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ABSTRACT
As deep learningmodels have gradually become themainworkhorse

of time series forecasting, the potential vulnerability under adver-

sarial attacks to forecasting and decision system accordingly has

emerged as a main issue in recent years. Albeit such behaviors and

defense mechanisms started to be investigated for the univariate

time series forecasting, there are still few studies regarding the

multivariate forecasting which is often preferred due to its capacity

to encode correlations between different time series. In this work,

we study and design adversarial attack on multivariate probabilistic

forecasting models, taking into consideration attack budget con-

straints and the correlation architecture between multiple time

series. Specifically, we investigate a sparse indirect attack that hurts

the prediction of an item (time series) by only attacking the history

of a small number of other items to save attacking cost. In order

to combat these attacks, we also develop two defense strategies.

First, we adopt randomized smoothing to multivariate time series

scenario and verify its effectiveness via empirical experiments. Sec-

ond, we leverage a sparse attacker to enable end-to-end adversarial

training that delivers robust probabilistic forecasters. Extensive

experiments on real dataset confirm that our attack schemes are

powerful and our defend algorithms are more effective compared

with other baseline defense mechanisms.

KEYWORDS
Machine learning, Time-series, Forecasting, Robustness

ACM Reference Format:
Linbo Liu

*
, Youngsuk Park

†
, Trong Nghia Hoang, Hilaf Hasson, and Jun

Huan. . Towards Robust Multivariate Time-Series Forecasting: Adversarial

Attacks and Defense Mechanisms . In Proceedings of 8th SIGKDD Interna-
tional Workshop on Mining and Learning from Time Series – Deep Forecasting:
Models, Interpretability, and Applications (MileTS ’22). ACM, New York, NY,

USA, 9 pages.

1 INTRODUCTION
Model robustness in time-series forecasting has been a long-standing

issue. Applications include achieving more consistent predictions

for climate change [32], financial market [2], stable down-stream

decision systems like in retail [6], resource planning for cloud com-

puting [35], and optimal control vehicles [23]. Time series data are

MileTS ’22, Aug 15, 2022, Washington, DC
.

known to contain measurement noises and developing forecast-

ing models less sensitive to such noise is highly desirable. Most

of previous robust methods [28, 29, 46] in time series focused on

traditional statistical models like vector autoregressive models and

ARIMA [7], and Exponential Smoothing models [8], Prophet [45].

For those methods robustness refers to the capability of handling

restricted notions of natural or non-adversarial noises, or model

stability against outliers [11, 17]. In this paper we investigate a new

type of model robustness for time-series forecasting on adversarial

noises, which are new vulnerabilities that come along with deep

learning, as elaborated next.

As deep learning-based forecastings [27, 34, 36, 38, 39, 47] increas-

ingly replace traditional statistical counterparts, the potential issues

of vulnerabilities against a distinct notion of adversarial perturba-

tions [19, 43] has gained research attention in the time series mod-

eling, which has only been explored mainly in the area of image

classification. Therein, human-imperceptible adversarial perturba-

tion can mislead classification outcomes of DNN models, triggering

a vast amount of potential warnings to safety-critical systems such

as self-driving cars [55]. Similar yet distinct speculative threat can

occur in time series forecasting setting. Think of situation in cost-

critical financial market where a financial institute makes profits

based on its prediction of its client’s stock price, which might be

attacked by adversaries who want to degrade the financial insti-

tute’s prediction. To make the attack imperceptible, the adversaries

might devise a scheme that invests and hence changes the prices

adversely for a small subset of stock indices, among a much larger

pool of stock indices. Furthermore, the adversaries may not directly

invest in the client’s stock, which makes the attack harder to detect

as there is no direct adverse investment into the target stock. This

attack scheme is called indirect attack. See Figure 1 for a simulated

example.

Such potential threats and simulation of a seemingly plausible and

imperceptible attack to multivariate time-series forecasting (via

an example of stock price prediction) are not straight-forward to

be formulated through the existing framework developed in clas-

sification settings. Note several differences of forecasting against

classification in terms of unique characteristic of time series, e.g.,
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time horizon, multiple items, and probabilistic predictions of fore-

casters, e.g., quantiles. These differences open up the question of

how adversarial perturbations and robustness should be defined

in time series setting more properly. Extending recent endeavors

on adversarial attack and robustness for univariate forecasting

cases [14, 53], we formally investigate those in richer class of mul-

tivariate forecasting. Unlike an univariate forecasting class, new

regime of sparse and indirect attack can be dominant and more ef-

fective under multivariate modelling, as mentioned in the previous

stock example. This can not be captured from existing attack or

defense designed from univariate forecasting class, especially when

multiple time series are strongly correlated to each other. More

formally, we try to tackle the following challenges:

1. Indirect Attack: Can we mislead the forecasting of a target
time series via adverse perturbations made to others?
2. Attack Imperceptibility: Can the set of attacked time series
be made sparse and nondeterministic to be less perceptible?
3. Robust Defense: If the above threats can be realized, can
we devise a defense mechanism against them?

To address the above questions, we mainly propose three technical

contributions listed below.

1. First, we devise a deterministic attack and show that adverse

perturbations made to a subset of time series (not including the

target time series) as described above can significantly alter the

prediction outcome of the model. To be specific, we develop our

deterministic attack (Section 3.2) based on the DeepVAR [38] model,

which currently provides SOTA result to forecasting. Our attack is

formulated as two-stage optimization task. The first phase finds an

additive perturbation series to the authentic data such that Deep-

VAR’s target statistics (e.g., prediction mean) is maximally altered

in expectation, within a space of low-energy (hence, supposedly

imperceptible) attacks. The second phase is then posed as a heuris-

tic packing problem where all but 𝑘 (with 𝑘 being a user-specified

parameter) rows of the perturbation matrix are zeroed out such

that minimal amount of attack effect is lost.

2. Next, we develop probabilistic attack that learns to strategically

make adverse perturbation to different (small) subsets of time se-

ries, making the attack much more stealth and harder to detect.

Specifically, we formulate a probabilistic attack (Section 3.3) that

relaxes the above 𝑘-hot constraint into a softer version that only

requires the expectation of the attack vector rather than itself to

be 𝑘-hot. Under such relaxation, we found that there is a provably

approach to construct a learnable distribution over such 𝑘-hot at-

tack space, with differentiable parameterization. This allows for

the probabilistic attack model to elegantly merge the two sepa-

rate phases of the deterministic attack. It can be shown empirically

that an attack structured this way is often more effective (Section 5).

3. Finally, we propose two defense mechanisms. On the one hand,

we adopt randomized smoothing technique [10, 25] to our setting.

