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ABSTRACT
In this paper, we address the Long Range Capacity Planning Prob-

lem, which is to find percentile statistics of a demand time series

over a distant future time window. Underestimating capacity im-

pacts the quality of service to customers, and overestimating results

in wasted resources and opportunities. Considering Auto Regres-

sive Integrated Moving Average (ARIMA) as the model for time

series forecasting, we show that standard training and inference

consistently underestimates the true percentile statistics of the fu-

ture demand time series, especially for long range forecasts. We

propose modifying the training method and adding Monte Carlo

simulation to the inference process. Our proposal reduces the per-

centile statistics forecast error to under 2% compared with 6% for

the standard process, a 3𝑥 improvement. We present this result in

the experiments section for both synthetic and real data.
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1 INTRODUCTION
Recent events such as the pandemic, market volatilities and basic

goods shortages have highlighted the role of machine learning,

and in particular forecasting, in achieving operational excellence.

It is vital for companies to be able to forecast and plan for future

demand with a high degree of accuracy, sometimes months or years

in advance. While the science community has made great strides

forecasting averages, the problem of forecasting extreme scenarios

has not been in the spotlight. In this paper, we address the issue

of accurate extreme percentile forecasting. Specifically, we address
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Capacity Planning, a multi-faceted problem whose goal is to plan

how much capacity (human resources, hardware, logistics, etc.) is

required to meet a certain quality of service by taking a calculated

risk in the relatively distant future, e.g., a few quarters or years

ahead.

Unlike normal forecasting problems, Capacity Planning is not

concerned with point-wise accuracy, but with population statistics

such as percentiles across a (distant) period of time in the future. For

example, assume an online retail company wants to plan their hard-

ware requirements to be able to serve the surge of holiday season

customers. Given that other competitors will also be in the market

for more hardware, the company needs to plan ahead and acquire

hardware early to ensure that it can meet its potential demand. At

this point, the company faces a tradeoff between the wasted cost

of unnecessary hardware and the risk of losing customers. One

strategy is to proactively order hardware at e.g. the 95
𝑡ℎ

percentile

of the potential customer distribution and leave the other 5%, if

materialized, to reactive measures such as last minute hardware

purchases. Capacity Planning is the proactive part of this strategy.

It involves accurately forecasting the demand distribution over a

period of time, estimating the percentile of this distribution that is

consistent with tolerable risk, and planning for it.

In Capacity Planning, like many other forecasting problems,

we need to model historical demand and forecast the future by

making reasonable assumptions and modifications. Auto Regressive

Integrated Moving Average (ARIMA) [4] is one of the classic time

series forecasting models, and is proven to be optimal for weakly

stationary time series. ARIMA can estimate a distribution for the

future forecasts. The idea is to then get this distribution, find the

percentile of interest and use it for planning.

Since its inception, many variations of ARIMA have been pro-

posed to improve its forecast accuracy. Seasonal ARIMA (SARIMA),

ARIMA with exogenous variables (ARIMAX), modeling innova-

tion variance via Generalized Auto Regressive Conditional Het-

eroskedasticity (GARCH) [3] and Fuzzy ARIMA (FARIMA) [22]

are just a few of the variations that have been proven to improve

forecast accuracy under certain conditions. Another class of im-

provements to ARIMA is to create a hybrid model by cascading

ARIMA with another model. Essentially, ARIMA provides a reliable

hint for the second model, improving overall forecast accuracy. A

few such models are ARIMA-ANN [29], ARIMA-QR [1], ARIMA-

SVM [19] and ARIMA-Kalman [15]. All of these models use the

same technique for parameter estimation, namely maximum likeli-

hood with least squares.

A major limitation of ARIMA is that it can only forecast one

step into the future, as the model depends on unobserved variables,

which are unknown at future times. This makes long term forecasts

of ARIMA, which are essential to solving the Capacity Planning

problem, far less reliable. Furthermore, as we will discuss later,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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long term ARIMA forecasts drift towards the mean of the time

series. Since we are interested in one-sided percentiles for Capacity

Planning, this results in underestimation of the demand percentiles

for a given risk level.

Our contribution in this paper is to address these two short-

comings of ARIMA. We propose using Quantile Regression [21]

for ARIMA parameter estimation instead of least squares, along

with Monte-Carlo sampling during the forecasting process to avoid

underestimation. We show that the combination of the two results

in accurate estimation of the demand percentile for the given risk.

Our experimental results on both synthetic and real data illustrate

the accuracy of our proposed method against other alternatives.

Our results are based on our extensive experiments and while we

discuss our intuition, we do not analyze our method theoretically.

Furthermore, throughout the paper, we discuss the problem of

capacity planning as a univariate time series forecasting problem

for simplicity. The method can be generalized to multivariate time

series forecasting case naturally.

The rest of the paper is organized as follows. In Section 3 we

introduce our notation and definitions. Section 2 provides a for-

mal definition of the Capacity Planning problem. We present our

proposed solution in Section 4 and the experimental results in

Section 5.

2 PROBLEM STATEMENT
In this section we formally define the capacity planning problem

and its connection to the time series analysis. Capacity planning

is a form of risk management, i.e., we want to guarantee a certain

quality of a service with a certain risk level. For example, an online

retail store wants to plan enough computer server capacity to be

able to serve the surge of customers during holiday season. How-

ever, the exact number of customers is not known at the planning

time and maximal planning for the absolute maximum number of

customers, e.g. entire population of the country, not only is too

expensive, but also is not realistic. One approach to this planning

problem is to estimate some distribution for the number of cus-

tomers and then use certain percentile of that distribution as the

target for the planning. For instance, the online retail store manager

might decide to take 5% risk; they then pick the 95
𝑡ℎ

percentile of

the estimated distribution as their target demand and plan for it.

