
Time-Series Forecasting using Dynamic Graphs: Case Studies
with Dyn-STGCN and Dyn-GWN on Finance and Traffic Datasets

Shibal Ibrahim∗

shibal@mit.edu
Massachusetts Institute of Technology

Cambridge, MA, USA

Max R. Tell∗
maxtell@mit.edu

Massachusetts Institute of Technology
Cambridge, MA, USA

Rahul Mazumder
rahulmaz@mit.edu

Massachusetts Institute of Technology
Cambridge, MA, USA

ABSTRACT
Spatio-temporal modeling is an essential lens to understand many
real-world phenomena from traffic to epidemiology. Although fore-
casting time-series is an exceptionally well-studied problem, recent
years have seen impressive gains in the performance of graph learn-
ing as a paradigm for spatial learning problems. Some recent work
has explored the intersection of these two fields, but often assumes
that the spatial structure is static. We propose a new framework
for spatio-temporal learning from dynamic graphs. The two main
components of our models are: (i) Temporal convolutions on the
time-varying adjacency space, (ii) Tensor Graph Convolutional
Layer (TGCL) which aggregates latent temporal representations of
time-varying node features and time-varying graphs. We generalize
previous models to leverage both dynamic and static graphs while
being attractive in terms of computational efficiency. We demon-
strate our proposals with two new time-varying graph-based meth-
ods Dyn-STGCN and Dyn-GWN for time-series forecasting. Experi-
ments demonstrate the efficacy of these model across datasets from
different domains. Interestingly, our Dyn-STGCN and Dyn-GWN
models are superior at handling dynamic graphs than existing state-
of-the-art time-varying graph-based methods e.g., EvolveGCN and
TM-GCN in terms of strong generalization while providing both
efficient training and inference.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Neural networks; Temporal reason-
ing; • Mathematics of computing → Time series analysis; •
Applied computing→ Transportation; Forecasting.

KEYWORDS
spatio-temporal modeling; time-series forecasting; graph neural
networks; dynamic graphs

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD MILETS, August, 2022,
© 2022 Association for Computing Machinery.
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Shibal Ibrahim, Max R. Tell, and Rahul Mazumder. 2022. Time-Series Fore-
casting using Dynamic Graphs: Case Studies with Dyn-STGCN and Dyn-
GWN on Finance and Traffic Datasets. In 8TH SIGKDD International Work-
shop on Mining and Learning from Time Series – Deep Forecasting: Models,
Interpretability, and Applications, August, 2022. ACM, Washington, DC, USA,
9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graphs are popular data structures that are effective at compactly
representing relationships between entities in structured domains.
A rich body of literature have recently explored graph-based rep-
resentation learning for a range of applications in the context of
time-series forecasting — see Feng et al. [2019]; Li et al. [2018];
Mas [2021]; Pareja et al. [2020]; Shumovskaia et al. [2021]; Wu
et al. [2019, 2020]; Yu et al. [2018] among others. These works en-
compass inherently spatial problems such as traffic forecasting [Li
et al. 2018; Yu et al. 2018], power networks [Wu et al. 2020], and
banking links [Shumovskaia et al. 2021]. However, this same frame-
work also extends to more abstract correlation structures in stock
price prediction [Chen et al. 2018], currency exchange rates [Wu
et al. 2020], and epidemiology [Mas 2021]. Thus, effective tools in
this domain present promising opportunities to advance the state-
of-the-art forecasting performance across these and many more
applied problems.

These works employ (temporal) graph neural networks (GNNs)
that extend convolutional neural networks to irregular graph do-
mains. Most of these works fundamentally rely on a (given) static
graph [Li et al. 2018; Wu et al. 2019; Yu et al. 2018]. In many real-
world scenarios, the graph structure can evolve over time e.g., social
networks [Berger-Wolf and Saia 2006], detecting fraud and crime
in financial networks [Pareja et al. 2020], and analyzing contact
tracing data [Malik et al. 2021]. It is important to capture such evo-
lutions in graphs into the learnt graph representations for improved
generalization. There has been limited work in models that learn
from dynamically changing graphs [Malik et al. 2021; Pareja et al.
2020; Piaggesi and Panisson 2022]. These models are either prohibi-
tively slow and/or suffer from poor generalization performance —
as our experiments show.