On the other hand, we devise a defense mechanism (Section 4.2)

based on the differentiable formulation of the probabilistic attack

(a) (b)
Figure 1: Plots of (a) authentic (orange) and perturbed (blue) ver-
sions of time-series (TS) 5, which is selected by an attacker to mount
an indirect attack on TS 1; and (b) ground-truth (orange), no-attack
(blue) and under-attack (green) predictions for TS 1. No alteration
was made to TS 1 but the value of TS 1 at the attack time step (𝑡 = 288)
were adversely altered in the under-attack (green) setting, which can
set the prediction of TS 1 significantly away from the ground truth.

above. Our defense is generated as the optimal solution to a mini-

max optimization task which minimizes the maximum expected

damage caused by the probabilistic attacker that continually up-

dates the generation of its adverse perturbation in response to the

model updates. We also show the non-trivial effectiveness of our

proposed defense against the aforementioned attacks (Section 5).

2 RELATEDWORK AND BACKGROUND
In this section, we review some related work regarding time series

forecasting, adversarial attacks and model robustness.

Deep Forecasting Models. Time series forecasting is a topic with

long history and various models had been proposed from the previ-

ous century. Classic multivariate time series (MTS) models include

moving average (MA), vector autoregressive (VAR), Autoregressive

Integrated Moving Average (ARIMA). See Brockwell and Davis [7]

for a comprehensive overview of classic models. However, tradi-

tional statistical tools become inaccurate when it comes to large col-

lection of dataset like demand forecasting of large retailers, which

motivates the usage of DNN-based forecasting models with more

complex architecture to fit large scale dataset. The idea of applying

neural network to time series forecasting dates back to Hu and

Root [21] and stayed relatively quiet for a few decades. Recently,

with the growth of large dataset and improvement of computing

resources, more DNN-based forecasting models are investigated.

Given the temporal dependency of time series data, RNN-based

architectures have been proved a success for time series forecasting

tasks [27, 36, 39, 47]. CNN-based forecasting models are also thor-

oughly studied in Bai et al. [5], Oord et al. [33], etc. In order to model

the uncertainty, various probabilistic models have been proposed.

For example, de Bézenac et al. [15], Rangapuram et al. [36], Sali-

nas et al. [39] modeled the distribution of time series by neural

networks and delivered probabilistic forecasters. Quantile-based

methods [16, 22, 34] were also developed for consistent distribution-

free uncertainty quantification. In multivariate cases, Sen et al. [41]

leveraged a global matrix factorization and a local temporal net-

work to think globally, act locally. Salinas et al. [38] generalized
DeepAR [39] to multivariate cases and employed low-rank Gauss-

ian copula process to reduce problem complexity raised by high

dimensionality. Last, we refer interested readers to Lim and Zohren
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[26] for a survey on forecasting with deep learning.

Adversarial Attack. Despite its success in various tasks, deep

neural network is especially vulnerable to adversarial attacks [43]

in the sense that even imperceptible adversarial noise can lead to

completely different prediction. In computer vision, many adver-

sarial attack schemes have been proposed. See Goodfellow et al.

[19], Madry et al. [30] for attacking image classifiers and Dai et al.

[13] for attacking graph structured data. In the field of time series,

there is much less literature and even so, most existing studies on

adversarial robustness of MTS models [20, 31] are restricted to re-

gression and classification settings, which do not extend straightfor-

wardly to forecasting with auto-regressive structures. Alternatively,

Yoon et al. [53] studied adversarial attacks to probabilistic forecast-

ing models as well as their defense mechanisms. However, these

studies are restricted to univariate setting and cannot be extended

to MTS setting with new potential threat of stealth, indirect attack

as mentioned above.

Adversarial Robustness and Certification. The existence of ad-
versarial attack significantly harms the performance of deep neural

network. Thus, an extensive body of work has been devoted to

quantify model robustness and many quantification algorithms

were proposed, among which are Fast-Lin/Fast-Lip [50] that re-

cursively compute local Lipschitz constant of a neural network,

PROVEN [49] that certifies robustness in a probabilistic approach

and DeepZ [42] that is based on abstract interpretation. To enhance

model robustness, adversarial training and robust training are two

popular techniques. In adversarial training [30, 52], a neural net-

work is trained on the adversarial examples instead of the original

ones; As for robust training, one trains the model by simultaneously

minimizing the loss and maximizing certified robustness [50, 51].

Recently, randomized smoothing has gained increasing popularity

as to enhancemodel robustness, which was proposed by Cohen et al.

[10], Li et al. [25] as a defense approach with certification guarantee

in image classification and has several variants [9, 24, 40, 54]. In a

most recent work, Yoon et al. [53] adopted randomized smoothing

technique to univariate forecasting models and developed theory

therein. However, to the best of our knowledge, there is no prior

work applying randomized smoothing to multivariate probabilistic

models. In this work, we adopt randomized smoothing to multi-

variate time series and show the effectiveness of this technique via

extensive empirical experiments.

To summarize, although there are prior works discussing adversar-

ial attack and robustness for univariate probabilistic forecasting

models, they cannot be readily generalized to multivariate cases

with the extra technical difficulty raised by high-dimensionality.

We present both deterministic and probabilistic approaches that

overcome the discreteness issue caused by the required sparsity

structure of the attack vector. For defense, we adopt randomized

smoothing technique in multivariate cases and shows the effec-

tiveness via empirical experiments on real dataset. Moreover, the

probabilistic attack approach allows us to train an attacker in an

end-to-end fashion, which in turns can be helpful in developing

another end-to-end defense mechanism.

3 ADVERSARIAL ATTACK STRATEGIES
This section provides a quick review of the SOTA probabilistic

forecasting model DeepVAR (Section 3.1), and introduces two ap-

proaches for sparse, indirect attack. First, a deterministic approach

is developed which optimizes for a deterministic set of time series

to be altered adversely in order to attack a target time series. This is

achieved via a two-stage optimization process (Section 3.2). Next, to

make the attack even less perceptible, a second non-deterministic

approach is developed to instead optimize for a distribution over

such subset of time series, which (unlike the former approach) can

be learned end-to-end in a single stage (Section 3.3).

Algorithm 1 Deterministic sparse attack algorithm

Input: 𝑑-dimensional time series x = (x1, x2, . . . , x𝑇 ) ∈ R𝑑×𝑇 .
A probabilistic forecasting model 𝑓𝜃 (x) which outputs density

𝑝𝜃 (y|x). Future time horizon to attack 𝐻 ⊆ [𝜏]. Target time

series 𝐼 ⊆ [𝑑]. Attack budget 𝜂. Sparsity 𝑘 . Number of iteration

𝑁 .