In order to estimate the distribution of the demand for a future

time, it is very common to resort to historical trends of the demand

and try to project those trends into the future. Furthermore, there

are always unobserved factors that impact the demand both histor-

ically and in the future. The impact of these factors also need to be

appropriately modeled. This process would help us get a distribu-

tion for a single point in the future; but this is not enough, because

often, executing the planned capacity takes a long time. Imagine

in the online retail store example, depending on the demand, we

might need to build new data centers to accommodate the required

computer servers. Moreover, due to overheads, we cannot repeat

this process frequently, say build a new (small) data center every

other month. Thus, a sustainable capacity planning should be able

to plan early enough (to build the capacity) and for a wide enough

window of time in the future (to minimize the overhead).

Figure 1: Capacity Planning Problem: Blue (between 1 and
𝑛) represents the observed part of the demand time series;
Purple (between 𝑛 and 𝑛𝑠 ) is the period between now and
the start of the time window of interest; Black (between 𝑛𝑠
and 𝑛𝑒 ) is the time window of interest for capacity planning.
We are interested in forecasting P𝑟 accurately to be able to
plan the required capacity for the (one-sided) 𝑟𝑡ℎ percentile
of the demand distribution. In other words, there chance of
demand exceeding the planned capacity is 1 − 𝑟 .

While overestimating the demand increases the quality of ser-

vice, it also increases unnecessary costs on the system. In contrast,

underestimation of the demand will result in customer dissatis-

faction and ultimately impacts the bottom line. Thus, getting the

percentile of demand that meets the tolerable risk is a critical task

in capacity planning. Given the scale of the planning, even small

deviations can translate to millions of dollars in cost or loss of

customers. Below, we formally state the capacity planning problem.

Definition 1 (Capacity Planning Problem). We are given a
historical demand time series 𝑥1, 𝑥2, . . . , 𝑥𝑛 where subscripts are time
indices, denoted as x𝑛

1
, and, a tolerable risk level 𝑟 for a period of 𝑛𝑠

to 𝑛𝑒 into the future. Suppose the time series takes values x𝑛𝑒
𝑛+1 in the

future (which is unknown to us) and the empirical 𝑟𝑡ℎ percentile of the
values of x𝑛𝑒𝑛𝑠 (over the window of 𝑛𝑠 to 𝑛𝑒 ) is P𝑟 . The capacity plan-
ning problem is to estimate the future demand percentile P𝑟 (𝑛𝑠 , 𝑛𝑒 )
and plan for it. Figure 1 visualizes the capacity planning problem.

A question might arise from this definition that if we plan our

capacity for 𝑟𝑡ℎ percentile of the demand distribution, there is

a 1 − 𝑟 chance that the demand exceeds the capacity and what

happens in that case. Firstly, the choice of 𝑟 involves cost benefit

analysis of wasting resources versus degrading the quality of service

for a small portion of demand and can be an executive choice.

Secondly, the capacity planning is a proactive measure and there

are always reactive measures built into systems to be able to handle

an (relatively small) unexpected surge of demand for a limited time.

These reactive measures can handle those 1−𝑟 percent of times. An

example of a reactive measure for the online retail store could be a

queuing mechanism that increases the response time to customers

or an automatic scaling say within a cloud service.
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Notice that for the capacity planning, we are not necessarily

interested in accuracy of the prediction for each time index; rather,

we are interested in the collective behavior of the time series within

a time window of interest in the future. This is in contrast with

typical objective of forecasting algorithms that try to minimize their

point-wise error (on average). This is the key difference between the

problem we are addressing here and normal forecasting problems

that is studied in most other research works like [27].

3 DEFINITIONS & NOTATIONS
We start by introducing some notations and definitions. There

are many ways to represent these concepts in the literature. We

selected the representation that we think makes it easier to convey

the message of this paper. We continue by defining Auto Regressive

Moving Average (ARMA) as our main focus. We then explore other

variations of ARMA and ultimately motivate why we limit the rest

of the paper to ARMA and how the results can be expanded to those

variations. We finally argue that the parameter estimation for these

methods comes down to solving a least square problem. This is the

key observation for our proposed solution.

3.1 ARMA & ARIMA
We represent a time series 𝑥1, 𝑥2, . . . , 𝑥𝑛 where subscripts are time

indices as x𝑛
1
. Considering practical applications, without loss of

generality, we assume the observed part of time series starts from

index 1 and ends at index 𝑛. Further, we assume that the time series

is weakly stationary in the sense that with some differentiation

process (as discussed below), the time series becomes stationary.

In practice, this assumption means that the long term trend of the

time series is a polynomial, e.g. there is a linear or quadratic (but

not exponential) growth.

