
Corrector LSTM: Built-in Training Data Correction
for Improved Time Series Forecasting
YASSINE BAGHOUSSI, INESC TEC, Faculdade de Engenharia, Universidade do Porto
CARLOS SOARES, Fraunhofer AICOS Portugal and LIACC, Faculdade de Engenharia, Universidade do Porto
JOÃO MENDES-MOREIRA, INESC TEC, Faculdade de Engenharia, Universidade do Porto

Errors in the data are an important challenge for predictive ML algorithms.
They have a negative impact on the forecasting accuracy because (a) they
are hard to predict, as they do not necessarily follow a pattern, and (b)
in the recurrent model, they may lead to changes in the model and thus
increasing the errors in future predictions. In this paper, we address the latter
challenge. We introduce corrector LSTM (cLSTM), a variant of LSTM that (a)
detects errors in the data by analysing the hidden states of the LSTM, and
(b) adjusts the training data accordingly. We start by empirically validating
the assumption of the approach, i.e. that the analysis of the hidden states of
LSTM can be used to detect data errors. Additional experiments also confirm
that the approach improves the forecasting accuracy on artificial, NAB, and
M4 Competition data.

CCS Concepts: • Computer systems organization→ Computer Science.

Additional Key Words and Phrases: Time series forecasting, recurrent neural
networks

ACM Reference Format:
Yassine Baghoussi, Carlos Soares, and João Mendes-Moreira. 2022. Corrector
LSTM: Built-in Training Data Correction for Improved Time Series Fore-
casting . In 8th SIGKDD International Workshop on Mining and Learning
from Time Series – Deep Forecasting: Models, Interpretability, and Applica-
tions, Aug 15th, 2022, Washington DC. ACM, Washington DC, USA, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
It is widely admitted that the data quality affects the machine learn-
ing (ML) model performance, and a significant amount of effort is
spent by practitioners on cleaning data before training their models.
The quality of ML models is only as good as the quality of the data
they are trained on. Data cleaning has been essential for building
high-quality ML models. Not surprisingly, both ML and database
communities have been working on low-quality data problems over
the last decades. On the one hand, the database community has
mostly focused on understanding the fundamental data cleaning
process without considering its impact on ML models. On the other
hand, the ML community has been focusing on understanding the
effect of errors such as anomalies, noise, concept drifts etc. on ML
models without actually doing data cleaning [18]. Recently, however,
a few data cleaning techniques have been developed to improve
data quality and so model accuracy. For instance, ActiveClean is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’Milets, Aug 15, 2022, Washington DC
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

framework that iteratively cleans samples of dirty data and updates
the model.
The core idea of recurrent neural networks (RNN) is to allow

passing information from the past to the next observations using
the hidden states. The latter have led RNN to be universal approxi-
mators, data-driven, and able to better capture nonlinear patterns in
data [14]. They have been subject to several improvements both in
usage (e.g. autoencoders) and computation (LSTM [11]). Following
their nature, the learning at each time step is, therefore, influenced
by the previously processed inputs. The computed activations con-
tain Hidden States Dynamics (HSD) which describe the processed
information. When any error or disruption appears in the data, the
performance of the sequential model may be highly affected both
in the currently processed instance and on the following instances.
The error, if it exists, flows through the hidden states. By analyzing
these dynamics, we may detect the disrupting data when it occurs.
Besides anomalies and other statistical problems, sequential algo-
rithms may also be influenced by data that are considered normal
but negatively influences the processing of information.

RNN’s variant, LSTM, has an output gate that contains informa-
tion about how the model processed the data. We focus on analyzing
the dynamics occurring on this gate to detect errors over time. It
will allow us to detect errors in data and reconstruct it accordingly.
The output gate is mainly producing the output of the LSTM cell as
follows:

𝑜𝑡 = 𝜎 (𝑊𝑜 · ℎ𝑡−1 +𝑉𝑜 · 𝑥𝑡 + 𝑏𝑜) (1)

Where𝑊𝑜 is the non-recurrent weight matrix and 𝑉𝑜 is the re-
current weight matrix (also called hidden-to-hidden weights). The
observation 𝑥𝑡 , strongly affects the output gate output. When a nor-
mal observation occurs, the output gate process and pass it to the
following timestamp. Thus, causing a slight change in the current
model. However, when the observation is affected by some errors
in the data generation process, the changes made to the model may
significantly mislead the following observations. In this paper, we
first demonstrate that this phenomenon can be observed in the dy-
namics of the hidden states and can be defined as constant data
error (CDE) flow.
As a solution to this, we propose the corrector LSTM (cLSTM)

algorithm to improve forecasting tasks where the data may be af-
fected by errors. The goal is to render LSTM data-centric. cLSTM
is an LSTM that uses a SARIMA model to predict the activations
of the hidden output gate at each time step. Then, it computes the
similarity between the predicted and the learned activations us-
ing a distance measure. If the distance exceeds a given detection
threshold, an error is detected. The algorithm will immediately start
reconstructing the data at this time step. The data is changed until

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’Milets, Aug 15, 2022, Washington DC Baghoussi, et al.

the distance between the two activations is below a reconstruction
threshold. The latter represents the minimum tolerated distance
between predicted and learned hidden states.
This paper starts by giving state-of-the-art improvements made

on RNN and introducing LSTM. Followed by summarizing existing
work on data reconstruction using RNN. Then, it introduces hidden
states dynamics and corrector LSTM. Finally, the experimental setup
is described, and the results are discussed.
The main contributions of the paper can be summarized as fol-

lows:

(1) It shows that Hidden States Dynamics can be used to improve
data quality;

(2) It presents a method, corrector LSTM, which uses HSD to
detect and reconstruct data to make standard LSTM more
robust;

(3) It shows the validity of the proposed method based on some
empirical results.