Output: Sparse attack 𝛿 ∈ R𝑑×𝑇 with row sparsity 𝑘 and 𝛿𝐼 ,∗ =
0.
1. Initialize 𝛿 = 0 ∈ R𝑑×𝑇
2. Draw a predicted sample ŷ from 𝑝𝜃 (y|x). Get adversarial target
value t = 𝜒 (𝑐ŷ).
for iteration = 1, . . . , 𝑁 do

3. Compute predicted distribution: 𝑝𝜃 (y|x + 𝛿).
4. Compute expected loss under targeted attack:

ℓ =
∑︁

ℎ∈𝐻,𝑖∈𝐼
Ey∼𝑝𝜃 (y |x+𝛿) (𝑦𝑖,𝑇+ℎ − 𝑡𝑖,𝑇+ℎ)

2 .

5. Use any first order method to update 𝛿 so as to minimize ℓ .

6. Clip 𝛿 with threshold 𝜂: 𝛿𝑖,𝑡 = 𝛿𝑖,𝑡 min{1, 𝜂/|𝛿𝑖,𝑡 |}
end for
7. For each time series 𝑖 ∉ 𝐼 , compute cumulative perturbation

over all time: 𝑐𝑖 =
∑𝑇
𝑡=1 |𝛿𝑖𝑡 | and sort 𝑐𝑖 in descending order:

𝑐𝜋 (1) ≥ 𝑐𝜋 (2) ≥ · · · ≥ 𝑐𝜋 (𝑑) .
8. Keep 𝛿𝜋 (1),∗, . . . , 𝛿𝜋 (𝑘),∗ and set 𝛿𝜋 (𝑘+1),∗, . . . , 𝛿𝜋 (𝑑),∗ = 0.

9. Output 𝛿 .

3.1 Probabilistic Forecasting Models
Suppose a 𝑇 -step history of a 𝑑-dimensional multivariate time se-

ries (MTS) x1, x2, . . . , x𝑇 ∈ R𝑑 are given. Let 𝑥𝑖,𝑡 ∈ R denote the

observed value of 𝑖-th time series at time 𝑡 . The forecasting task

is to predict the values x𝑇+1, x𝑇+2, . . . , x𝑇+𝜏 of the MTS 𝜏-step into

the future. The prediction is often based on the observed values

of x1, x2, . . . , x𝑇 ∈ R𝑑 . A probabilistic forecasting model 𝑝𝜃 (y|x) is
often characterized as an auto-regressive function mapping from

the observed input x ∈ R𝑑×𝑇 to a distribution over future target

values y ∈ R𝑑×𝜏 . Its parameterization 𝜃 is often associated with

a DNN in SOTA probabilistic deep forecasting models. Here, for

notational convenience, we define x = (x1, x2, . . . , x𝑇 ) ∈ R𝑑×𝑇
and y = (x𝑇+1, x𝑇+2 . . . , x𝑇+𝜏 ) ∈ R𝑑×𝜏 . Also, for a matrix 𝐴, let

𝐴𝑖,∗ denote the 𝑖-th row of 𝐴. We define the element-wise max-

imum norm and Frobenius norm of 𝐴 as ∥𝐴∥max = max𝑖, 𝑗 |𝐴𝑖 𝑗 |,
∥𝐴∥𝐹 = (∑𝑖, 𝑗 𝐴

2

𝑖 𝑗
)1/2. For a specific form of 𝜃 , we refer interested
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readers to the DeepVAR paper [38]. In what follows, it suffices to

present the main ideas with the abstraction 𝜃 .

Sparse Adversarial Attack.Wewill now formally define an attack

to the above forecasting model. In particular, suppose we are inter-

ested in the statistic 𝜒 (y) ∈ R𝑚 that is a function of the random

vector y. To stage an attack, we let 𝛿 denote an adverse pertur-

bation to the input x such that the Euclidean distance between

the expected statistic E𝑝𝜃 (y |x+𝛿) [𝜒 (y)] and an adversarial target

t(x) ∈ R𝑚 is minimized. Here, t(x) is the desired target specified

by the adversaries, which is radically different from the clean pre-

diction E𝑝𝜃 (y |x) [𝜒 (y)]. Thus, the optimal attack can be found via

solving the following constrained minimization task:

min

𝛿 ∈R𝑑×𝑇
𝐽 (𝛿) ≜

E𝑝𝜃 (y |x+𝛿) [𝜒 (y)] − t(x)2
2

s.t. ∥𝛿 ∥max ≤ 𝜂 , (3.1)

where 𝜂 specifies the desired energy of the attack and the above ex-

pectation is over y ∼ 𝑝𝜃 (y|x + 𝛿). Often, 𝜂 is selected to be small to

make the attack less perceptible. In the above, suppose that we want

to mislead the forecasting for a set of pre-specified time-series with

indices 𝐼 ∈ [𝑑], our interested statistic will then be 𝜒 (y) ≜ 𝜒 (y𝐼 ,∗)
which abstractly defines the predictive statistic corresponding to

the rows of y with indices in 𝐼 .

Stealth Attack.We now define a stealth attack 𝛿 as a sparse matrix

such that its row sparsity 𝑠 (𝛿) = |{𝑖 : 𝛿𝑖,∗ ≠ 0}| ≤ 𝑘 where 𝑘 is

the desired level of sparsity. Intuitively, this means a stealth attack

is configured such that only a small subset of its row might be

non-zero whereas the rest of it is zero. A small value of 𝑘 would

therefore make the attack even less perceptible. Furthermore, since

the interested statistic 𝜒 (y) = 𝜒 (y𝐼 ,∗) involves the indices of time

series in 𝐼 , setting 𝛿𝐼 ,∗ = 0 can make the attack more stealthy as

there is no direct adverse alternation in the time series appearing

in 𝜒 . Therefore, an optimal stealth attack can be found by adding

these constraints to Eq. (3.1),

min

𝛿 ∈R𝑑×𝑇
𝐽 (𝛿) ≜

E𝑝𝜃 (y |x+𝛿) [𝜒 (y)] − t(x)2
2

s.t. ∥𝛿 ∥max ≤ 𝜂, 𝑠 (𝛿) ≤ 𝑘, 𝛿𝐼 ,∗ = 0 . (3.2)

This however results in an intractable optimization task in general,

so we provide two approximations in the subsequent sections.

3.2 Deterministic Attack
We first present a deterministic approach to solving (3.2) approx-

imately. Here, the difficulty in optimizing (3.2) is due to the in-

tractable constraint 𝑠 (𝛿) ≤ 𝑘 . To sidestep this, we use projected

gradient descent (PGD) to numerically update the values of 𝛿 ,

𝛿 (𝑡+1) =
∏

𝐵∞ (0,𝜂)

(
𝛿 (𝑡 ) − ∇𝛿 𝐽

(
𝛿 (𝑡 )

) )
, (3.3)

where

∏
𝐵∞ (0,𝜂) is the projection onto the ℓ∞-norm ball 𝐵∞ (0, 𝜂)

with a radius 𝜂 centered around the origin. Note that ∇𝛿 𝐽 (𝛿) in-
volves the computation of the gradient of an expectation which

is too complex to be analytically integrated. To overcome this in-

tractability, we adopt the re-parameterized sampling approach used

in Dang-Nhu et al. [14] and Yoon et al. [53]. Suppose 𝛿∗ denote the
converged value of 𝛿 following the iterative update in Eq. (3.3), we

solve for its sparse approximation via

ˆ𝛿 = argmin

𝛿

∥𝛿 − 𝛿∗∥𝐹

s.t. 𝑠 (𝛿) ≤ 𝑘, 𝛿𝐼 ,∗ = 0 .