Definition 2 (ARMA(𝑝, 𝑞)). Given a stationary zero-mean time
series x𝑛

1
, we model 𝑥𝑖 for 𝑖 > 𝑛 as

𝑥𝑖 = 𝜇𝑖 + 𝑢𝑖

𝜇𝑖 =

𝑝∑
𝑗=1

𝜙 𝑗𝑥𝑖−𝑗 −
𝑞∑

𝑘=1

𝜃𝑘𝑢𝑖−𝑘

𝑢𝑖 ∼ D
(
0, 𝜎2

) (1)

where, 𝑢 𝑗 ’s are i.i.d. samples drawn from the distribution D(0, 𝜎2),
and, 𝜙 ’s, 𝜃 ’s and 𝜎 are the model parameters. Equivalently, we can
represent ARMA as

𝑥𝑖 ∼ D
(
𝜇𝑖 , 𝜎

2

𝑖

)
𝜇𝑖 =

𝑝∑
𝑗=1

𝜙 𝑗 𝜇𝑖−𝑗 −
𝑝∑
𝑗=1

𝜙 𝑗𝑢𝑖−𝑗 −
𝑞∑

𝑘=1

𝜃𝑘𝑢𝑖−𝑘

𝜎2𝑖 = 𝜎2

(2)

This representation formulates the evolution of the mean of the distri-
bution while keeping the variance constant. It models the time series
as samples drawn from the distribution D with the mean of 𝜇𝑖 and
constant standard deviation of 𝜎 .

Given a stationary time series x𝑛
1
, we use the auto-ARIMA pro-

cess [12] to find the optimal parameters 𝑝 and 𝑞. This process is

independent of the methodology we are using for estimating pa-

rameters 𝜙 , 𝜃 and 𝜎 . Throughout the paper, we assume that 𝑝 and

𝑞 are given and we focus on different methodologies for parameter

estimation.

Definition 3 (ARIMA(𝑝, 𝑑, 𝑞)). Given a (non-stationary) time
series x𝑛

1
, suppose we apply the differentiation process 𝑑 times to get

a stationary time series y𝑛−𝑑
1

. We then define

ARIMA(𝑝,𝑑, 𝑞)
(
x𝑛
1

)
= ARMA(𝑝, 𝑞)

(
y𝑛−𝑑
1

)
(3)

where, ARMA is defined in Definition 2.

Based on this definition, by doing a pre-processing on the time

series, we can reduce an ARIMA model to an ARMA model. In

practice, there are many stationarity tests such as KPSS [14], ADF

[10], PP [20], and, ADF-GLS [11], that can be used to determine the

value of 𝑑 . Once 𝑑 is determined, one can run the differentiation

process and reduce the problem to parameter estimation for the

ARMA model. For other variations of the ARMA, please see the

appendix.

3.2 Model Parameter Estimation
There are many methods in the literature for estimating the param-

eters of the models introduced in this section. We categorize these

methods into few groups and discuss the capabilities and limita-

tions of each group. While we only discuss the core idea of this

paper in the context of two-step regression (due to simplicity) and

maximum likelihood estimation (due to optimality), the idea can

be generalized to other methods. Furthermore, we only consider

the parameter estimation for ARMA(𝑝, 𝑞) model with distribution

D being normal distribution for the ease of notation. Again, the

methods can be easily generalized to other models.

The main difficulty of parameter estimations for these models

arises from the fact that the innovations 𝑢𝑖 ’s are not observed.

Different methods need to either explicitly or implicitly, iteratively

or statically estimate these unobserved variables. Once we have an

estimate for the unobserved variables, it is not hard to see that all of

the models introduced above are some form of linear regression (or

bilinear regression [24]). The core idea of this paper is to perform

this linear regression using different criteria to address the capacity

planning problem. We will formally define the problem in Section 2.

3.2.1 Two-Step Regression. In this method, we first assume the

innovations 𝑢𝑖 ’s are all zero and do a regression on x𝑛
1
by using the

Definition 1 to get an ordinary least squares estimate for
ˆ𝜙 ’s from

the system of 𝑛 − 𝑝 equations

𝑥𝑖 =

𝑝∑
𝑗=1

ˆ𝜙 𝑗𝑥𝑖−𝑗 ∀𝑖 ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑛} (4)

We then can estimate the unobserved innovations 𝑢𝑖 = 𝑥𝑖 −∑𝑝

𝑗=1
ˆ𝜙 𝑗𝑥𝑖−𝑗 . Finally, using 𝑥𝑖 ’s and 𝑢𝑖 ’s, we can do a second or-

dinary least squares to estimate 𝜙 ’s and 𝜃 ’s from the system of

𝑛 −max(𝑝, 𝑞) equations

𝑥𝑖 =

𝑝∑
𝑗=1

𝜙 𝑗𝑥𝑖−𝑗 −
𝑞∑

𝑘=1

𝜃 𝑗𝑢𝑖−𝑗 ∀𝑖 ∈ {max(𝑝, 𝑞) + 1, . . . , 𝑛} (5)
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Subsequently, the parameter 𝜎 can be estimated by

𝜎2 =
1

𝑛 −max(𝑝, 𝑞) − 1

𝑛∑
𝑖=max(𝑝,𝑞)+1

𝑢2𝑖 (6)

This method is very fast in terms of run time and easy to understand,

but unfortunately it is not robust and the accuracy might not be

great under certain conditions [16].

3.2.2 Method of Moments. The idea of the method of moments

is to find a distribution that matches the moments of the data.

Dominantly the Yule-Walker algorithm [23, 25] is used to estimate

the moments of the time series. The parameters of the ARMAmodel

can then be estimated by solving non-linear system of equations

that ties them to the moments. This method is computationally

intense and it might not converge under certain conditions to the

extent that some researchers suggested this method should not be

used for ARMA parameter estimation [7].