We introduce models that provide superior out-of-sample gen-
eralization, while being attractive in terms of computational effi-
ciency. We propose a combination of temporal convolutions on
the time-varying adjacency space and Tensor Graph Convolutional
Layer (TGCL), which collectively capture dynamic trends in graphs
effectively in the time-varying graph representations. The joint
module can be combined with existing state-of-the-art (temporal)
GNN architectures that have previously relied on only static graphs
e.g., Spatio-Temporal Graph Convolutional Networks (STGCN) [Yu

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

KDD MILETS, August, 2022, Shibal Ibrahim, Max R. Tell, and Rahul Mazumder

et al. 2018], Graph WaveNet (GWN) [Wu et al. 2019], MTGNN
[Wu et al. 2020]. We equip our time-varying graph-based models
with cheaply computed time-varying partial correlation graphs
— when time-varying graphs are not given, but the correlations
are naturally time-varying — and demonstrate through our experi-
ments that temporal convolutions on the time-varying adjacency
space and TGCL improve the out-of-sample generalization of these
models significantly. Interestingly, our TGCL-equipped models are
30% better than prior models that rely on dynamic graphs e.g.,
EvolveGCN [Pareja et al. 2020] and TM-GCN [Malik et al. 2021].
Additionally, our TGCL-based models are 300× faster to train than
the more competitive dynamic graph-based EvolveGCN baseline.

Contributions. Our contributions can be summarized as follows:
(i) We propose temporal convolutions on the time-varying graph
adjacency space, which operates alongside the temporal convolu-
tions on the time-varying feature space. (ii) We propose Tensor
Graph Convolutional Layer (TGCL) that generalizes the graph con-
volutional operator to the tensor space, combining time-varying
(learnt) feature representations and time-evolving (learnt) graph
representations. (iii) TGCL along with the temporal convolutions
on time-varying graphs can be incorporated into many existing
temporal GCN architectures e.g., STGCN, GWN. We denote these
architectures as Dyn-STGCN, Dyn-GWN and show improved out-
of-sample generalization in comparisonwith their respective (static)
counterparts on finance and traffic datasets. (iv) Interestingly, in
comparison with state-of-the-art baselines that rely on dynamic
graphs e.g., EvolveGCN, TM-GCN, our proposed Dyn-GWN leads
to 35% better test performance on traffic forecasting PEMS-BAY
dataset. (v) Our Dyn-GWNmodel is ∼ 300× faster than EvolveGCN
(more competitive baseline from dynamic graph models).

2 RELATEDWORK
Static Spatio-temporal Models. Recent work has focused on de-

veloping models that can leverage a static spatial structure. Yu et al.
[2018] approach traffic forecasting from a purely convolutional
architecture perspective to propose STGCN, which applies graph
convolutions to the graph adjacency and 1D causal convolutions
to the temporal axis. Li et al. [2018] leverage the idea of diffusion
convolution to capture spatial dependencies in the context of traffic
forecasting in their DCRNN architecture. Both these approaches
have become foundational in this domain, sparking a series of mod-
els, improving upon both spatial and temporal aspects of these
models. See Table 1 (and description) in Jiang et al. [2021] for an
extensive overview.

Notable among these later models are Graph WaveNet [Wu et al.
2019] and MTGNN [Wu et al. 2020]. Wu et al. [2019] builds on the
work of Li et al. [2018] using diffusion convolutions in both a for-
ward and backward direction, as well as learning a "self-adaptive"
adjacency matrix to capture hidden dependencies which are not
represented in the original adjacency. To capture temporal relation-
ships, they apply 1D causal convolutions because of their ability
to capture long-range relationships and scale efficiently. Wu et al.
[2020] consider applicationswhere the graph structure is not known
a priori. They focus on learning the graph structure from purely
time-series data. Their approach uses similar 1D convolutions to
the approach by Yu et al. [2018], but also employees MixHop-based

Table 1: Qualitative Comparison of Spatio-temporal Models

Model Graph Type Training Time Generalization
DCRNN Static Slow Strong
STGCN Static Fast Strong
GWN Static Fast Strong
EvolveGCN Dynamic Slow Strong
TM-GCN Dynamic Fast Poor
Dyn-STGCN(ours) Dynamic Fast Strong
Dyn-GWN(ours) Dynamic Fast Strong

[Abu-El-Haija et al. 2019] graph convolution layers which promise
greater representation power by learning weights for a mixture
of adjacency matrix powers. Both Graph WaveNet and MTGNN
models have been independently validated to be the state-of-the-art
models in traffic forecasting comparison survey — See Table 5 in
Jiang et al. [2021]. None of these models consider temporal convolu-
tions on the dynamic adjacency space (as we propose in this work)
along with TGCL-based aggregation scheme. Our proposals can be
integrated into these leading models as we demonstrate with two
particular models: — STGCN and Graph WaveNet.