(3.4)

It is straightforward to see that (3.4) can be solved analytically.

Given 𝛿∗, we compute the absolute row sum 𝑐𝑖 =
∑𝑇
𝑡=1 |𝛿∗𝑖,𝑡 | for

𝑖 ∈ 𝐼𝑐 and sort them in descending order 𝑐𝜋 (1) ≥ · · · ≥ 𝑐𝜋 (𝑑−1) .

Rows from the top 𝑘 index 𝜋 (1), 𝜋 (2), . . . , 𝜋 (𝑘) will be kept in ˆ𝛿

while the other will be zeroed out, as described in Algorithm 1.

3.3 Probabilistic Attack
In this subsection, we further remove the two-stage heuristic ap-

proximation in Section 3.2, which is non-differentiable and cannot

be optimized end-to-end, making it unsuitable to be integrated

into a differentiable defense mechanism as described later in Sec-

tion 4.2. The key issues here are in fact the non-convex and non-

differentiable constraint in (3.2) which disables differentiable op-

timization via gradient descent. To sidestep this, we instead view

the sparse attack vector as a random vector drawn from a distribu-

tion with differentiable parameterization which can be learned via

gradient updates.

The core issue here is how to configure such distribution whose

support is guaranteed to be within the space of sparse vectors. To

achieve this, we configure this distribution as a learnable combina-

tion of a normal standard and a Dirac density, whose samples can

be interpreted as differentiable transformation of samples drawn

from a parameter-free normal standard – see Lemma 3.1. As we can

update the parameters of the transformation via its gradient, we can

learn the attack distribution with sparse support – see Lemma 3.2.

Key to this parameterization is the ability to sample from a combina-

tion between Dirac and Gaussian densities, which is substantiated

via the construction of a sparse layer as detailed below.

Sparse Layer.A sparse layer is configured as a conditional distribu-

tion 𝑞Θ (𝛿 |x) such that E[𝑠 (𝛿)] ≤ 𝑘 and 𝛿𝐼 ,∗ = 0where 𝛿 ∼ 𝑞Θ (𝛿 |x),
𝐼 is the set of target time-series which are not to be altered, and 𝑘 is

the user-specified level of sparsity as defined before. Let Θ = (𝛽,𝛾).
We treat each row 𝛿𝑖,∗ of 𝛿 as an independent sample drawn from

𝑞𝑖 (𝛿𝑖,∗ |x; 𝛽,𝛾) parameterized by 𝛽 and 𝛾 , as defined below:

𝑞𝑖

(
𝛿𝑖,∗ |x; 𝛽,𝛾

)
≜ 𝑟𝑖 (𝛾) · 𝑞′𝑖

(
𝛿𝑖,∗ |x; 𝛽

)
+

(
1 − 𝑟𝑖 (𝛾)

)
· 𝐷

(
𝛿𝑖,∗

)
, (3.5)

where 𝐷 (𝛿𝑖,∗) is the Dirac density concentrated at 𝛿𝑖,∗ = 0 and

𝑞′
𝑖
(𝛿𝑖,∗ |x; 𝛽) is a Gaussian density whose mean and variance are

functions of x which are parameterized by 𝛽 that can be weights of

a DNN. The combination weight 𝑟𝑖 (𝛾) on the other hand denotes

the probability mass of the event 𝛿𝑖,∗ = 0, which is parameterized

by 𝛾 . Intuitively, this means the choice of {𝑟𝑖 (𝛾)}𝑛𝑖=1 controls the
row sparsity of the random matrix 𝛿 , which can be calibrated to

enforce that E[𝑠 (𝛿)] ≤ 𝑘 . We will show in Lemma 3.1 how samples

can be drawn from the combined density in (3.5). Then, Lemma 3.2
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shows why sample 𝛿 drawn from (3.5) would meet the constraint

E[𝑠 (𝛿)] ≤ 𝑘 . Put together, Lemma 3.1 and Lemma 3.2 enables

differentiable optimization of a sparse attack distribution as desired.

Lemma 3.1. Let 𝛿 ′
𝑖,∗ ∼ 𝑞

′
𝑖
(·|x, 𝛽) and 𝑢𝑖 ∼ N(0, 1) for 𝑖 = 1, . . . , 𝑑 .

Define 𝛿𝑖,∗ = 𝛿 ′
𝑖,∗ ∗ I(𝑢𝑖 ≤ Φ−1 (𝑟𝑖 (𝛾))). Then, 𝛿𝑖,∗ ∼ 𝑞𝑖 (𝛿𝑖,∗ |x; 𝛽,𝛾).

Here, 𝑞𝑖 (·|x; 𝛽,𝛾) is given in (3.5) and Φ−1 is the inverse cumulative

of the standard normal distribution.

Proof. We can compute

P(𝛿𝑖,∗ = 0) = 1 − P
(
𝑢𝑖 ≤ Φ−1

(
𝑟𝑖 (𝛾)

))
= 1 − 𝑟𝑖 (𝛾) (3.6)

That is, with probability 1 − 𝑟𝑖 (𝛾), 𝛿𝑖,∗ = 0. Equivalently, 𝛿𝑖,∗ is
distributed by a degenerated probability measure with Dirac density

𝐷 (𝛿𝑖,∗) concentrated at 0. On the other hand, with probability 𝑟𝑖 (𝛾),
𝛿𝑖,∗ is distributed as 𝑞′

𝑖
(·|x; 𝛽). Combining the two cases, it follows

that 𝛿𝑖,∗ is distributed by a mixture of 𝑞′
𝑖
(·|x; 𝛽) and 𝐷 (𝛿𝑖,∗) with

weights 𝑟𝑖 (𝛾) and 1 − 𝑟𝑖 (𝛾) respectively. □

For implementation, observing that the second property 𝛿𝐼 ,∗ =

0 can always be satisfied by zeroing out the 𝐼 rows of 𝛿 . Thus,

for simplicity, we ignore this constraint. Let 𝑞′
𝑖
(·|x; 𝛽) be dense

distributions, e.g. N(𝜇 (𝛽), 𝜎2 (𝛽)𝐼 ), over R𝑇 and 𝑢𝑖 ∼ N(0, 1) for
𝑖 ∈ [𝑑]. We can construct a binary mask,

mask𝑖 = I
(
𝑢𝑖 ≤ Φ−1

(
𝑟𝑖 (𝛾)

))
, 𝑖 ∈ [𝑑]

where 𝑟𝑖 (𝛾) ≜
(
𝑘𝛾

1/2
𝑖
/
√
𝑑

)
/
(∑𝑑

𝑖=1 𝛾𝑖

)
1/2

.