3.2.3 Maximum Likelihood. Maximum likelihood maximized the

likelihood function for the distributionD to find the optimal param-

eters of the ARMA model. Conditioned the first max(𝑝, 𝑞) elements

of the time series, i.e., xmax(𝑝,𝑞)
1

, we can write the joint probability

density function of x𝑛
1
as

𝑓
(
x𝑛
1
;𝜙, 𝜃, 𝜎

)
=

𝑓

(
xmax(𝑝,𝑞)
1

;𝜙, 𝜃, 𝜎

)
𝑓

(
x𝑛
max(𝑝,𝑞)+1

��xmax(𝑝,𝑞)
1

;𝜙, 𝜃, 𝜎

)
(7)

where, 𝑓 (.) represents the probability density function. Hence, the

log-likelihood function can be written as

L
(
x𝑛
1
;𝜙, 𝜃, 𝜎

)
=

≜Lm

(
xmax(𝑝,𝑞)
1

;𝜙,𝜃,𝜎

)︷                               ︸︸                               ︷
− log

(
𝑓

(
xmax(𝑝,𝑞)
1

;𝜙, 𝜃, 𝜎

))
− log

(
𝑓

(
x𝑛
max(𝑝,𝑞)+1

��xmax(𝑝,𝑞)
1

;𝜙, 𝜃, 𝜎

))
︸                                                ︷︷                                                ︸

≜Lc (x𝑛
1
;𝜙,𝜃,𝜎)

(8)

where, L(.) represents the negative log likelihood function, and,

Lc (.) represents the conditional negative log likelihood function,

and, Lm (.) represents the marginal negative log likelihood func-

tion. Assuming D to be the normal distribution, the conditional

maximum likelihood estimation of ARMA model comes down to

minimizing the conditional least squares, i.e.,

min Lc
(
x𝑛
1
;𝜙, 𝜃, 𝜎

)
∼ min Sc

(
x𝑛
1
;𝜙, 𝜃, 𝜎

)
= min

𝜙,𝜃

𝑛∑
𝑖=max(𝑝,𝑞)

©­«𝑥𝑖 −
𝑝∑
𝑗=1

𝜙 𝑗𝑥𝑖−𝑗 −
𝑞∑

𝑘=1

𝜃 𝑗𝑢𝑖−𝑗
ª®¬
2

(9)

and 𝜎 can be estimated via (6). In order to solve (9), one can use the

iterative method of Algorithm. 1.

Characterizing Lm (.) is done via writing each 𝑥𝑖 for 1 ≤ 𝑖 ≤
max(𝑝, 𝑞) as an infinite sum of innovations 𝑢 𝑗 and find the covari-

ance matrix of 𝑥1, . . . , 𝑥max(𝑝,𝑞) . We skip presenting all the details

here and refer to [9], because it has been shown thatL(.) andLc (.)
have the same asymptotic behavior. In other words, for sufficiently

large values of 𝑛, given the simplicity and lower computational cost,

one can optimize Lc (.) and skip the full likelihood function.

This method is consistent, asymptotically normally distributed

and asymptotically efficient. Also, it can also be used to detect and

remove outliers [5, 6, 17]. Most popular implementations of ARMA

parameter estimation used in the industry are based on the maxi-

mum likelihood method with a normal distribution assumption.

The two-step regression and conditional maximum likelihood

methods are least square optimizations at their core. These methods

can be extended to seasonal and GARCH versions of ARIMA as they

have a similar structure (see appendix). For the case of seasonality,

the least square problem becomes a bilinear problem that can be

solved by alternating between the parameters as described earlier.

4 MAIN CONTRIBUTION
In this section we discuss our proposal for the Capacity Planning

Problem defined in Definition 1. We start by reviewing the existing

solutions and their shortcomings and then move onto our contribu-

tion. In short, our proposal involves changing the objective function

for ARIMA parameter estimation from the least squares optimiza-

tion to the Quantile Regression (QR) [13], and, using Monte-Carlo

simulation to model innovations. We discuss why this is the right

choice for the Capacity Planning Problem and show the experimen-

tal results in Section 5.

In general, ARIMA model (along with its variations discussed

in Section 3) is a good candidate to model the historical and future

demands for the Capacity Planning Problem, because it accounts

for unobserved factors in the modeling and (if necessary) is capable

of handling the evolution of mean and variance of these latent

factors over time. In fact, the optimality of ARMA for stationary

time series is established by Wold’s Decomposition Theorem [28]

and as long as the non-stationarity of the time series is polynomial,

the differentiation process of ARIMA can convert it to a stationary

process. This justifies our focus on ARIMA model among other

proposals in the literature.

4.1 Existing Solutions
ARIMA model forecasts the standard deviation 𝜎̂ of innovations 𝑢𝑖 .

Assuming the distribution of innovations is a normal, one can use

the error function to compute the desired percentile. For example,

if we are interested in 𝑟 = 97.5%, we have P𝑟 ≈ 𝑥𝑖 + 2𝜎̂ at any point

𝑖 .

The main issue with this method as illustrated in Fig. 2 is that

while ARMA is optimal to forecast a single point into the future, its

long term forecast drifts towards the mean of the time series (that

is modeled by the intercept in the model). This happens mainly

because there is no way to estimate the unobserved innovations 𝑢𝑖
during forecasting other than replacing them with the best blind

estimate which is the mean of the distribution D, i.e., zero. Hence,

after 𝑞 step forecast the Moving Average (MA) part of the model

becomes zero. Subsequently, since the Auto Regressive (AR) part

is stable, it drifts towards the zero and the forecast becomes the

constant in the mode, i.e., the intercept. Now, since P𝑟 is just a

constant away from this forecast and we are interested in one-sided

percentiles for the Capacity Planning Problem, this phenomenon

results in under-estimation of the target parameter P𝑟 .