Dynamic Spatio-temporal Models. Next, we summarize works
that consider dynamic graphs in their modeling approaches. One
of the earliest such methods was by Pareja et al. [2020]. With
EvolveGCN, they extend the work on graph convolutions done by
Kipf and Welling [2016] to dynamic graphs by applying a recurrent
model to capture the evolution of the GCN parameters. They model
the dynamics of the GCN’s weights over time via recurrent archi-
tectures, which "evolve" the weights based on the previous weights
and/or the current node embeddings. Malik et al. [2021] extend
the graph convolution paradigm even further to three-dimensional
tensors that explicitly incorporate a time dimension. Their work
replicates the functional form of graph convolutions while redefin-
ing the convolution function using Tensor-M Products, thus the
name, TM-GCN.

Limitations of existing work. Although adequate methods exist
for spatio-temporal forecasting with static graphs, all existing meth-
ods for dynamic graphs are either slow in training and/or inference
or provide relatively poor generalization performance.We provide a
qualitative summarize in Table 1. Although EvolveGCN [Pareja et al.
2020] shows strong performance on a number of tasks, its recurrent
architecture renders this method prohibitively time-consuming to
train. As a result, it is challenging to tune to new datasets and
tasks. TM-GCN [Malik et al. 2021] is orders of magnitudes more
computationally efficient on spatio-temporal datasets. However,
it shows poor generalization in our experiments. Thus, we pro-
pose Dyn-STGCN and Dyn-GWN as methods, which address both
shortcomings in a principled manner, drawing inspiration from
TM-GCN [Malik et al. 2021] and STGCN [Yu et al. 2018]/GWN [Wu
et al. 2019]. We validate with substantial empirical work relative to
a wide range of baselines.

3 PROBLEM DEFINITION
We refer to a sequence of graphs: G (𝑡) = (V,𝑨(𝑡) ,𝑿 (𝑡)), 𝑡 ∈
{1, . . . ,𝑇 }, with a fixed set V of 𝑁 nodes, time-varying adjacency

Dyn-STGCN and Dyn-GWN: Time-Series Forecasting using Dynamic Graphs KDD MILETS, August, 2022,

matrices 𝑨(𝑡) ∈ R𝑁×𝑁 , and time-varying node feature matrices
𝑿 (𝑡) ∈ R𝑁×𝑝 . Note 𝑿 (𝑡)

𝑛,: ∈ R𝑝 is the feature vector consisting
of 𝑝 features associated with node 𝑛 at time 𝑡 . The graphs can be
weighted, and directed or undirected. These can be generalized
across time. A time-varying graph is represented by a tensor G ∈
R𝑇×𝑁×𝑁 which concatenates 𝑨(𝑡) across all timesteps 𝑡 ∈ [𝑇].
Similarly, a feature tensor, X ∈ R𝑇×𝑁×𝑝 concatenates the node
features 𝑿 (𝑡) at each timestep. A static graph setting is represented
by G = (V,𝑨,𝑿 (𝑡)), with the same set V of nodes and fixed
adjacency matrix 𝑨 ∈ R𝑁×𝑁 (capturing long-term dependencies)
and time-varying node feature matrices 𝑿 (𝑡) .

We consider a dynamic graph representation learning paradigm
that aims to learn a function 𝑓 (·) that maps 𝑇 ′ historical graph
signals and time-varying graphs to future ℎ graph signals, i.e.,

[X(𝑡−𝑇 ′+1:𝑡) ,G(𝑡−𝑇 ′+1:𝑡) , 𝑺]
𝑓 (·)
−−−→ X(𝑡+1:𝑡+ℎ) , (1)

where the dynamic learning paradigm employs additional (given)
static graph to capture long-term dependencies. The time-varying
graphs are assumed to be apriori known and are passed to the
learning problem — this is similar to the learning paradigm studied
by Malik et al. [2021]; Pareja et al. [2020].