Next, for each 𝑖 ∈ [𝑑], we draw 𝛿 ′
𝑖,∗ from 𝑞′

𝑖
(·|x, 𝛽) and obtain

𝛿𝑖,∗ by 𝛿𝑖,∗ = 𝛿 ′
𝑖,∗ ∗ mask𝑖 . Finally, we set 𝛿𝐼 ,∗ = 0. Lemma 3.2

below verifies the required sparsity property in expectation, thus

completing our differentiable sparse attack.

Lemma 3.2. Let 𝛿 ∼ 𝑞Θ (·|x). Then, E[𝑠 (𝛿)] ≤ 𝑘 .

Proof. By the construction of 𝑟𝑖 (𝛾),

E
[
𝑠 (𝛿)

]
=

𝑑∑︁
𝑖=1

E
[
I
(
𝑢𝑖 ≤ Φ−1 (𝑟𝑖 (𝛾))

)]
=

𝑑∑︁
𝑖=1

P
(
𝑢𝑖 ≤ Φ−1 (𝑟𝑖 (𝛾))

)
=

𝑑∑︁
𝑖=1

𝑟𝑖 (𝛾) =
𝑘
√
𝑑
·

∑𝑑
𝑖=1 𝛾

1/2
𝑖(∑𝑑

𝑖=1 𝛾𝑖

)
1/2 ≤ 𝑘

□

Optimizing Sparse Layer. The differentiable parameterization

of the above sparse layer can be optimized (for maximum attack

impact) via minimizing the expected distance between the attacked

statistic and adversarial target:

min

Θ
E𝛿∼𝑞Θ ( · |x)

Ey∼𝑝𝜃 (y |x+𝛿) [𝜒 (y)] − t(x)2
2

, (3.7)

This attack is probabilistic in two ways: First, the magnitude of the

perturbation 𝛿 is a random variable from distribution 𝑞(·|x). Sec-
ond, the non-zero components of the mask depend on the random

Figure 2: Work flow of sparse layer

Gaussian samples 𝑢𝑖 in Lemma 3.1, which brings another degree of

non-determinism into the design, making the attack more stealth

and harder to detect.

Discussion. There are three important advantages of the above

probabilistic sparse attack. First, by viewing the attack vector as ran-

dom variable drawn from a learnable distribution instead of fixed

parameter to be optimized, we are able to avoid solving the NP-hard

problem (3.2) as usually approached in previous literature [12]. Sec-

ond, our approach introduces multiple degree of non-determinism

to the attack vector, apparently making it more stealth and power-

ful (see the experiments in Section 5). Last, as the attack model is

entirely differentiable, it can be directly integrated as part of a dif-

ferentiable defense mechanism that can be optimized via gradient

descent in an end-to-end fashion – see Section 4.2 for more details.

4 DEFENSE AGAINST ADVERSARIAL ATTACK
The adversarial attack on probabilistic forecasting models was in-

vestigated in Dang-Nhu et al. [14], Yoon et al. [53] under univariate

time series setting. Many efforts have been made to defend against

adversarial attack. Data augmentation has been widely applied in

forecasting [48] and can improve model robustness. In the follow-

ing section, we go beyond data augmentation and introduce more

advanced techniques to enhance model robustness via randomized

smoothing [10] and mini-max defense using sparse layer.

4.1 Randomized Smoothing
Randomized smoothing was first proposed by Cohen et al. [10], Li

et al. [25] in the field of computer vision and generalized to univari-

ate time series setting by Yoon et al. [53]. Randomized smoothing

is a post-training process and can be applied to any forecasting

model 𝑓𝜃 (x), or 𝑓 (x) if the context is clear. Mathematically, let 𝑓

be a random function that maps x ∈ R𝑑×𝑇 to a random vector 𝑓 (x)
in R𝑑 and denote the CDF of 𝑓 (x) as 𝐹x (r) = P(𝑓 (x) ⪯ r), where
⪯ denotes element-wise inequality. Let 𝑔𝜎 (x) be the randomized

smoothing version of 𝑓 (x) with noise level 𝜎 and 𝑔𝜎 (x) is also a

random vector in R𝑑 whose CDF is defined as

𝐺x,𝜎 (r) = Ez∼N𝑑×𝑇 (0,𝜎2𝐼 )
[
P
(
𝑓 (x + z) ⪯ r

)]
,

As shown by Yoon et al. [53], sample paths drawn from 𝐺x,𝜎 (r)
have robustness certification in univariate cases.

Implementation.To get𝑛 future samples from randomized smooth-

ing forecaster, we independently draw 𝑛 isotropic Gaussian noises

𝜖1, . . . , 𝜖𝑛 ∼ N𝑑×𝑇 (0, 𝜎2𝐼 ) and compute the predicted distribution
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𝑓𝜃 (x(1 + 𝜖𝑖 )) for future time series. For each 𝑓𝜃 (x(1 + 𝜖𝑖 )), draw a

sample ŷ(𝑖) ∼ 𝑓𝜃 (x(1 + 𝜖𝑖 )) and collect ŷ(i) for 𝑖 = 1, . . . , 𝑛. These

will be the sample paths under randomized smoothing.

4.2 Mini-max Defense
We notice that our sparse layer can not only be used as an attacker,

but is also helpful as a defense procedure.

Formulation. We randomly initialize a sparse layer 𝑔Θ with spar-

sity 𝑘 as a hyper-parameter and a forecasting model 𝑓𝜃 from scratch.

For each data point x in the training set, the sparse layer 𝑔Θ is used

to generate a sparse adversarial example x̂, which is then fed into

𝑓𝜃 to complete training phase. Specifically, in each epoch, the first

step is to update the parameters of the sparse layer by maximizing

the model’s deviation from the true prediction

ℓ𝑔 =

𝑛∑︁
𝑖=1

E𝛿∼𝑔Θ (x𝑖 ;𝑘) ∥Ey𝑖∼𝑓𝜃 (x𝑖+𝛿) [y𝑖 ] − y
true

𝑖 ∥,

where 𝑦true
𝑖

is the ground truth prediction. In the second step, we

train the model 𝑓𝜃 on the corrupted examples generated by the

current 𝑔Θ. In other words, we update 𝜃 to maximize the model

likelihood:

ℓ𝑓 =

𝑛∑︁
𝑖=1

E𝛿𝑖∼𝑔Θ (x𝑖 ;𝑘) log 𝑝𝜃 (y
true

𝑖 |x𝑖 + 𝛿𝑖 ) .