In the case of ARIMA (or other variations of ARMA), depending

on the value of 𝑑 , the forecast becomes a polynomial. For example,
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Algorithm 1: Solve Conditional Maximum Likelihood

ConditionalMLE (x, 𝑝 , 𝑞)

Solve system of equations 𝑥𝑖 =
∑𝑝

𝑗=1
ˆ𝜙 𝑗𝑥𝑖−𝑗 for all 𝑖 ∈ {𝑝 + 1, . . . , 2𝑝} to get

ˆ𝜙 ’s

Initialize 𝑢𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑝} and 𝑢𝑖 = 𝑥𝑖 −
∑𝑝

𝑗=1
ˆ𝜙 𝑗𝑥𝑖−𝑗 for all 𝑖 ∈ {𝑝 + 1, . . . , 𝑛}

while Not Converged do
Regress via least squares: 𝑥𝑖 =

∑𝑝

𝑗=1
𝜙 𝑗𝑥𝑖−𝑗 −

∑𝑞

𝑘=1
𝜃𝑘𝑥𝑖−𝑘 for all 𝑖 ∈ {max(𝑝, 𝑞) + 1, . . . , 𝑛}

Update 𝑢𝑖 = 𝑥𝑖 −
∑𝑝

𝑗=1
𝜙 𝑗𝑥𝑖−𝑗 −

∑𝑞

𝑘=1
𝜃𝑘𝑥𝑖−𝑘 for all 𝑖 ∈ {1, . . . , 𝑛}

return 𝜙 , 𝜃

Figure 2: Long-term forecasting with ARMAmodel drifts to-
wards the mean of the time series, i.e., the intercept used in
themodel. Thus, the percentiles of the presumednormal dis-
tribution also becomes flat. Since Capacity Planning Prob-
lem is only interested in one-sided percentiles, this results
in under-estimating the true percentiles.

if 𝑑 = 1, the forecast becomes a straight line with a constant slope.

The slope is equal to the intercept in the underlying ARMA model.

Again, due to the fact that we are interested in one-sided percentiles,

this method will under-estimate P𝑟 in long term forecasting.

4.2 Proposal
Our proposal has two ingredients based on the specific requirements

of the Capacity Planning Problem. One ingredient is replacing the

least squares in the ARMA parameter estimation with quantile

regression, and, the other ingredient is the simulation of innovations

during the forecasting process. We discuss these two ingredients

first and then uncover our proposal which is the mixture of the

aforementioned two ingredients.

4.2.1 Quantile Regression. The least squares method for ARMA

parameter estimation as discussed in Section 3.2 aims to minimize

the average of the square of errors. If we consider the mean of the

time series as a random variable, then the least squares converges

to the 50
𝑡ℎ

percentile of that random variable. This value, i.e., the

intercept, is what the ARMA forecast drifts towards as discussed in

Section 4.1. Now, when we add e.g. 2𝜎̂ to this intercept to get to the

97.5𝑡ℎ percentile, in half of the realizations, this falls short of the

true 97.5𝑡ℎ percentile. If instead of 50
𝑡ℎ

percentile for the intercept,

we had a way to estimate 97.5𝑡ℎ percentile of the intercept and then

add e.g. 2𝜎̂ to this new mean, that would put us closer to the true

97.5𝑡ℎ percentile.

Quantile regression is a method that allows us to target a desired

percentile of a random variable (as opposed to 50
𝑡ℎ

percentile with

least squares). The objective of the quantile regression is

min

𝜙,𝜃

𝑛∑
𝑖=max(𝑝,𝑞)

𝜌𝑟
©­«𝑥𝑖 −

𝑝∑
𝑗=1

𝜙 𝑗𝑥𝑖−𝑗 +
𝑞∑

𝑘=1

𝜃𝑘𝑥𝑖−𝑘
ª®¬ (10)

where, 𝜌𝑟 (.) is defined as 𝜌𝑟 (𝑧) = (1 − 𝑟 )max(𝑧, 0) + 𝑟 max(−𝑧, 0).
This minimization converges to the point where 𝑟 percentile of the

error mass falls below and 1 − 𝑟 percentile of the error falls above
it. Thus, the first ingredient of our proposal is the use of Quantile

Regression instead of least squares.

4.2.2 Monte-Carlo Simulations. During forecasting procedure us-

ing ARIMAmodel, we forecast the first next step using the historical

data, but after that, we assume the unobserved innovations 𝑢𝑖 ’s are

all zero and practically remove the MA part of the ARMA. Since

Capacity Planning Problem is impacted by the long term population

statistics and is not directly impacted by the point accuracy of the

forecasts, we can simulate innovations based on the estimated 𝜎̂ .

The modified forecasting process works as follows: we first fore-

cast one step into the future; we then get a sample from the normal

distribution with estimated 𝜎̂ and add it to the forecast pretending

we had the full knowledge of the innovation 𝑢𝑖 . We then continue

the forecasting process, one step at a time, as explained to reach 𝑛𝑒 .

One can repeat this whole process multiple times to get a better

estimate of P𝑟 over the simulated time series. We will present the

results of such simulations in Section 5.

4.2.3 Capacity Planning Proposal. Putting the two ingredients to-

gether, we propose changingARMAparameter estimation by replac-

ing least squares with quantile regression, and, doing Monte-Carlo

simulation for innovation ensembles, say𝐾 times, to get an accurate

estimate of P𝑟 . In particular, in our experience, the average of 3rd

and 1st quantiles of the simulated percentiles is the best candidates

as we will see in Section 5. Algorithm 2 summarizes our proposal.

