationship between TS
in detrending which can also deal with the lagging effect adaptively.
Another distinguishing feature is that we introduce weight for
each edge in the graph, instead of only allowing binary weight
as in [32]. Specifically, we construct the graph of two TS based
on the alignment at step 4. In the constructed graph 𝐺 , we have
𝑚 + 𝑛 vertices, and each vertex corresponds to a time point in
x ∈ 𝑅𝑚 and y ∈ 𝑅𝑛 . For notation simplicity, we denote the set of
vertices as 𝐸 = {𝑥1, 𝑥2, · · · , 𝑥𝑚, 𝑦1, 𝑦2, · · · , 𝑦𝑛}. Next, we describe

Figure 1: Illustration of the graph construction between two TS of
the RobustDTW. Each data points are connected not only to their
neighbors in the same TS but also to their peers of the other TS
which are aligned by DTW. The time stamps on x are 𝑡 − 1, 𝑡 , 𝑡 + 1,
and 𝜑(t) is the mapping of index from x to y. So the aligned points
are 𝑡 − 1, 𝑡 , 𝑡 + 1 on x to 𝜑 (𝑡 ) − 1, 𝜑 (𝑡 ) , 𝜑 (𝑡 ) + 1 on y.

how to construct edges and their corresponding weights. Firstly,
each vertex 𝑥𝑡 is connected its left neighbor 𝑥𝑡−1 and right neighbor
𝑥𝑡+1. Secondly, 𝑥𝑡 should be connected to its peer in y, i.e., 𝑦𝜑 (𝑡 ) .
Thirdly, to avoid errors introduced in DTW of step 4, we construct
more edges to improve robustness. For the edge 𝑥𝑡 ↔ 𝑦𝜑 (𝑡 ) , we
introduce additional 4 edges, including 𝑥𝑡 ↔ 𝑦𝜑 (𝑡 )−1, 𝑥𝑡 ↔ 𝑦𝜑 (𝑡 )+1,
𝑥𝑡−1 ↔ 𝑦𝜑 (𝑡 ) , 𝑥𝑡+1 ↔ 𝑦𝜑 (𝑡 ) , as illustrated in the Fig. 1. Note that
in Fig. 1 we only consider the direct one neighbor of 𝑥𝑡 and 𝑦𝜑 (𝑡 ) .
In practice, we can increase the size of the neighborhood based on
the noises and outliers of data accordingly.

After constructing the graph 𝐺 for a pair of TS, the designed
temporal graph detrending is computed as:

u,v=argmin
u,v

1
2
∥w− [x; y] ∥22+𝜆

GD
1 ∥𝐷 (1)

G w∥1+𝜆GD2 ∥𝐷 (2)
G w∥1, (7)

where w = [u; v] is the concatenate of input u and v, 𝐷 (1)
G and

𝐷
(2)
G are the 1st and 2nd graph difference operators used to capture

abrupt and slow trend changes. Note that both self-detrending (2)
and temporal graph detrending (7) can be efficiently solved by the
alternating direction of multipliers (ADMM) algorithm [7].
Step 6: Iterative Processing
To achieve better performance, we repeat Steps 3 to 5 to update
the time warp function and the trend estimates until convergence.
In our empirical studies, we found that three iterations are often
enough for convergence. Furthermore, when we compute the time
warp function in the higher resolution, we use the time warp func-
tion computed in the previous step as the initialization, which
significantly reduces computational complexity.

4 EXPERIMENTS AND APPLICATIONS
4.1 Setting and Efficiency Comparison
For the parameter setting of RobustDTW, we have the following
results. For self-trend filtering, the larger 𝜆1 and 𝜆2 would yield
a smoother trend. It is observed that 𝜆1 and 𝜆2 in trend filtering
are relatively insensitive. For the 𝛾 in Huber loss, its value is fixed
with 1 as the common value used in literature. In temporal graph
detrending, the setting of 𝜆1 and 𝜆2 brings similar behavior as that in
self-trend filtering. For the total number of iteration (the number to
repeat steps (3)-(5)), 3 iterations are often enough for convergence.

To evaluate the efficiency, we summarize the average running
time in log scale of DTW, FastDTW, and proposed RobustDTW in
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Figure 2: Running time (in log scale) comparison of DTW,
FastDTW, and the proposed RobustDTW under different
lengths of time series.

Fig. 2 with synthetic datasets. The synthetic TS are single period of
a sine wave with random noise and length varies from 26 to 213. The
experiment is performed on a PCwith 2.3GHz Intel Core i5 CPU and
16GB RAM. It can be observed in Fig. 2 that the computational time
of the standard DTW increases rapidly as the length of TS increases.
Due to the proposed multi-level framework, our RobustDTW is
significantly efficient than the standard DTW, especially for long
time series. Although RobustDTW is slower than FastDTW, the
speed of RobustDTW is reasonable for most time series application
and we will demonstrate later that the proposed RobustDTW is
more robust than FastDTW and exhibits much better performances
in both outlier time series detection and periodicity detection.

4.2 Outlier Time Series Detection
The purpose of outlier TS detection is to find one or more abnormal
TS compare to other peers [6]. In this experiment, we test the the
popular local outlier factor (LOF) algorithm [8, 22, 31], which finds
outliers by measuring the local deviation of a given data point with
respect to its neighbors, with different distance measures for out-
lier time series detection. We collected two real-world multivariate
TS datasets from a top cloud computing company which are the
measurement of the API response time (RT) and network speed
(NetSpd) of two clusters, respectively. Specifically, The dataset “RT"
contains 294 TS and 1 of them are outliers; and the “NetSpd" dataset
contains 486 TS and 6 of them are outliers. We apply the LocalOut-
lierFactor function [23] from scikit learn package to conduct LOF
step for anomaly detection. For all different distance measures the
hyper-parameters of LOF are tuned to get best performance, where
the number of neighbors is set to be 30 and contamination is 0.02.