4 PROPOSED ARCHITECTURES: DYN-STGCN
AND DYN-GWN

Given the strong generalization performance of prior models with
static graphs, STGCN and GWN presents a compelling direction to
extend to dynamic graphs. These static models rely on two funda-
mental blocks: 1D temporal convolutions and graph convolution.
The key challenges of catering to dynamic graphs with these models
are:
(i) how to extend temporal convolution blocks to tensors, rather

than matrices;
(ii) how to aggregate information from learnt dynamic graph

embeddings with the learnt feature embeddings.
For the first challenge, we get inspiration from the approach taken
for node features, and devise a similar strategy that performs gated
temporal convolutions on adjacency tensors. For the second chal-
lenge we introduce a Tensor Graph Convolutional Layer (TGCL) .
We discuss our proposals in detail in Sections 4.1, and 4.2.

Our proposals are applicable to multiple existing state-of-the-
art methods e.g., Spatio-Temporal Graph Convolution Network
(STGCN) [Yu et al. 2018], Graph WaveNet (GWN) [Wu et al. 2019],
MTGNN [Wu et al. 2020] etc. We demonstrate the applicability of
our proposals in the context of STGCN and GWN. We denote our
new methods as Dyn-STGCN and Dyn-GWN.

4.1 Gated Temporal Convolution Layers with
Residual Connections

We first describe the gated temporal convolutional layers with resid-
ual connections that operate on the time-varying adjacency graph
tensors. These layers consist of three components: dilated causal
convolutions [Yu and Koltun 2016], gating [Dauphin et al. 2017],
and residual connections [He et al. 2016]. These gated temporal
convolution layers capture temporal trends in the dynamic graphs.
In prior work, such modules have been used to capture temporal

trends in node features only, e.g., in Wu et al. [2019]. However, the
temporal trends in dynamic graphs also capture useful information
as we show in our work. Next, we describe individual components
of the gated temporal convolutional layers.

Dilated Causal Convolutions. Dilated causal convolutions have
multiple favorable characteristics:
(i) they allow an exponentially large receptive field by increasing

the layer depth,
(ii) they can support long-range sequences,
(iii) they allow efficient parallel computation because they do not

require recursive computation,
(iv) they allow causal prediction (prediction does not rely on future

time steps) by zero padding.
As a special case of standard 1D convolution, the dilated causal
convolution operation slides over inputs by skipping values with a
certain step. Mathematically, given a 1D sequence input 𝒙 ∈ R𝑇 ′

and a filter ℎ𝜃 ∈ R𝐾 , the dilated causal convolution operation of 𝑥
with ℎ𝜃 at step 𝑡 is represented as

𝒙 ★ 𝒉𝜃 (𝑡) =
𝐾−1∑︁
𝑠=0

𝒉𝜃 (𝑠)𝒙 (𝑡 − 𝑑 × 𝑠), (2)

where 𝑑 is the dilation factor which controls the skipping distance.

Gated Temporal Convolution Network. Gating mechanisms have
shown promising results in both recurrent and temporal architec-
tures [Dauphin et al. 2017]. A simple Gated Temporal Convolution
Network (Gated TCN) takes the form:

ℎ = 𝑔(𝒙 ★ℎ𝜃1) ⊙ 𝜎 (𝒙 ★ℎ𝜃2), (3)

where 𝒙 is the input, 𝜃1, 𝜃2 are learnable parameters, ⊙ is the
element-wise Hadamard product, 𝑔(·) is an activation function,
and 𝜎 (·) is the sigmoid function which determines the ratio of
information passed to the next layer. Note there are additional bias
terms, which we omit here for convenience. We adopt Gated TCN
in our model to learn complex temporal dependencies. Empirically,
we used tangent hyperbolic function (𝑡𝑎𝑛ℎ(·)) as the activation
function𝑔(·). In tensor notation, we denote this operation as Γ★XΘ.

Residual Connections. Given the success of residual connections
in various neural network architectures, e.g. ResNets [He et al.
2016], graph convolutional networks [Chen et al. 2020] etc., we
include additional residual connection in the gated TCN as follows:

ℎ =
(
𝑔

(
𝒙 ★ℎ𝜃1

)
+ 𝒙𝑟𝑒𝑠

)
⊙ 𝜎 (𝒙 ★ℎ𝜃2), (4)

where 𝒙𝑟𝑒𝑠 denotes the residual connection from the prior TCN
layer. In tensor notation, we denote this operation as Γ𝑟𝑒𝑠 ★X Θ.