2 BACKGROUND
While data collection and quality issues have always been very im-
portant, machine learning research has mainly focused on training
algorithms instead of improving the data. In the industry, a common
complaint [28] is that research institutions spend 90% of their ma-
chine learning efforts on algorithms and 10% on data preparation,
although based on the amounts of time paid, the numbers should be
10% and 90% the other way [33]. More recently, data-centric AI [1]
is becoming popular where the primary goal is not to improve the
model training algorithm but to improve the data pre-processing
for a better model accuracy.

However, as the pre-processing is separated from the model train-
ing. Data quality may still be an issue during model training even
after collecting the right data and cleaning it. It is widely recognized
that real-world datasets are erroneous despite the data cleaning
process ([34]; [25]). These faults in datasets can be grouped depend-
ing on whether data values are anomalies such as (noise, missing
information etc.) and depending on whether these flaws exist in
data features (attributes) or labels.
To combine the data quality with the learning, data cleaning

techniques with the specific purpose of improving model accuracy
have emerged [6]. For instance, ActiveClean is a seminal framework
that iteratively cleans samples of dirty data and updates the model
(see: Figure 1). This framework constrains the changes in the data
to the model feedback. Thus, the data quality is improved according
to the model performance. In [32], authors use prediction errors
to detect anomalies using a threshold. When the model produces
a prediction error of an RNN higher than a threshold, the input
is considered an anomaly. However, this method waits until the
model is trained completely to detect anomalies. While in RNN, an
anomaly can impact future observation, leading to false-positive
alerts. Also, this paradigm is made through two stages (i.e. model
training and anomaly detection).

2.1 Long Short Term Memory
Long-Short Time Memory (LSTM) is a Recurrent Neural Network
(RNN) that can more effectively learn long-term interactions in the

Fig. 1. ActiveClean [15] iteratively selects data that is likely to be dirty and
cleans it.

data. RNNs differ from feed-forward neural networks by the recur-
rent connections, which allow them to learn from sequential data.
They attempt to model and remember temporal dependencies in se-
quences. RNNs have been criticized due to the well-known problem
of vanishing and exploding gradients [10]. These networks are not
suited to learn long term dependencies in a sequence. They are not
effective at learning more than 5 to 10-time steps apart in data [27].
LSTM overcomes this issue by introducing a gating mechanism to
RNN [11]. The input, output, and forget gate give LSTM the ability
to remember and to forget. They are implemented through specific
mathematical transformations (Eq. 2b-2d), producing states known
as hidden, h (Eq. 2g) and cell, c (Eq. 2f) states. These states allow
the network to retain information from previous time steps and
combine it with the current one. As data is fed into the network,
unnecessary information will be declined using a sigmoid func-
tion. The information kept is combined with the new information
entering the network.

𝑖𝑡 = 𝜎 (𝑊𝑖 · ℎ𝑡−1 +𝑉𝑖 · 𝑥𝑡 + 𝑏𝑖) (2a)
𝑜𝑡 = 𝜎 (𝑊𝑜 · ℎ𝑡−1 +𝑉𝑜 · 𝑥𝑡 + 𝑏𝑜) (2b)
𝑓𝑡 = 𝜎 (𝑊𝑓 · ℎ𝑡−1 +𝑉𝑓 · 𝑥𝑡 + 𝑏 𝑓) (2c)

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · ℎ𝑡−1 +𝑉𝑐 · 𝑥𝑡 + 𝑏𝑐) (2d)

𝐶𝑡 = 𝑖𝑡 ·𝐶𝑡 + 𝑓𝑡 ·𝐶𝑡−1 (2e)
ℎ𝑡 = 𝑜𝑡 · 𝑡𝑎𝑛ℎ(𝐶𝑡) (2f)

𝑧𝑡 = ℎ𝑡 (2g)

At each time 𝑡 , a cell receives an input 𝑥𝑡 , together with the
previous hidden state ℎ𝑡−1 and other internal cell data, to produce
the next instances of the hidden and memory states via both feed-
forward and recurrent connections. So, at each time step, the LSTM
cell outputs a hidden state (Eq. 2g) and a cell state (Eq. 2f). The
hidden state ℎ𝑡 can either be the network’s final output or, in the
case of multiple layers, subsequently, be fed to another LSTM cell
(i.e. instead of the 𝑥𝑡). The last hidden vector is often fed through a
linear, fully connected layer to produce the predictions. The output
is a vector of values in sequence learning.