Note that 𝑔Θ and 𝑓𝜃 compete over one another in the sense that

in each epoch, 𝑔Θ is trained to generate effective attack that could

harm 𝑓𝜃 and 𝑓𝜃 is then trained to defend the attack from 𝑔Θ. We

call this defense mechanism a mini-max defense. Similar ideas have

been exploited in deep generative models, such as GAN [18] and

WGAN [3]. See Algorithm 2 for a detailed description.

Algorithm 2Mini-max defense algorithm

Input: Forecasting datasetD = {x𝑖 , ytrue𝑖
}𝑛
𝑖=1

, where x𝑖 ∈ R𝑑×𝑇

and ytrue
𝑖
∈ R𝑑×𝜏 is obtained from backtest window using histor-

ical data. Hyper-parameter 𝑘 as the sparsity level in the sparse

layer 𝑔Θ (x;𝑘)
Output: A forecasting model 𝑓𝜃 (x).
for epoch = 1, . . . , 𝑁 do

1. Compute loss for the sparse layer 𝑔Θ (x;𝑘):

ℓ𝑔 = −
𝑛∑︁
𝑖=1

E𝛿∼𝑔Θ (x𝑖 ;𝑘) ∥Ey𝑖∼𝑓𝜃 (x𝑖+𝛿) [y𝑖 ] − y
true

𝑖 ∥.

2. Update Θ in the sparse layer to minimize ℓ𝑔 .

3. Let 𝑝𝜃 (·|x) be the output distribution of 𝑓𝜃 (x). Compute

likelihood for model 𝑓𝜃 (x):

ℓ𝑓 =

𝑛∑︁
𝑖=1

E𝛿𝑖∼𝑔Θ (x𝑖 ;𝑘) log 𝑝𝜃 (y
true

𝑖 |x𝑖 + 𝛿𝑖 ) .

4. Update 𝜃 in forecasting model to maximize ℓ𝑓 .

end for

Different from the sparse layer used in attack, this sparse layer

in defense does not have access to the attack sparsity or the set

of target time series 𝐼 . Hence, we need to set the sparsity 𝑘 as a

(a) (b)
Figure 3: Plots of (a) averaged wQL under sparse indirect attack
against the sparsity level on electricity dataset. The underlying
model is a clean DeepVARwithout defense. Target time series 𝐼 = {1}
and attacked time stamp 𝐻 = {𝜏 }; and (b) average wQL under differ-
ent defense mechanisms on electricity dataset. The attack type is
deterministic attack. Target time series 𝐼 = {1} and attacked time
stamp 𝐻 = {𝜏 }.

hyper-parameter and skip the last step of the sparse layer described

in Section 3.3 where we set 𝛿𝐼 ,∗ = 0.

5 EXPERIMENTS
We conduct numerical experiments to demonstrate the effect of

our proposed indirect sparse attack on a probabilistic DeepVAR

model [38] and compare various defensemechanisms including data

augmentation, randomized smoothing and mini-max defense. The

experiments are performed on standard real datasets for time series

forecasting including Taxi [44] and UCI Electricity [4] datasets

preprocessed as in Salinas et al. [39].

5.1 Experiment Setups
In empirical experiments, we target the prediction of the first

time series at the last prediction time step, i.e. target time series

𝐼 = {1} and time horizon to attack 𝐻 = {𝜏}, the last time step, so,

𝜒 (y) = 𝑥1,𝑇+𝜏 . For the adversarial target t(x), we first draw a pre-

diction x̂ from un-attacked model 𝑝𝜃 (·|x) and choose t = 𝑐1𝑥1,𝑇+𝜏
for some 𝑐1 > 0. Note that 𝑐1 should be away from 1 to reflect

adversarial target. The attack energy 𝜂 = 𝑐2. When adding adver-

sarial perturbation 𝛿 to x, always add relative change x(1 + 𝛿).
Unless otherwise stated, the number of sample paths drawn from

the prediction distribution 𝑛 = 100 to quantify quantiles 𝑞
(𝛼)
𝑖,𝑡

.

Metrics. We measure the performance of model under attacks by

the popular metric especially for probabilistic forecasting models:

weighted quantile loss (wQL), which is defined as

wQL(𝛼) = 2

∑
𝑖,𝑡 [𝛼 max(𝑥𝑖,𝑡 − 𝑞 (𝛼)𝑖,𝑡

, 0) + (1 − 𝛼)max(𝑞 (𝛼)
𝑖,𝑡
− 𝑥𝑖,𝑡 , 0)]∑

𝑖,𝑡 |𝑥𝑖,𝑡 |
,

where 𝛼 ∈ (0, 1) is a quantile level. In practical application, under-

prediction and over-prediction may cost differently, suggesting

wQL should be one’s main consideration especially for probabilistic

forecasting models. In the subsequent sections, we calculate aver-

age wQL over a range of 𝛼 = [0.1, 0.2, . . . , 0.9] and evaluate the

performance in terms of averaged wQL.

Data augmentation and randomized smoothing. Following the

convention in Dang-Nhu et al. [14], Yoon et al. [53], we use relative

noises in both data augmentation and randomized smoothing. That
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Table 1: Average wQL on electricity dataset under deterministic attack. Target time series 𝐼 = {1} and attacked time stamp
𝐻 = {𝜏}. Smaller is better.

Sparsity no defense data augmentation randomized smoothing mini-max defense

no attack 0.2853±0.0825 0.2288±0.0792 0.2176±0.0700 0.2154±0.0705
1 0.3410±0.0946 0.2949±0.0716 0.2826±0.0718 0.2990±0.0772
3 0.4559±0.1344 0.3655±0.1097 0.3757±0.1012 0.3775±0.0923
5 0.5770±0.1772 0.5554±0.1636 0.5560±0.1751 0.5273±0.1558
7 0.6687±0.2131 0.7076±0.2321 0.7072±0.2308 0.6506±0.2111
9 0.8282±0.2847 0.8412±0.2896 0.8327±0.2786 0.7503±0.2588

Table 2: Metrics on electricity dataset under probabilistic attack using sparse layer. Target time series 𝐼 = {1} and attacked time
stamp 𝐻 = {𝜏}. Smaller is better.