4.1.1 Application of Gated TCN with residual connections to dy-
namic graphs. We propose to apply the operation in (4) on the
dynamic graphs. This function operates in parallel to the (exist-
ing) temporal convolutional layers (operating on signals/features)
in STGCN and GWN architectures. Stacking of gated TCN layers
allows learning of longer term dependencies in both the dynamic
graphs and the dynamic node signals — the existing STGCN and
GWN only learn longer term dependencies in dynamic node signals.

Application of the operation in (4) requires some implemen-
tation considerations. In order to make use of existing efficient

KDD MILETS, August, 2022, Shibal Ibrahim, Max R. Tell, and Rahul Mazumder

GPU-compatible temporal convolutional implementations in pop-
ular deep learning API, we pass the reshaped version of the dy-
namic graphs to the modules. G is processed (at the input) into
a shape: (𝑏,𝑇 ′, 𝑁 2, 1), where 𝑏 represent the batch-size, 𝑇 ′ de-
notes the historical lag, 𝑁 2 denotes all the pair-wise entries in
the graphs. The successive Gated TCN modules generate G𝑙 ∈
R𝑏,𝑇

′−𝑑 [𝑙]∗(𝐾−1),𝑁 2,𝑐𝑙𝑜𝑢𝑡 , where 𝑐𝑙𝑜𝑢𝑡 denotes the number of latent
dynamic graphs and 𝑑 [𝑙] denotes dilation factors up to layer 𝑙 . Note
𝑐𝑙−1
𝑜𝑢𝑡 = 𝑐𝑙

𝑖𝑛
for 𝑙 ∈ [𝐿], 𝑐1

𝑖𝑛
= 1, and 𝐿 denotes the number of

successive gated TCN modules in the architecture.

Adjacency Normalization Layer. After empirical investigations,
we found that properly normalizing adjacency tensors is essential
to strong performance with our model. In particular, we transform
each latent (or input) adjacency slice into [0, 1]𝑁×𝑁 . This is only
necessary before passing the adjacency tensor to TGCL, which is
described in Section 4.2. Thus, we construct the Adjacency Normal-
ization Layer, denoted by the function, Ḡ𝑙 = 𝑛(G𝑙). We take the
output of the Gated TCN with residual connections on the adja-
cency space from layer 𝑙 : G𝑙 ∈ R𝑏,𝑇 ′−𝑑 [𝑙]∗(𝐾−1),𝑁 2,𝑐𝑙𝑜𝑢𝑡 , as an input
and transform it into Ḡ𝑙 as follows:

Ḡ𝑙 = 𝑛(G𝑙) = softmax(G𝑙𝑟) (5)

where G𝑙𝑟 ∈ R𝑏,𝑇 ′−𝑑 [𝑙]∗(𝐾−1),𝑁 ,𝑁 ,𝑐𝑙𝑜𝑢𝑡 is a reshaped version of G𝑙 ,
and softmax(·) is applied on the second to last dimension of G𝑙𝑟 .
Softmax normalization has been used in prior work in static graph
learning literature — seeWu et al. [2019] among others. The normal-
ization ensures that the latent graphs have non-negative weights
when they are used in the graph convolution/aggregation operation.
As pointed out by Derr et al. [2018], the aggregation methods in
graph convolution operation in GCNs is traditionally designed for
unsigned graphs because they assumes social theory homophily.
Signed graphs require more complex aggregation methods (see Derr
et al. [2018] for an example) — we do not pursue signed graphs in
this work.

Relation of Temporal Convolution on adjacency space to the ap-
proach in TM-GCN [Malik et al. 2021]. Conceptually, our proposal
to apply temporal convolutions on the dynamic graphs is motivated
by the approach taken by Malik et al. [2021]. They apply the tensor
M-product framework [Kernfeld et al. 2015; Kilmer et al. 2013] to
compute an average on the adjacency tensor over the temporal
dimension. By applying gated temporal convolutions, we achieve a
similar weighted average in the non-linear space.

4.2 Tensor Graph Convolutional Layer
Graph convolution is an essential operation to extract a node’s fea-
tures given its structural information. The two popular approaches
in existing literature are summarized below. The first approach
smooths a node’s signal by aggregating and transforming its neigh-
borhood information through first approximations of Chebyshev
filters [Defferrard et al. 2016; Kipf and Welling 2016]. This has been
used in STGCN [Yu et al. 2018] among others. The second approach
models the diffusion process of graph signals with 𝑉 steps. This
approach was proposed by the authors of DCRNN [Li et al. 2018]
and also later used by authors of Graph WaveNet [Wu et al. 2019]

in the context of learning from a static graph. We use the second
approach in the context of learning from dynamic graphs.