The choice of quantile regression with Monte-Carlo simulation

introduces large variance in our forecast due to the fact that quantile

regression is very sensitive to the single data point that represents

the 𝑟𝑡ℎ quantile. That is why the choice of the average of first

and third quartiles for our final estimate is crucial. Essentially,

this averaging assumes that between first and third quartiles, our
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Algorithm 2: Solve Capacity Planning Problem

CapPlan (x, 𝑝 , 𝑞, 𝑟 , 𝐾)

Replace least squares with quantile regression in

Algorithm 1

for 𝑖 from 1 to 𝐾 do
Forecast ARIMA time series for 𝑛𝑒 − 𝑛 steps

Compute and store the P𝑟 of 𝑥𝑖 for 𝑖 ∈ {𝑛𝑠 , . . . , 𝑛𝑒 }
return Average of 3rd and 1st quantile of P𝑟 ’s
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Figure 3: Usual ARMA Forecast: Blue represents the ob-
served Time-series (Train), Black represents the unobserved
Time-series (Test), Red is the ARMA Forecast and Green is
the 97.5𝑡ℎ percentile obtained by adding 2𝜎̂ to the forecast.

parameter is symmetrically distributed and hence, the average is a

better estimate of the true median (than the observed median).

5 EXPERIMENTAL RESULTS
In this section, we examine the accuracy of our proposed method

for the estimation of P𝑟 in comparison to the alternatives. We

consider four different methods over two dimensions: ARIMA with

least squares vs ARIMA with quantile regression; and; using Monte-

Carlo sampling vs not. We also present the result for two-step

regression (see Section 3.2.1) and conditional maximum likelihood

(see Section 3.2.3). Results are presented for both synthetic and real

data for each case.

For the sake of the consistency across the experiments, we fix

𝑟 = 97.5%, i.e., we examine how close P𝑟 is to the 97.5𝑡ℎ percentile

of the data. This choice makes it relatively easy to compute P𝑟 for

a normal distribution because it is just 2𝜎 above the mean of the

distribution. Again, notice that we are not concerned about the

point to point fluctuations for Capacity Planning purposes as long

as the premise is satisfied.

5.1 Synthetic Data
We generate 1000 independent sets of synthetic data of length

2000 using ARMA(3, 2) with parameters 𝜙 = [0.3,−0.2, 0.4], 𝜃 =

[−0.2, 0.1] and 𝜎 = 1.0. For each set, we use the first 1000 data

points for training and the second 1000 data points for testing. For
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Figure 4: Monte-Carlo Sampling of Innovations Forecast:
Blue represents the observed Time-series (Train), Black rep-
resents the unobserved Time-series (Test), Red is the ARMA
forecast whose innovations are simulated by sampling from
the normal distribution N(0, 𝜎̂) and Green is the 97.5𝑡ℎ per-
centile of the Red (that needs to be compared against the
97.5𝑡ℎ percentile of the Black for accuracy).

each set of synthetic data and each modeling method, we estimate

P̂𝑟 and record the count of data points from the test data that fall

under this value. Since the length of the test data is 1000 and we

aim at 97.5𝑡ℎ percentile, ideally we expect 975 test data fall under

P̂𝑟 and 25 fall above. Thus, we measure ourselves against the ideal

number of 975.

For each set of data, we do four different parameter estimation

methods (via two-step regression or conditional maximum like-

lihood; and; via least squares and quantile regression), and, two

different inference/forecasting methods (with Monte-Carlo simu-

lation of innovations and without). Figure 3 illustrates an infer-

ence/forecasting without Monte-Carlo simulation. In this case P𝑟 is

computed by adding 2𝜎̂ to the model forecast. In contrast, Figure 4

depicts an inference/forecasting using Monte-Carlo simulation of

the innovations. In this case, after forecasting, we compute the

sample 97.5𝑡ℎ percentile and count that as P𝑟 .

Figures 5 & 6 show the box plot of the number of test data points

falling under the estimated P𝑟 for two-step regression and condi-

tional maximum likelihood respectively against the ideal number

975 that is shown with a green line. In both cases, forecasting with-

out sampling tend to under-estimate P𝑟 since the green line is

above the 3rd quartile. Furthermore, in both cases, using standard

ARMAwith sampling, over-estimates the P𝑟 and only our proposal,

which is the mix of quantile regression and Monte-Carlo sampling

has the optimal number within its 1st and 3rd quartiles. Practi-

cally, we found that the average of the 1st and 3rd quartiles is the

best estimator of P𝑟 and in particular, median over-estimates P𝑟 .

Furthermore, it seems that the results of conditional maximum like-

lihood are just 10% closer to the ideal point 975. Given the higher

computational complexity of the conditional maximum likelihood

versus the two-step regression, one might decide to choose one

over the other based on the trade-offs.
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Dataset MLE-LR MLE-LR-Sampling MLE-QR MLE-QR-Sampling P𝑟

NY COVID-19 [2] 15573 17006 15632 16421 16648

CO Air Quality [8] 1529 1693 1570 1655 1622

US CO2 Emission [18] 5,780,681 5,950,062 5,812,423 5,902,848 5,879,655

Daily Delhi Climate [26] 36.41 37.85 36.62 37.15 37.25

Table 1: Comparison of the estimated P̂𝑟 using different methods against the actual P𝑟 . Here we used conditional maximum
likelihood since it gives better results for all methods. This result shows that our proposal under QR-Sampling column is
superior to other methods in forecasting the parameter P𝑟 for Capacity Planning.