Sparsity no defense data augmentation randomized smoothing mini-max defense

no attack 0.2909±0.0748 0.2374±0.0764 0.2237±0.0750 0.2342±0.0710
1 0.4364±0.1296 0.5923±0.0913 0.5940±0.1142 0.4935±0.1450
3 0.7245±0.2434 0.5738±0.1759 0.4581±0.1301 0.8079±0.2838
5 0.9143±0.3235 0.8422±0.2945 0.9276±0.3208 0.5265±0.1611
7 0.9991±0.3505 0.8267±0.2823 1.0100±0.3554 0.6161±0.1986
9 1.0317±0.3707 0.8139±0.2827 0.8919±0.3072 0.6466±0.2054

is, given a sequence of observation x = (𝑥𝑖,𝑡 )𝑖,𝑡 ∈ R𝑑×𝑇 , we draw
i.i.d. noise samples 𝜉𝑖,𝑡 ∼ N(0, 𝜎2) and produce noisy input as

𝑥𝑖,𝑡 ← 𝑥𝑖,𝑡 (1 + 𝜉𝑖,𝑡 ). In data augmentation, we train model with

noisy input 𝑥𝑖,𝑡 . In randomized smoothing, the base model is still

trained on noisy input 𝑥𝑖,𝑡 with noise level 𝜎 . The noise level 𝜎 in

the inference phase of randomized smoothing is chosen to be the

same as that in data augmentation so there is no need to distinguish

the 𝜎 used in the two processes.

5.2 Experiment Results
Electricity dataset. Electricity [4] dataset consists of hourly elec-

tricity consumption time series from 370 customers. We use the

electricity dataset provided by GluonTS [1] and train a DeepVAR

model implemented by pytorch-ts [37] with target dimension 10 and

rank 5. We choose 𝜏 = 24 and 𝑇 = 4𝜏 = 96, sparsity 𝑘 = 1, 3, 5, 7, 9.

In t = 𝑐1𝑥1,𝑇+𝜏 and 𝜂 = 𝑐2, we select 𝑐1 = 0.5, 2.0 and 𝑐2 = 0.5

respectively and report the largest error produced by these choices

of constants. 𝜎 = 0.1 is chosen in data augmentation and random-

ized smoothing. The metrics under deterministic attack given by

Algorithm 1 and probabilistic attack using sparse layer are reported

in Table 1 and Table 2 respectively, with attacking configuration

𝐼 = {1} and 𝐻 = {𝜏}. Besides, we plot wQL under all attacks and

defenses against sparsity level to better visualize the effects. See

Figure 3a and Figure 3b.

Discussion on Electricity datasets. In this experiment, we have

verified the existence of sparse indirect attack, that is, one can

attack the prediction of one time series without directly attacking

the history of this time series. For example, under deterministic

attack, the average wQL is increased by 20% by only attacking

one out of nine remaining time series (totally ten but the target

time series is excluded). Moreover, attacking half of the time series

can increase average wQL by 102%! This observation is even more

noticeable under probabilistic attack: average wQL can be increased

by 215% with 50% of the time series attacked. In general, average

wQL increases as sparsity level increases and probabilistic attack

appears to be more effective than deterministic one, see Figure 3a.

As can be seen in Figure 3b, all three defense methods can bring

robustness to the forecasting model. Data augmentation and ran-

domized smoothing works well under small sparsity and mini-max

defense achieves comparable performance as data augmentation

and randomized smoothing under small sparsity and outperforms

them under large sparsity.

Additional experiments on Taxi dataset. Taxi dataset is a traffic

time series of New York taxi rides taken at 1214 locations for every

30 minutes from January 2015 to January 2016 and considered to be

heterogeneous. We use the taxi-30min dataset provided by GluonTS.

We train a DeepVAR model with target dimension 10 and rank 5.

We choose the same hyper-parameters as in electricity dataset and

report the performance of deterministic attack and probabilistic

attack in Table 5 and Table 6 respectively in Appendix B. On taxi

dataset, it can be observed that in most of the cases under both at-

tacks, our mini-max defense mechanism achieves the best averaged

wQL loss.

6 CONCLUSION
In this work, we investigate sparse indirect attack for multivari-

ate time series forecasting models. We propose both deterministic

approach and a novel probabilistic approach to finding effective

adversarial attack. Besides, we adopt randomized smoothing tech-

nique from image classification and univariate time series to our

framework and design another mini-max optimization to effec-

tively defend the attack delivered by our attackers. To the best of

our knowledge, this is the first work to study sparse indirect at-

tack on multivariate time series and develop corresponding defense

mechanisms, which could inspire a future research direction.
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A MORE METRICS ON ELECTRICITY DATASET
To measure the performance of a forecasting model, other metrics like Weighted Absolute Percentage Error (WAPE) or Weighted Squared

Error (WSE) are also considered by a large body of literature. For completeness, we present the definition of WAPE and WSE:
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We report WAPE, WSE and wQL under deterministic and probabilistic attacks on electricity dataset in Table 3 and Table 4.

Table 3: Metrics on electricity dataset under deterministic attack. Target time series 𝐼 = {1} and attacked time stamp 𝐻 = {𝜏}.
Smaller is better.

no defense data augmentation randomized smoothing mini-max defense

Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL

no attack 0.3784±0.2435 0.2025±0.2633 0.2853±0.0825 0.2975±0.1421 0.1087±0.0727 0.2288±0.0792 0.2810±0.1445 0.0998±0.0675 0.2176±0.0700 0.2913±0.1362 0.1034±0.0724 0.2154±0.0705
1 0.4707±0.2849 0.3028±0.3628 0.3410±0.0946 0.4128±0.2658 0.2411±0.2619 0.2949±0.0716 0.3936±0.2442 0.2146±0.2145 0.2826±0.0718 0.4231±0.2598 0.2465±0.2150 0.2990±0.0772
3 0.6637±0.4436 0.6372±0.7861 0.4559±0.1344 0.5533±0.2452 0.3663±0.2654 0.3655±0.1097 0.5564±0.2616 0.3780±0.2895 0.3757±0.1012 0.5847±0.3796 0.4859±0.4365 0.3775±0.0923
5 0.8167±0.5127 0.9299±1.0085 0.5770±0.1772 0.7926±0.5421 0.9221±1.0479 0.5554±0.1636 0.7924±0.5366 0.9158±1.0489 0.5560±0.1751 0.8003±0.5162 0.9070±0.8311 0.5273±0.1558
7 0.9353±0.6183 1.2572±1.3999 0.6687±0.2131 0.9947±0.6051 1.3556±1.3441 0.7076±0.2321 0.9945±0.6367 1.3944±1.4845 0.7072±0.2308 0.9299±0.5439 1.1606±0.9590 0.6506±0.2111
9 1.1140±0.7385 1.7865±1.9223 0.8282±0.2847 1.1474±0.7336 1.8546±1.9234 0.8412±0.2896 1.1454±0.7297 1.8444±1.9262 0.8327±0.2786 1.0502±0.6403 1.5128±1.2721 0.7503±0.2588

full attack 1.3696±0.9286 2.7383±3.1382 1.0159±0.3542 1.0765±0.6046 1.5243±1.2691 0.8023±0.2664 1.1048±0.6350 1.6238±1.4510 0.8133±0.2659 1.2567±0.7118 2.0860±1.6019 0.9415±0.3424

Table 4: Metrics on electricity dataset under probabilistic attack using sparse layer. Target time series 𝐼 = {1} and attacked time
stamp 𝐻 = {𝜏}. Smaller is better.