In the context of dynamic graphs, applying graph convolution
operation requires a careful consideration of how to combine the
latent temporal features with the latent temporal graphs. This is
different from the static setting as the same graphs is combined
across all channels of the latent temporal features. A naive parame-
terization would consider an outer product of the latent temporal
features with the latent temporal graphs. However, this results in
substantial overparameterization. To prevent this overparameteri-
zation, our parallel architecture with temporal convolutional layers
on time-varying graphs (described in Section 4.1) matches the num-
ber of channels per layer with that of the temporal convolutional
layers (operating on the time-varying features). This makes for a
compact paramaterization. We combine this parameterization with
the diffusion process approach for graph convolution and write the
tensor graph convolution operation:(

H𝑙 ★G𝑙 𝑾𝑙
)
𝑏𝑖 𝑗𝑚

=

𝑉∑︁
𝑣=1

(
𝑁∑︁
𝑛=1

((
Ḡ𝑙

)𝑣)
𝑏𝑖 𝑗𝑛𝑜

H𝑙
𝑏𝑖𝑛𝑜

)
·𝑾𝑙,𝑣

𝑜𝑚 (6)

where
(
Ḡ𝑙

)𝑣
denotes the power series of the transition matrix Ḡ𝑙 ,

H𝑙 denotes the latent temporal features at layer 𝑙 ,𝑾𝑙,𝑣 ∈ R𝑐𝑙𝑖𝑛,𝑐𝑙𝑜𝑢𝑡
denotes the learnable matrix for power 𝑣 for layer 𝑙 . In the case of a
directed graph, the diffusion process have both forward and back-
ward directions, which our implementation supports. The output
from the TGCL, in our Dyn-STGCN and Dyn-GWN architectures,
is aggregated with the outputs of the original graph convolutional
layers (operating on static graphs in the original STGCN and GWN
architectures).

4.3 Complete architectures: Dyn-STGCN and
Dyn-GWN

Next, we summarize the two proposed Dyn-STGCN and Dyn-GWN
architectures that combine the temporal convolutions on dynamic
graphs and TGCL. We visualize the architecture for Dyn-GWN in
Fig. 1.

Dyn-STGCN. We begin with a normalized (and processed) dy-
namic graph tensor, G, with shape, (𝑏,𝑇 ′, 𝑁 2, 1), where 𝑏 is the
batch size, 𝑇 ′ is the historical lag, and 𝑁 is the number of nodes.
Now, we can apply the temporal convolution layer directly in ad-
jacency space. Thus, we can represent the full Spatio-temporal
Convolution Block in Dyn-STGCN as:

H𝑙
𝑓
= Γ ★H𝑙 Θ𝑙1 (as in STGCN) (7)

G𝑙𝑎 = Γ𝑟𝑒𝑠 ★G𝑙 Θ𝑙2 (8)

Ḡ𝑙 = 𝑛(G𝑙𝑎) (9)

Z𝑙𝑆𝑡𝑎𝑡𝑖𝑐 = 𝑨̂H𝑙
𝑓
𝑾𝑙
𝑆𝑡𝑎𝑡𝑖𝑐 (as in STGCN) (10)

Z𝑙𝐷𝑦𝑛 = H𝑙
𝑓
★Ḡ𝑙 𝑾𝑙

𝐷𝑦𝑛 (11)

Z𝑙 = ReLU
(
Z𝑙𝑆𝑡𝑎𝑡𝑖𝑐 + Z𝑙𝐷𝑦𝑛 +H𝑙,𝑟𝑒𝑠

)
(12)

H𝑙+1 = Γ ★Z𝑙 Θ𝑙3 (as in STGCN) (13)

G𝑙+1 = Γ𝑙𝑟𝑒𝑠 ★G𝑙
𝑎
Θ𝑙4 (14)

Dyn-STGCN and Dyn-GWN: Time-Series Forecasting using Dynamic Graphs KDD MILETS, August, 2022,

GCN

tanh

x

+

sigmoid

TCN TCN

Linear

ReLU

Linear

Linear

ReLU

+

Output

Input: X

Residual

tanh
x

sigmoid

TCN TCN

Linear

Input: G

TGCL

softmax

L Layers

+
Residual

Skip connections

Figure 1: Illustration of Dynamic Graph WaveNet (Dyn-GWN).

where 𝑨̂ = 𝑫̃− 1
2 𝑨̃𝑫̃− 1

2 , 𝑨̃ = 𝑨 + 𝑰𝑁 , 𝑰𝑁 ∈ R𝑁,𝑁 is an identity ma-
trix, and 𝑫̃ is a diagonal matrix with diagonal entries 𝑫̃𝑖𝑖 =

∑
𝑗 𝑨̃𝑖 𝑗 .