A single LSTM cell cannot handle learning, thus several cells must
be used and organized into a specific network architecture. There
are several common architectures of LSTM. First, the uni-directional
LSTM consists of replacing the recurrent cells in the RNN network
with LSTM cells. The latter architecture is trained in a one-time di-
rection (i.e. forward). [8] introduced the bi-directional LSTM, which

2

Corrector LSTM: Built-in Training Data Correction
for Improved Time Series Forecasting Conference acronym ’Milets, Aug 15, 2022, Washington DC

is trained in both time directions simultaneously. The authors re-
placed recurrent cells in bi-directional RNN network [26] (also called
bi-vanilla) with LSTM cells. This architecture has been shown to
perform better than the feed-forward recurrent network in several
domains such as text translation [19]. Network architectures have
often been necessary to solve particular tasks. For instance, authors
in [31] used LSTM networks to train a sequence to sequence model
(namely seq2seq). This architecture is commonly known as the
encoder-decoder. The encoder is often used to capture the context
of the input sequence, and the decoder uses the hidden states from
the encoder to produce the output sequence. One potential issue
with encoder-decoder is that the encoders need to compress all the
necessary information of a source sample into a fixed-length vector,
making it difficult for the neural network to deal with long samples.
[2] introduced an attention mechanism to preserve the context by
focusing on different parts of the input sequence. There are two
major architectures of attention models Bahdanau’s architecture [2]
and Luong’s architecture [20]. As aforementioned, this has produced
several variants that updated the LSTM cell or changed the network
architecture. With the widespread of interpretable machine learning,
several attempts have been conducted on RNN. They often consider
hidden states analysis for prediction interpretability [29]. Works
in this area can be categorized into two groups: attention methods
and post-analyzing on trained models (e.g. prediction error analy-
sis). Attention methods are mainly applied to hidden states across
time steps and has gained tremendous popularity ([5];[9];[16]; [24];
[29]). These works explore the structure of LSTM recurrent neural
networks to learn variable-wise hidden states. The goal is to cap-
ture different dynamics in multi-variable time series and distinguish
the contribution of variables to the prediction. To the best of our
knowledge, hidden states analysis has not been used to improve
data quality.

2.2 Data-centric Recurrent Neural Network
Data reconstruction is the task of correcting issues present in the
data to help models learn a correct representation of the data. The
data collection process generates various types of faulty data, such
as bias, drift, missing information, or anomalies. Some faults (e.g.
missing data) are relatively easy to detect. In contrast, other faults
(e.g. anomalies) are somewhat difficult to identify. Like any different
forecasting model, Recurrent neural networks are sensitive to faults
in data. Despite this, few works addressed data reconstruction using
RNN. One notable variant of RNN, namely, dLSTM [22], relied on
the predictive errors generated from a model trained on normal
data (i.e. non-anomalous) to detect anomalies. The model use de-
layed prediction errors to measure deviation from the normal state.
The model selects the value closest to the normal state from sev-
eral candidate values to reconstruct this latter. A similar approach
has been used in [13]. However, the prediction errors were derived
from a bi-directional LSTM, which measures past and future corre-
lations between observations. Moreover, other RNN architectures
have also been shown to be effective such as stacked LSTM [21] and
autoencoder [17]. To avoid relying on prior assumptions (i.e. the
distribution of prediction errors), authors in [23] combined an au-
toencoder based on LSTM with a one-class support vector machine

(OCSVM) algorithm to separate anomalies from the data outputted
based on the LSTM autoencoder network. A recent approach [3]
suggests sharing the responsibility of prediction errors between
the network weights and the data. At the end of each epoch, the
computed derivatives are used to alter each observation in the input
sample. Instead of using prediction errors at the end of the training,
this method suggests detecting the model failures (i.e prediction
errors) during the learning. Following this idea, we suggest analyz-
ing hidden states dynamics to detect data samples that lead to the
model failures and reconstruct the data to avoid its influence on
future trained examples, i.e., overall learning.

3 HIDDEN STATES DYNAMICS ANALYSIS
The core assumption of the data reconstruction method proposed
here, cLSTM, is related to the hidden state dynamics. Standard
LSTM networks capture and store information in the hidden states.
LSTM uses this information to predict the future and considers it
correct and relevant. However, input data has situations where it can
mislead the learning of the model and so the predictions. Such is the
case when the training model tries to capture complex components
from the data and includes a set of observations that may not be
suitable for the model. In the worst case, these can negatively affect
the model and decrease the data modelling.

3.1 Hidden States Dynamics
Hidden States Dynamics (HSD) correspond to the changes in the
properties of the hidden state over time [29]. In an LSTM, the dimen-
sion of hidden states vectors corresponds to the number of hidden
units. In other words, at each time step, a cell outputs a hidden state
vector of length equal to the number of hidden units. The analysis of
HSD has been used to interpret RNN’s models, which, similarly to
feed-forward neural networks, are considered a black box. Hidden
states vectors are commonly encoded as a heatmap along the time
axis. This representation has been favoured to view the complete
hidden state vectorsℎ1, ..., ℎ𝑇 . Although effective for interpretability
(especially in a moderate dimensionality), heatmaps suffer limita-
tions when further operations are needed [30]. For instance, with
the increasing dimensionality of hidden state vectors, the heatmaps
scaling becomes unnecessary because they scale the hidden state
values by a colour hue, making it non-effective for extracting the
most important information. Moreover, heatmaps consider a rela-
tive order of hidden states in each vector, but the model does not
consider this particular order. Authors in [30] encode HSD using
the changes of Hidden States values (y-axis) during time (x-axis)
see Figure 2-Left. These changes are regarded as activation signals.
When an LSTM network of 𝑁 hidden units processes a time series,
𝑁 signals are produced at each time step. They are dominated by the
seasonality of length equal to the input length and LSTM size at each
iteration. This seasonality summarizes the information captured
from the input sequence.
Figures-2-top and 2-bottom show the output gate activations

learned from one time series during different periods. As it can be
verified on its corresponding time series on the right, the hidden
output states in Figure 2-top did not report any significant change
in the signal during the time. In Figure 2-bottom, the signal has