No defense data augmentation randomized smoothing mini-max defense

Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL

no attack 0.3842±0.2620 0.2162±0.3044 0.2909±0.0748 0.3074±0.1746 0.1250±0.0946 0.2374±0.0764 0.2858±0.1547 0.1056±0.0761 0.2237±0.0750 0.3218±0.1429 0.1240±0.0830 0.2342±0.0710
1 0.6230±0.6324 0.7881±1.1864 0.4364±0.1296 0.7476±0.7240 1.0830±1.8593 0.5923±0.0913 0.7683±0.8771 1.3596±2.7290 0.5940±0.1142 0.6990±0.6957 0.9726±1.7182 0.4935±0.1450
3 1.0540±0.7522 1.6768±1.4810 0.7245±0.2434 0.8484±0.6809 1.1834±1.3998 0.5738±0.1759 0.6784±0.5230 0.7337±0.7698 0.4581±0.1301 0.9909±0.7564 1.5540±1.8925 0.8079±0.2838
5 1.2078±0.7451 2.0139±2.0667 0.9143±0.3235 1.1444±0.6665 1.7538±1.4318 0.8422±0.2945 1.2310±0.7025 2.0090±1.6609 0.9276±0.3208 0.6966±0.4554 0.6927±0.8752 0.5265±0.1611
7 1.3236±0.7310 2.2863±1.8336 0.9991±0.3505 1.1304±0.6522 1.7031±1.4053 0.8267±0.2823 1.3496±0.6777 2.2809±1.7240 1.0100±0.3554 0.8424±0.7803 1.3186±1.7286 0.6161±0.1986
9 1.3656±0.8671 2.6166±2.6679 1.0317±0.3707 1.0912±0.6181 1.5727±1.2081 0.8139±0.2827 1.1978±0.6742 1.8894±1.5309 0.8919±0.3072 0.8691±0.7410 1.3043±2.0663 0.6466±0.2054

B ADDITIONAL EXPERIMENTS ON TAXI DATASET

Table 5: Metrics on taxi dataset under deterministic attack. Target time series 𝐼 = {1} and attacked time stamp 𝐻 = {𝜏}. Smaller
is better.

no defense data augmentation randomized smoothing mini-max defense

Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL

no attack 3.2142±2.4891 16.5265±26.0154 0.6320±0.1114 3.4168±2.4399 17.6273±27.2472 0.6683±0.1447 3.4254±2.4796 17.8821±27.2862 0.6737±0.1351 2.9806±2.4607 14.9394±26.4364 0.5740±0.1256
1 3.2829±2.5329 17.1934±25.8223 0.6402±0.1087 3.6419±2.5344 19.6865±27.7478 0.7110±0.1299 3.5855±2.4891 19.0519±26.6860 0.7001±0.1268 2.9807±2.3575 14.4425±23.0432 0.5675±0.1218
3 3.8502±2.7065 22.1489±28.6597 0.7431±0.1298 4.1094±2.6854 24.0987±30.2943 0.7927±0.1281 4.0566±2.6615 23.5399±28.7010 0.7867±0.1328 3.3575±2.3293 16.6983±22.6643 0.6187±0.1357
5 4.6638±2.9978 30.7378±34.5478 0.8994±0.1836 4.8021±2.9732 31.8996±35.2534 0.9311±0.1728 4.7566±2.9546 31.3546±34.3349 0.9239±0.1653 3.8960±2.7201 22.5774±30.0041 0.7224±0.1583
7 5.2899±3.4284 39.7373±44.1055 1.0409±0.2378 5.4514±3.3364 40.8489±41.8463 1.0580±0.2157 5.4342±3.4091 41.1526±43.6852 1.0602±0.2106 4.5777±3.0506 30.2612±35.2095 0.8601±0.2028
9 5.7683±3.7389 47.2523±50.1275 1.1368±0.2766 5.9307±3.8472 49.9744±55.4119 1.1560±0.2544 5.9214±3.6963 48.7254±50.5991 1.1489±0.2535 5.0326±3.3762 36.7260±40.8499 0.9552±0.2342

full attack 5.7031±3.6022 45.5005±45.5102 1.1229±0.2677 5.7006±3.4781 44.5936±44.9340 1.1004±0.2438 5.7582±3.5435 45.7137±46.1601 1.1256±0.2500 4.4553±3.2047 30.1198±35.0223 0.8572±0.1947

Table 6: Metrics on taxi dataset under probabilistic attack. Target time series 𝐼 = {1} and attacked time stamp 𝐻 = {𝜏}. Smaller
is better.

no defense data augmentation randomized smoothing mini-max defense

Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL

no attack 3.2024±2.5543 16.7798±27.0240 0.6331±0.1147 3.4415±2.4311 17.7543±26.9227 0.6739±0.1416 3.3960±2.4740 17.6534±27.1673 0.6658±0.1407 2.9347±2.4405 14.5687±25.5719 0.5664±0.1180
1 3.5647±2.6634 19.8008±26.9725 0.6974±0.1150 3.5624±2.4657 18.7701±25.6556 0.6957±0.1258 3.5970±2.4377 18.8808±25.4870 0.7009±0.1292 3.0822±2.4489 15.4971±25.1302 0.5926±0.1230
3 3.5497±2.8747 20.8643±31.7045 0.6947±0.1163 3.7124±2.7975 21.6080±29.1594 0.7250±0.1201 3.8457±2.6817 21.9809±26.7964 0.7460±0.1275 3.2417±2.6009 17.2736±23.5462 0.6414±0.1180
5 4.2499±2.8963 26.4501±30.1929 0.8080±0.1527 3.9792±2.6460 22.8357±26.4122 0.7752±0.1345 4.1840±2.7878 25.2774±28.4534 0.7935±0.1478 3.1440±2.5098 16.1838±21.2503 0.7900±0.1407
7 4.7907±3.0940 32.5235±35.2534 0.9334±0.2086 3.8134±2.9295 23.1238±34.0380 0.7314±0.1385 4.2922±2.8123 26.3319±36.2382 0.8044±0.1647 3.2961±2.6990 18.1486±27.0921 0.6958±0.1255
9 5.3450±3.3176 39.5753±38.6771 1.0470±0.2455 4.9965±2.9362 33.5863±31.8005 0.9637±0.1977 5.3693±3.0930 38.3966±35.8923 1.0286±0.2111 3.2063±2.6314 17.2046±25.2366 0.7292±0.1229
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