Figure 5: Synthetic Data - Distribution of the number of test
data falling below the estimated P̂𝑟 for two-step regression
with least squares and quantile regression andwith/without
sampling over 1000 runs. The method with quantile regres-
sion and sampling gives the best performance as the ideal
number 975 (depicted with a green line) falls between its 1st
and 3rd quarter. The average of 1st and 3rd quantiles seem
to be the best estimate for P̂𝑟 .

It appears that our proposed method results in higher variance

in the outcome. The question arises if this method is robust when

we consider the average of first and third quartiles. We repeated

the entire process, including the generation of data using the same

parameters, 1000 times and measured the variance on the final

estimate. We observed less than 2% variance (1.83% to be exact) in

estimating P𝑟 . This shows that while quantile regression sensitivity

increases the variance in Monte-Carlo simulation outcomes, it does

not have a big impact on our final estimate.

5.2 Real Data
We examine our proposed method on some public data sets and

report the results. We split each data set into 75% train and 25% test

and use only the train portion for ARIMA parameter estimation.

Similar to the synthetic data experiments, we set 𝑟 = 97.5%. The

estimated P̂𝑟 for the cases that we do not simulate the innovations

is just a single number (steady-state mean plus 2𝜎̂); while it is a

distribution when we repeat the forecasting process 1000 times by

Monte-Carlo sampling of the innovations. In the latter case, we use

the average of 1st and 3rd quantiles as our final estimate for P̂𝑟 .

We also compute the actual P𝑟 from the test data and report it for

comparison.

MLE-LR MLE-LR-Sampling MLE-QR MLE-QR-Sampling
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Figure 6: Synthetic Data - Distribution of the number of test
data falling below the estimated P̂𝑟 for conditional max-
imum likelihood with least squares and quantile regres-
sion and with/without sampling over 1000 runs. Themethod
with quantile regression and sampling gives the best perfor-
mance as the ideal number 975 (depicted with a green line)
falls between its 1st and 3rd quarter. The average of 1st and
3rd quantiles seem to be the best estimate for P̂𝑟 .

We used four real data sets for this experiment. The NY COVID-

19 [2] data set is the number of daily positive COVID-19 tests in

the state of NY from March 2020 till Feb 2021. The underlying data

is broken down by county and we aggregated them into the state

level. The CO Air Quality [8] is a UCI data set collected in a city in

Italy. The data set has hour-by-hour level of carbon monoxide in

the air. We created a time series by concatenating all of the data.

The US CO2 Emission [18] data set is a relatively small data set

that recorded annual CO2 emission for all countries since 1970 till

2016. We used the CO2 emission of the United States and created a

time series. Finally, Daily Delhi Climate [26] has recorded the daily

temperature of Delhi in Celsius from 2013 to 2017.

Table 1 summarizes the estimated P̂𝑟 for different data sets

against the actual P𝑟 measured from the test data. In all cases,

our proposed method is better (or similar) to other alternatives. The

results shows that the error in estimation of P𝑟 with our proposed

method is under 2% while the error for standard ARIMA is over 6%,

i.e. 3𝑥 worse.

6 CONCLUSION
We presented a formal definition for the Capacity Planning Prob-

lem which is a crucial planning step for many companies given the

volatilities in the marketplace. We showed how existing methods
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for forecasting percentiles fail to produce an accurate estimate es-

pecially when we do long range forecasting. We then proposed a

two-ingredient solution to the problem by modifying the parameter

estimation process for ARIMA and adding a Monte-Carlo simula-

tion sampling to the inference/forecasting process. Although we

discussed in the context of ARMA for most cases, we explained

how this proposal can be expanded to other variations like ARIMA,

SARIMA, GARCH, etc. With our experiments, we demonstrated

that the proposed solution is effective and makes the estimation of

percentiles very accurate even for long range forecasts.

Future works can include theoretical analysis of our proposed

solution and expanding it to other areas of density estimation.

Another interesting direction is to analyze whether using old data

is hurting our forecasts due to the fact that the evolution of time

series might have completely altered over time and a single model

might not describe the entire history of time series.
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A SEASONALITY IN ARIMA
We define seasonality with periodicity of𝑚 to be a consistent pat-

tern that can be seen in a given time series x𝑛
1
if we consider any

sub-series of the form 𝑥𝑖 , 𝑥𝑖+𝑚, 𝑥𝑖+2𝑚, . . . where 𝑖 ∈ {1, 2, . . . ,𝑚−1}.
For example, if 𝑥𝑖 represents daily numbers and𝑚 = 7, i.e., we have

weekly patterns, then 𝑥1, 𝑥8, 𝑥15, . . . represents the sequence of Sun-

days and 𝑥2, 𝑥9, 𝑥16, . . . represents the sequence of Mondays, etc.

Definition 4 (SARMA(𝑝, 𝑞) (𝑃,𝑄) (𝑚)). Given a stationary zero-
mean time series x𝑛

1
with seasonal periodicity of𝑚, we model 𝑥𝑖 for

𝑖 > 𝑛 as

𝑥𝑖 = 𝜇𝑖 + 𝑢𝑖

𝜇𝑖 =

𝑝∑
𝑗=1

𝜙 𝑗𝑥𝑖−𝑗 +
𝑃∑
𝑙=1

Φ𝑙𝑥𝑖−𝑙𝑚 −
𝑝∑
𝑗=1

𝑃∑
𝑙=1

𝜙 𝑗Φ𝑙𝑥𝑖−𝑗−𝑙𝑚

−
𝑞∑

𝑘=1

𝜃𝑘𝑢𝑖−𝑘 −
𝑄∑
𝑣=1

Θ𝑣𝑢𝑖−𝑣𝑚 +
𝑞∑

𝑘=1

𝑄∑
𝑣=1

𝜃𝑘Θ𝑣𝑢𝑖−𝑘−𝑣𝑚

𝑢𝑖 ∼ D
(
0, 𝜎2

)
(11)

where, 𝑢 𝑗 ’s are i.i.d. samples drawn from the distribution D(0, 𝜎2),
and, 𝜙 ’s, Φ’s, 𝜃 ’s, Θ’s and 𝜎 are the model parameters.