3

Conference acronym ’Milets, Aug 15, 2022, Washington DC Baghoussi, et al.

Fig. 2. The time series in the left corresponds to the hidden states values of
two data samples (top and bottom). On the right, we have the corresponding
data samples. Dashed lines correspond to the end of a training iteration of
data sample at a particular time step. Top shows no significant change in the
hidden states values during the time, in the seasonality more particularly. In
bottom, the hidden states have partly changed (red lines). We assume that
this phenomenon corresponds to errors of the current input sequence at the
corresponding time step. The x-axis of the hidden states corresponds to the
input position at each iteration and depends on the input length and LSTM
size, (top) without anomalous behaviour and (bottom) with anomalous
behaviour.

partly changed, in the seasonality more particularly, due to the
influence of the current input sequence at the corresponding time
step. Hidden states (including hidden-to-hidden) signals represent
the data at each timestep followingwhat has been learned previously.
Over time these hidden states change seasonally when the input is
considered normal for the model learning. However, when the input
is unexpected or irrelevant to the model, LSTM is forced to adapt
its learning to it, and that causes a change in the hidden state signal
seasonality as was reported in Figure 2-bottom. Therefore, we can
detect when learning goes wrong by analyzing these signals.

4 CORRECTOR LSTM
To test whether changes in the hidden states dynamics correspond
to errors in the data sample. We propose corrector LSTM. This
LSTM variant analyses the signals as follows: it learns a Seasonal
ARIMA model that forecasts the values of the hidden states at each
time step simultaneously during the learning of LSTM. A naive
approach can substitute this part (i.e., using the previous time step).
cLSTM, then, uses one of the similarity measures to quantify the
difference between the forecast and the actual hidden states signal.
A threshold 𝜎 is used to detect changes in the signal: a similarity
measure higher than 𝜎 informs LSTM of a candidate for reconstruc-
tion. The corresponding point is recognized, and cLSTM starts the
reconstruction.
Let 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑇) be a sequence drawn from a distribu-

tion D𝑑𝑎𝑡𝑎 . At each iteration, a subsequence is observed by LSTM,
which uses that to update all its units through forward-passing and
computes the error signal for all its weights (backward pass). For
a subsequence length of 𝑘 , an observation 𝑥𝑡 is activated by input
and passed to other gates. The output gate over the range [𝑡 − 𝑘, 𝑡]
can be represented as follows:

𝑛𝑒𝑡𝑜𝑢𝑡 =

𝑡∑︁
𝑝=𝑡−𝑘

𝜎 (𝑊𝑜 · ℎ𝑝 +𝑉𝑜 · 𝑥𝑝+1 + 𝑏𝑜) (3)

where𝑊𝑜 is the hidden-to-hidden weight matrix associated with
gate 𝑜 . 𝑉𝑜 is the non-recurrent weight of the LSTM.𝑊𝑜 and 𝑉𝑜 are
updated after each iteration. An iteration consists of a forward pass
and a backpropagation cycle. If an anomalous behaviour occurs at
time step 𝑡 , a constant data error (CDE) will gradually flow over
time [7]. CDE can be represented as follows:

𝑛𝑒𝑡𝑜𝑢𝑡 =

𝑡∑︁
𝑝=𝑡−𝑘

𝑛𝑒𝑡𝑜𝑢𝑡,𝑝+1 + 𝜖𝑝 (4)

Where 𝜖𝑝 represents the CDE caused by the learnt weights related
to disrupting point from the previous iteration.

4.0.1 Seasonal ARIMA. Seasonal Auto Regressive Integrated Mov-
ing Average is an adaptive ARIMA model used when the timeseries
exhibits seasonal variation. ARIMA is defined using (p,d,q) parame-
ters, also called the ARIMA order. d is the level of differencing, p
is the autoregressive order, and q is the moving average order [4].
The ARIMA model is defined as follows:

𝑧𝑡 = 𝛿 + 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ... + 𝜙𝑝𝑧𝑡−𝑝
+ 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ... − 𝜃𝑞𝑎𝑡−𝑞

where 𝑧𝑡 is the level of differencing, the constant is denoted by
𝛿 , while 𝜙𝑖 is an autoregressive operator, 𝑎𝑖 is a random shock
corresponding to time period 𝑡 , and 𝜃𝑖 is a moving average operator.