Table 1 compares the AUC scores of LOF algorithm with differ-
ent distance measures, including Euclidean Distance (ED), standard
DTW, FastDTW, and our RobustDTW, under different noise condi-
tions, i.e, raw datasets, datasets with injected dips, datasets with
injected spike, and datasets with injected both spike and dips. The
standard DTW performs the second best, while FastDTW achieves
fast computation at the cost of worse accuracy. In contrast, our
RobustDTW achieves the best performance consistently.

4.3 Time Series Periodicity Detection
Many TS are characterized by repeating cycles, or periodicity. Pe-
riodicity detection aims at discovering the repeating patterns in
TS. The periodicity detection is a nontrivial task [30, 34] given

Table 1: Comparison of AUC scores of outlier detection via
LOF with different distance measures and noise conditions.

Dataset Noise level ED DTW FastDTW RobustDTW

RT

raw data 0.887 0.986 0.949 0.997
+ dips 0.811 0.965 0.918 0.996

+ spikes 0.362 0.939 0.775 0.972
+ spikes & dips 0.317 0.580 0.655 0.969

NetSpd

raw data 0.674 0.982 0.917 0.988
+ dips 0.635 0.849 0.649 0.982

+ spikes 0.642 0.915 0.874 0.975
+ spikes & dips 0.508 0.627 0.616 0.938

Figure 3: Real-world TS examples from cloud monitoring
with complex patterns for periodicity detection. The TS in
top three rows are periodic while the bottom ones are with-
out periodicity. These time series have challenging noise,
outliers, and/or trend changes.

complicated TS, e.g., non-stationary, sudden trend change, noise
and outliers, as shown in Fig. 3. Here we focus on dominant peri-
odicity detection, where domain experts generally have the prior
knowledge about the period length (𝑇 ) if the TS are periodic.
RobustDTW-based Slicing Algorithm:
In this part we propose a slicing algorithm to determine whether
a given TS has a prior period of 𝑇 or not. This algorithm first de-
trends and normalizes input TS data, removes outliers, and then
slices the TS into multiple segments with equal length of 𝑇 . Next
we calculate distance between adjacent segments using Robust-
DTW. For detrending, we apply the robust trend filtering [33] to
remove the global trend which is useful for non-stationary TS. For
normalization, all TS are normalized by subtracting median and
then dividing by the biweight scale. Note that median and biweight
scale are more robust to noise and outliers compared to mean and
standard deviation. The biweight scale [4] is calculated as

𝜉𝑏𝑖𝑠𝑐𝑙 =

√︃
𝑛
∑

|𝑢𝑖 |<1 (𝑥𝑖 −𝑀)2 (1 − 𝑢2
𝑖
)4
/√︃∑

|𝑢𝑖 |<1 (1 − 𝑢2
𝑖
) (1 − 5𝑢2

𝑖
),

where 𝑥 is the input data, 𝑀 is the sample median, 𝑢𝑖 = (𝑥𝑖 −
𝑀)/(𝑐 ∗𝑀𝐴𝐷) with 𝑐 as the tuning constant typically set to be 9.0,
and MAD is the median absolute deviation. After that, to further
reduce the influence of outliers (such as the segment deviation due
to black Friday), we filter out the outlier distances as determined
by the “1.5×IQR rule” (interquartile range). We then calculate the
mean value of the remaining distances which is sum of squared
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Table 2: Comparison of periodicity detection methods.

Methods Precision Recall F1
ACF 0.960 0.701 0.810

AUTOPERIOD [30] 0.980 0.715 0.827
RobustPeriod [34] 0.920 0.902 0.911

Slicing
ED 0.919 0.800 0.855

DTW 0.911 0.930 0.920
FastDTW 0.873 0.970 0.919

RobustDTW 0.951 0.980 0.966

differences between values that aligned on both time series, as a
measure of periodicity. And a TS is considered has a period of 𝑇 if
the estimated mean value is less than a user-specified threshold.
Periodicity Detection Comparison:
We collect 200 service monitoring time series from a top cloud
computing company. Half of these TS are with daily periodicity.
These TS data exhibit various shapes with challenging noise, out-
liers, and trend changes as shown in Fig. 3. For model evaluation,
we test our algorithm under different distance measures, including
Euclidean distance, standard DTW, FastDTW and our RobustDTW.
We also compare our method with some commonly used periodicity
detection algorihtms such as ACF, as well as the state-of-the-art
AUTOPERIOD [24, 30] and RobustPeriod [34] algorithms. The per-
formancemetrics including precision, recall and F1, are summarized
in Table 2, and the best performance is highlighted in bold. It can
be observed that among all compared methods, our method using
slicing and RobustDTW achieves the best F1 score. We attribute
the advantages of our periodicity detection using RobustDTW to:
1) graph detrending can reduce the pairwise distance significantly
when two TS have similar shape; 2) filtering neighboring distance
can exclude large irregular shapes within one period; 3) robust
normalization using median and biweight scale is insensitive to
outliers and help parameter tuning easier.

5 CONCLUSION
In this paper, we propose a novel RobustDTW measure which
estimates the time warping function and the trend simultaneously
by an alternating approach and further accelerate it in a multi-level
framework. Compared with existing DTW and its variants, it is fast
and robust to noise and outliers. We demonstrate the successful
applications of our RobustDTW algorithm in outlier time series
detection and periodicity detection.
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