In contrast to ARMA (1), SARMA has extra terms to capture the

seasonality. The presence of these terms breaks the linearity of 𝜇𝑖
in model parameters. However, later we leverage the fact that given

𝜃 ’s and 𝜙 ’s, the 𝜇𝑖 is linear in Θ’s and Φ’s and vice versa.

Definition 5 (SARIMA(𝑝,𝑑, 𝑞) (𝑃, 𝐷,𝑄) (𝑚)). Given a (non sta-
tionary) time series x𝑛

1
with seasonal periodicity of 𝑚, suppose we

apply the seasonal differentiation process 𝐷 times (via Algorithm 3)
followed by the application of the differentiation process 𝑑 times to

https://www.kaggle.com/sumanthvrao/daily-climate-time-series-data
https://www.kaggle.com/sumanthvrao/daily-climate-time-series-data
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Algorithm 3: Seasonal Differentiation Process

SeasonalDiff (x, 𝐷 ,𝑚)

if 𝑑 ≤ 0 then
return x

for 𝑖 from 1 to x.length −𝑚 do
𝑦𝑖 = 𝑥𝑖+𝑚 − 𝑥𝑖

return SeasonalDiff (y, 𝐷 −𝑚,𝑚)

get a stationary time series y𝑛−𝑑−𝑚𝐷
1

. We then define

SARIMA(𝑝, 𝑑, 𝑞) (𝑃, 𝐷,𝑄) (𝑚)
(
x𝑛
1

)
= SARMA(𝑝, 𝑞) (𝑃, 𝐷,𝑄) (𝑚)

(
y𝑛−𝑑−𝑚𝐷
1

)
(12)

where, SARMA is defined in Definition 4.

Similar to the ARIMA case, we can focus on SARMA instead of

SARIMA given that the appropriate pre-processing (differentiation)

has taken place. Furthermore, we assume the parameters 𝑝 , 𝑞, 𝑃

and 𝑄 are known perhaps via an auto-ARIMA process as explained

in the previous section. The choice of the parameter𝑚 can be done

either via domain knowledge about the time series, e.g. the demand

has weekly trend (𝑚 = 7) or the temperature has an annual trend

(𝑚 = 365). In the absence of the domain knowledge, one can use

Fourier transform to find the dominant frequencies of the time

series and determine𝑚 based on that. We assume the parameter𝑚

is also known via the aforementioned or other processes.

B VARIABLE VARIANCE IN ARIMA
ARMA model assumes a fixed innovation variance of 𝜎2 as defined

in this section. However, some time series do not fit into this criteria

as the innovation variance might change from one point to the

other. Auto Regressive Conditional Heteroskedasticity (ARCH) and

its variations are a class of models that model the evolution of

variance across samples (in contrast to ARMA model that captures

the evolution of the mean across samples).

Definition 6 (GARCH(𝑟, 𝑠)). Given a time series x𝑛
1
, we model

𝑥𝑖 for 𝑖 > 𝑛 as

𝑥𝑖 ∼ D
(
𝜇𝑖 , 𝜎

2

𝑖

)
𝜇𝑖 = 𝜇

𝜎2𝑖 = 𝜔 +
𝑟∑
𝑗=1

𝛼 𝑗𝜎
2

𝑖−𝑗 −
𝑠∑

𝑘=1

𝛽𝑘𝑢
2

𝑖−𝑘

𝑢𝑖 = 𝑥𝑖 − 𝜇𝑖

(13)

where, 𝛼 ’s, 𝛽’s and 𝜔 are the model parameters.

Combining GARCH as defined above with ARMA as defined in

(2) would allow us to capture the evolution of mean and variance of

the distribution at the same time. These definitions can be extended

to the ARIMA and seasonal cases. We skip including all of those

definitions since it is trivial how to extend the current definitions

to include those cases.

Definition 7 (ARMA(𝑝, 𝑞)-GARCH(𝑟, 𝑠)). Given a stationary
time series x𝑛

1
, we model 𝑥𝑖 for 𝑖 > 𝑛 as

𝑥𝑖 ∼ D
(
𝜇𝑖 , 𝜎

2

𝑖

)
𝜇𝑖 =

𝑝∑
𝑗=1

𝜙 𝑗 𝜇𝑖−𝑗 −
𝑝∑
𝑗=1

𝜙 𝑗𝑢𝑖−𝑗 −
𝑞∑

𝑘=1

𝜃𝑘𝑢𝑖−𝑘

𝜎2𝑖 = 𝜔 +
𝑟∑
𝑗=1

𝛼 𝑗𝜎
2

𝑖−𝑗 −
𝑠∑

𝑘=1

𝛽𝑘𝑢
2

𝑖−𝑘

𝑢𝑖 = 𝑥𝑖 − 𝜇𝑖

(14)

where, 𝜙 ’s, 𝜃 ’s, 𝛼 ’s, 𝛽’s and 𝜔 are the model parameters.
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