SARIMA adds to ARIMA an order (P,D,Q)𝑠 which corresponds to
seasonal autoregressive (P) and a seasonal moving average notation
(Q). The variable 𝑠 indicates the length of the seasonal period. For
example, with an input sequence of 20 observations, 𝑠 would be 20.

Fig. 3. Examples of hidden state dynamics with errors in data (top) and
without errors (bottom). The figure also shows the HSD before and after
correction at the same timestamp.

4

Corrector LSTM: Built-in Training Data Correction
for Improved Time Series Forecasting Conference acronym ’Milets, Aug 15, 2022, Washington DC

4.1 Similarity Measure
cLSTM detects errors in the data by predicting the values of the
hidden states and comparing them to the observed ones. Therefore,
it is necessary to measure the similarity between these two series.
Therefore, Euclidean point-by-point mapping approach has been
used.

4.2 Data Reconstruction
As aforementioned, hidden states dynamics can instantly inform us
about the conflicts/problems occurring when the model processes
the input data. Therefore, in order to make LSTM robust to errors,
we reconstruct every data point that disrupts the model. We do this
by changing the training inputs that lead to drifts in the hidden
state. This implies that when an error is detected, the corresponding
data point is changed accordingly. The learning process is repeated
until the difference between the observed hidden states and their
predicted values is below the defined reconstruction threshold 𝛿 .
This objective function can be defined as follows

min𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑝𝑡 , ℎ𝑡)

Where 𝑝𝑡 is the predicted output gate activations andℎ𝑡 is the actual
output gate activations.
The LSTM model is saved, and after every change to the data,

the model is loaded and re-trained on the new value until the stop-
ping condition is satisfied. For the reconstruction process, we use a
different threshold than the detection threshold (which is smaller
than the one used for detection). Thus, we can confirm that the new
value is not causing any harm.

5 EXPERIMENTAL SETUP
To evaluate cLSTM, we have compared its performance with stan-
dard LSTM on multiple timeseries. Experiments assumed that the
algorithms received a univariate time series as training data. Multi-
time step samples are used to predict multi-time step labels during
the learning process. At the end of the training, the outputs are the
network’s weights and the corrected time series. Since cLSTM has
been designed to improve data quality, we have also tested the algo-
rithm’s ability to detect and reconstruct anomalies using Numenta
Anomaly Benchmark.

5.1 Research questions
We identify the following as the main research question of our
empirical study:

• Does cLSTM avoids incorrect learning of the LSTM when
data contains errors ?

5.2 Baseline algorithms
The procedure just described was the main methodology developed
to conduct our study. LSTM is the explicit competitor of cLSTM, so
in this study we compare cLSTM solely to it.

Both LSTM and cLSTM have been executed on the same datasets.

Table 1. Descriptive analytics of M4 Forecasting Competition Datasets.

M4
Daily Hourly Monthly Weekly

Timeseries 200 200 200 200
Average Length 558 700 366 1255
Mean 2978 19935 4222 3925
Standard Deviation 688 3621 1160 1998

Table 2. Descriptive analytics of Numenta Anomaly Benchmark Datasets.

NAB
RKC Traffic EX AWS Art Tweets

Timeseries 7 7 5 17 9 10
Average Length 9872 2236 - 3980 4030 15854
Mean 40.18 124.73 - 742771 27 42.74
Standard Deviation 6.88 125.03 - 3.1e+06 26.84 98.74

5.3 Datasets
We have used 11 datasets (a total of 855 time-series) falling under a
variety of application domains.We have used theMacroM4 compe-
tition datasets (a total of 800 time-series).1 The dataset includes six
subsets, from which we have taken four datasets and 200 timeseries
from each. Additionally, we have used 55 signals from Numenta
Anomaly Benchmark (NAB). NAB includes multiple types of time
series data from various application domains. We have picked six
datasets: Art, RKC, AWS, Traf, and Tweets. These signals are from
different sources and contain different quantities of real continu-
ous anomalies. Basic information for each dataset is summarized in
Table 2. Except for min-max normalization, no pre-processing has
been applied. Moreover, we have used 1000 observations from each
time series to reduce computational costs.

5.3.1 cLSTM Architecture. The LSTM version used for applying our
changes is a PyTorch implementation. For each iteration, the model
forward and backwards pass an input of length one and outputs
hidden states vector of length (i.e. LSTM size) = 12 per unit, which
is further used for analysis. The outputs are taken from a selected
LSTM unit. 50 was the number of epochs, and only one LSTM layer
has been used. To detect errors, we chose to analyze the hidden
states dynamics produced by a single unit. The errors can only be
detected after given iterations so that SARIMA model has minimum
hidden states to learn.
We have run experiments using a fixed detection threshold. In

this work, no fine-tuning of this parameter has been conducted.
Thus, no analysis will be shown regarding the impact of such a
parameter. It would be interesting for future works to analyze it,
especially in cases where cLSTM fails against LSTM.

5.3.2 Evaluation Metrics. We compare our model performance us-
ing both Mean Absolute Scaled Error [12], Mean Square Error (MSE)
and percentage decrease on MSE. As the timeseries have different
scales, we have used MASE using the training set of the original
series. Moreover, Wins have been reported instead of MSE.

1https://mofc.uniac.cy/the-dataset/

5

Conference acronym ’Milets, Aug 15, 2022, Washington DC Baghoussi, et al.

Fig. 4. Example 1 - Timeseries reconstruction example on NAB. Blue is the
original time series, orange is the corrected timeseries. Right plots show the
predictions (orange) and actual values (blue) with the train data from the
left plot being the corrected for cLSTM and actual for LSTM.

Fig. 5. Example 2 - Timeseries reconstruction example where error is recur-
ring in the test set. Blue is the original time series, orange is the corrected
timeseries. Right plots show the predictions (orange) and actual values
(blue) with the train data from the left plot being the corrected for cLSTM
and actual for LSTM.

Generally, the input impact on the learning occurs over a limited
interval (i.e. a continuous sequence of points). Since a wrong recon-
struction might decrease forecasting performance, it is important to
avoid false positive FPs. As a result, the optimal detection threshold
needs to be fine-tuned. As aforementioned, in this work, we do not
address this. Moreover, as the change points of concept drifts can be
considered an error, cLSTM may correct the whole new distribution.
In this work, we did not address this type of error, which might
explain some of the results showing a negative impact of cLSTM.
Also, as our learning mechanism is sequential, each iteration

forwards past information to the next points, which causes the
propagation of reconstruction errors. Overcoming this requires
choosing a moderate reconstruction threshold. We have limited the
search for an optimal reconstruction value to a fixed reconstruction
threshold.

Table 3. Number of wins based on MSE by timeseries on NAB.

Wins (MSE) Art EX AWS RKC Traffic Tweets
LSTM 3 2 7 6 3 2
cLSTM 1 3 10 1 4 7

Fig. 6. Example 3 - Timeseries reconstruction example with a concept drift.
Blue is the original time series, orange is the corrected timeseries. Right
plots show the predictions (orange) and actual values (blue) with the train
data from the left plot being the corrected for cLSTM and actual for LSTM.

Table 4. Number of wins based on MSE by timeseries on M4.

Wins MSE Daily Hourly Monthly Weekly
LSTM 188 166 113 116
cLSTM 106 55 108 83

Table 5. NAB - Percentage decrease on MSE errors by cLSTM.

Art EX AWS RKC Traffic
85.761130 27.782211 19.677456 2.801852 27.974179

Table 6. M4 - Percentage decrease on MSE errors by cLSTM.

Daily Hourly Monthly Weekly
21.503485 33.710400 23.705499 24.934199

5.4 Experimental Results
The experiments illustrate two forecasting results: M4 competition
and NAB. NAB and M4 experiments were conducted by compar-
ing a PyTorch LSTM and cLSTM implementations with 50 epochs
trained on the original data. A seed has been set for the results to
be comparative. As a response to whether cLSTM is more robust to
errors than LSTM, results of the training on M4 competition data in
Table 4 show cLSTM winning over standard LSTM in a significant
number of timeseries. As for NAB, Table 3 reports the number of
wins of each method with a higher number of wins achieved by
cLSTM in 4 from 6 datasets.

As aforementioned, cLSTM has a hyperparameter that allows the
detection of error and triggers the correction of data. This hyperpa-
rameter has been kept fixed in all the experiments presented in this
work. Figure 4 shows some instances of timeseries reconstruction
on real Twitter timeseries in NAB. It is worths noting that cLSTM
depends on the first observations and epochs to decide whether an
input contains an error. Thus, in cases where a supposed error is
recurring in the future, the model would be unable to forecast it (
see: Figure 5). The forecasting results are given on the right of the
figure. LSTM was trained on the actual (blue) timeseries on the left.
While cLSTM has been trained on its corrected (orange) timeseries

6

Corrector LSTM: Built-in Training Data Correction
for Improved Time Series Forecasting Conference acronym ’Milets, Aug 15, 2022, Washington DC

Table 7. NAB - MASE values of cLSTM and LSTM.

Art EX AWS RKC Traffic Tweets
MASE LSTM 0.3856 1.010880 0.556056 5.167250 0.552625 0.697960
MASE cLSTM 0.1455 1.001771 0.569140 5.602950 0.632668 0.689308

Table 8. M4 - MASE values of cLSTM and LSTM.

Daily Hourly Monthly Weekly
MASE LSTM 1.984319 1.271852 1.683081 2.552384
MASE cLSTM 1.941947 1.285469 1.623858 1.818637

on the left. These examples were not excepted by our experiments
which explain the number of losses of cLSTM. Moreover, the model
detection of error is shown to be efficient on detecting anomalies
and concept drifts. However, the reconstruction strategy has to be
adapted for them.

M4 and NAB datasets contain timeseries with concept drifts (see:
Figure 6). In this work, cLSTM is not adapted to such a case. It can
detect the change point but continues to change all the new distri-
bution data. The latter leads to a model failing to predict the new
distribution. These examples were not excepted by our experiments
which explain the number of losses of cLSTM.

To evaluate cLSTM potential, we have analysed the cases where
cLSTM won over LSTM, which we consider are, most of the time,
timeseries without concept drifts or recurring errors. Table 5 and 6
show the percentage decrease on MSE made by cLSTM compared
to LSTM. For NAB, cLSTM has reduced the MSE by 85% on artificial
data with errors. It can be explained by artificial errors, which can
be considered anomalies and easy to detect and reconstruct. As for
other datasets in NAB, the decrease was around 32% on average. In
M4 datasets, the decrease was around 25.95% on average.
On the other hand, MASE results in Table 7 and 8 show a lower

cLSTM MASE over LSTM in 3 over six datasets of M4 and 3 over
four datasets of NAB. Based on our understanding, MASE results
can be explained by the fact that cLSTM is not changing the global
performance of LSTM. However, it eliminates the most important
errors.

6 CONCLUSIONS
Recurrent neural networks can be affected by errors made by the
data collection system. Making RNN more robust to errors requires
making it able to detect and reconstruct them. One advantage of
RNN is that it keeps a history of the processed information on its hid-
den states. The latter contains dynamics that can give useful model
feedback on the data quality. This paper presents a new method,
namely, corrector LSTM, which uses the dynamics of the hidden
states to detect errors in the data and reconstruct them accordingly.
cLSTM uses a SARIMA model responsible for the predictions of
the hidden states. These predictions are compared with the hidden
states produced by LSTM using a distance measure. If the measure-
ment exceeds a detection threshold, the method decides to change
the processed data. The reconstruction is carried out until the errors
in the data are no longer detected. The process stops changing the

data when the distance equals a given reconstruction threshold. The
method has been compared to standard LSTM on several datasets.
The results show that cLSTM could significantly improve data qual-
ity without affecting the LSTM global performance as reported by
MASE results.

ACKNOWLEDGMENTS
Thiswork has been partially supported by the SONAE IMLAB@FEUP,
under a research Ph.D. project funded by Inovretail.

REFERENCES
[1] 2021. Data-centric ai competition. (2021). https-deeplearning-ai.github.io/data-

centric-comp.
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
(2014).

[3] André Baptista, Yassine Baghoussi, Carlos Soares, João Mendes-Moreira, and
Miguel Arantes. 2021. Pastprop-RNN: improved predictions of the future by
correcting the past. CoRR abs/2106.13881 (2021). arXiv:2106.13881 https://arxiv.
org/abs/2106.13881

[4] Bruce L Bowerman and Richard T O’Connell. 1993. Forecasting and time series:
An applied approach. 3rd. (1993).

[5] Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. 2018. Fine-Grained Atten-
tion Mechanism for Neural Machine Translation. CoRR abs/1803.11407 (2018).
arXiv:1803.11407 http://arxiv.org/abs/1803.11407

[6] Xin Dong and Theodoros Rekatsinas. 2018. Data integration andmachine learning:
a natural synergy. Proceedings of the VLDB Endowment 11 (08 2018), 2094–2097.
https://doi.org/10.14778/3229863.3229876

[7] Alex Graves. 2012. Long Short-Term Memory. Springer Berlin Heidelberg, Berlin,
Heidelberg, 37–45. https://doi.org/10.1007/978-3-642-24797-2_4

[8] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural networks
18, 5-6 (2005), 602–610.

[9] Tian Guo, Tao Lin, and Yao Lu. 2018. An interpretable LSTM neural network for
autoregressive exogenous model. CoRR abs/1804.05251 (2018). arXiv:1804.05251
http://arxiv.org/abs/1804.05251

[10] Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6, 02 (1998), 107–116.

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[12] Rob J. Hyndman and Anne B. Koehler. 2006. Another look at measures of forecast
accuracy. International Journal of Forecasting 22, 4 (2006), 679–688. https://doi.
org/10.1016/j.ijforecast.2006.03.001

[13] Seongwoon Jeong, Max Ferguson, and Kincho Law. 2019. Sensor data recon-
struction and anomaly detection using bidirectional recurrent neural network. 25.
https://doi.org/10.1117/12.2514436

[14] Mehdi Khashei and Mehdi Bijari. 2011. A novel hybridization of artificial neural
networks and ARIMA models for time series forecasting. Applied Soft Computing
11, 2 (2011), 2664–2675. https://doi.org/10.1016/j.asoc.2010.10.015 The Impact of
Soft Computing for the Progress of Artificial Intelligence.

[15] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Gold-
berg. 2016. ActiveClean: Interactive Data Cleaning for Statistical Modeling. Proc.
VLDB Endow. 9, 12 (aug 2016), 948–959. https://doi.org/10.14778/2994509.2994514

[16] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2017. Modeling
Long- and Short-Term Temporal Patterns with Deep Neural Networks. CoRR
abs/1703.07015 (2017). arXiv:1703.07015 http://arxiv.org/abs/1703.07015

[17] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. 2017. Time-series
extreme event forecasting with neural networks at uber. In International conference
on machine learning, Vol. 34. sn, 1–5.

[18] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2019. CleanML:
A Benchmark for Joint Data Cleaning and Machine Learning [Experiments and

7

https-deeplearning-ai.github.io/data-centric-comp.
https-deeplearning-ai.github.io/data-centric-comp.
https://arxiv.org/abs/2106.13881
https://arxiv.org/abs/2106.13881
https://arxiv.org/abs/2106.13881
https://arxiv.org/abs/1803.11407
http://arxiv.org/abs/1803.11407
https://doi.org/10.14778/3229863.3229876
https://doi.org/10.1007/978-3-642-24797-2_4
https://arxiv.org/abs/1804.05251
http://arxiv.org/abs/1804.05251
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1117/12.2514436
https://doi.org/10.1016/j.asoc.2010.10.015
https://doi.org/10.14778/2994509.2994514
https://arxiv.org/abs/1703.07015
http://arxiv.org/abs/1703.07015

Conference acronym ’Milets, Aug 15, 2022, Washington DC Baghoussi, et al.

Analysis]. CoRR abs/1904.09483 (2019). arXiv:1904.09483 http://arxiv.org/abs/
1904.09483

[19] G. Liu and J. Guo. 2019. Bidirectional LSTM with attention mechanism and
convolutional layer for text classification. Neurocomputing 337 (2019), 325–338.
https://doi.org/10.1016/j.neucom.2019.01.078 cited By 133.

[20] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[21] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long
Short Term Memory Networks for Anomaly Detection in Time Series.

[22] ShigeruMaya, KenUeno, and Takeichiro Nishikawa. 2019. dLSTM: a new approach
for anomaly detection using deep learning with delayed prediction. International
Journal of Data Science and Analytics 8 (09 2019). https://doi.org/10.1007/s41060-
019-00186-0

[23] H.D. Nguyen, K.P. Tran, S. Thomassey, and M. Hamad. 2021. Forecasting and
Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques
with the applications in supply chain management. International Journal of
Information Management 57 (2021), 102282. https://doi.org/10.1016/j.ijinfomgt.
2020.102282

[24] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison W.
Cottrell. 2017. A Dual-Stage Attention-Based Recurrent Neural Network for
Time Series Prediction. CoRR abs/1704.02971 (2017). arXiv:1704.02971 http:
//arxiv.org/abs/1704.02971

[25] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2021. A Survey on Data Col-
lection for Machine Learning: A Big Data - AI Integration Perspective. IEEE
Transactions on Knowledge and Data Engineering 33, 4 (2021), 1328–1347. https:
//doi.org/10.1109/TKDE.2019.2946162

[26] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks.
IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[27] Ralf C Staudemeyer and Eric Rothstein Morris. 2019. Understanding LSTM–a
tutorial into Long Short-TermMemory Recurrent Neural Networks. arXiv preprint
arXiv:1909.09586 (2019).

[28] Michael Stonebraker and El Kindi Rezig. 2019. Machine Learning and Big Data:
What is Important? IEEE Data Eng. Bull. 42 (2019), 3–7.

[29] Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber, Hanspeter Pfister, and
Alexander M. Rush. 2016. Visual Analysis of Hidden State Dynamics in Recurrent
Neural Networks. CoRR abs/1606.07461 (2016). arXiv:1606.07461 http://arxiv.org/
abs/1606.07461

[30] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush.
2017. Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent
neural networks. IEEE transactions on visualization and computer graphics 24, 1
(2017), 667–676.

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning
with Neural Networks. CoRR abs/1409.3215 (2014). arXiv:1409.3215 http://arxiv.
org/abs/1409.3215

[32] Kim Phuc Tran, Huu Du Nguyen, and Sébastien Thomassey. 2019. Anomaly
detection using Long Short TermMemory Networks and its applications in Supply
Chain Management. IFAC-PapersOnLine 52, 13 (2019), 2408–2412. https://doi.org/
10.1016/j.ifacol.2019.11.567 9th IFAC Conference on Manufacturing Modelling,
Management and Control MIM 2019.

[33] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. 2021. Data Col-
lection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective.
CoRR abs/2112.06409 (2021). arXiv:2112.06409 https://arxiv.org/abs/2112.06409

[34] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. 2021. Data Col-
lection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective.
arXiv preprint arXiv:2112.06409 (2021).

8

https://arxiv.org/abs/1904.09483
http://arxiv.org/abs/1904.09483
http://arxiv.org/abs/1904.09483
https://doi.org/10.1016/j.neucom.2019.01.078
https://doi.org/10.1007/s41060-019-00186-0
https://doi.org/10.1007/s41060-019-00186-0
https://doi.org/10.1016/j.ijinfomgt.2020.102282
https://doi.org/10.1016/j.ijinfomgt.2020.102282
https://arxiv.org/abs/1704.02971
http://arxiv.org/abs/1704.02971
http://arxiv.org/abs/1704.02971
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1109/TKDE.2019.2946162
https://arxiv.org/abs/1606.07461
http://arxiv.org/abs/1606.07461
http://arxiv.org/abs/1606.07461
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1016/j.ifacol.2019.11.567
https://doi.org/10.1016/j.ifacol.2019.11.567
https://arxiv.org/abs/2112.06409
https://arxiv.org/abs/2112.06409

	Abstract
	1 Introduction
	2 Background
	2.1 Long Short Term Memory
	2.2 Data-centric Recurrent Neural Network

	3 Hidden States Dynamics Analysis
	3.1 Hidden States Dynamics

	4 Corrector LSTM
	4.1 Similarity Measure
	4.2 Data Reconstruction

	5 Experimental Setup
	5.1 Research questions
	5.2 Baseline algorithms
	5.3 Datasets
	5.4 Experimental Results

	6 Conclusions
	Acknowledgments
	References