G𝑙 ∈ R𝑏,𝑇 ′−2𝑙 (𝐾−1),𝑁 ,𝑁 ,𝑐𝑙
𝑖𝑛 and H𝑙 ∈ R𝑏,𝑇 ′−2𝑙 (𝐾−1),𝑁 ,𝑐𝑙

𝑖𝑛 are layer
𝑙 inputs, producing outputs G𝑙+1 ∈ R𝑏,𝑇 ′−2(𝑙+1) (𝐾−1),𝑁 2,𝑐𝑙𝑜𝑢𝑡 and
H𝑙+1 ∈ R𝑏,𝑇 ′−2(𝑙+1) (𝐾−1),𝑁 ,𝑐𝑙𝑜𝑢𝑡 . Note that the dilation rate is 1 in
all temporal convolutional layers in Dyn-STGCN (as in STGCN).
H𝑙+1 is also passed through batch normalization and dropout layers
in order to stabilize learning before being passed to the next block.

Dyn-GWN. Webeginwith a normalized (and processed) dynamic
graph tensor, G, with shape, (𝑏,𝑇 ′, 𝑁 2, 1), where 𝑏 is the batch size,
𝑇 ′ is the historical lag, and 𝑁 is the number of nodes. Now, we can
apply the temporal convolution layer directly in adjacency space.
Thus, we can represent each module in Dyn-GWN as:

H𝑙
𝑓
= Γ ★H𝑙 Θ𝑙1 (as in GWN) (15)

G𝑙𝑎 = Γ𝑟𝑒𝑠 ★G𝑙 Θ𝑙2 (16)

Ḡ𝑙 = 𝑛(G𝑙𝑎) (17)

S𝑙𝑆𝑡𝑎𝑡𝑖𝑐 =
𝑉∑︁
𝑣=0

𝑨
𝑣H𝑙

𝑓
𝑾𝑣,1 +

(
𝑨𝑇

)𝑣
H𝑙
𝑓
𝑾𝑣,2 (as in GWN) (18)

S𝑙
𝑎𝑑𝑝

=

𝑉∑︁
𝑣=0

𝑨𝑣
𝑎𝑑𝑝

H𝑙
𝑓
𝑾𝑣,3 (as in GWN) (19)

S𝑙𝐷𝑦𝑛 = H𝑙
𝑓
★Ḡ𝑙 𝑾𝑙

𝐷𝑦𝑛 (20)

H𝑙+1 = S𝑙𝑆𝑡𝑎𝑡𝑖𝑐 + S𝑙
𝑎𝑑𝑝

+ S𝑙𝐷𝑦𝑛 +H𝑙,𝑟𝑒𝑠 (21)

G𝑙+1 = G𝑙𝑎 (22)

where𝑨 is a row-sum normalized version of𝑨 and𝑨𝑇 is a row-sum
normalized version of 𝑨𝑇 . G𝑙 ∈ R𝑏,𝑇 ′−𝑑 [𝑙] (𝐾−1),𝑁 ,𝑁 ,𝑐𝑙

𝑖𝑛 and H𝑙 ∈
R𝑏,𝑇

′−𝑑 [𝑙] (𝐾−1),𝑁 ,𝑐𝑙
𝑖𝑛 are layer 𝑙 inputs, producing outputs G𝑙+1 ∈

R𝑏,𝑇
′−𝑑 [𝑙+1] (𝐾−1),𝑁 2,𝑐𝑙𝑜𝑢𝑡 and H𝑙+1 ∈ R𝑏,𝑇 ′−𝑑 [𝑙+1] (𝐾−1),𝑁 ,𝑐𝑙𝑜𝑢𝑡 . H𝑙+1

is also passed through dropout layers before being passed to the next
block in order to reduce overfitting. Note that the dilation rate 𝑑 [𝑙]
denotes the dilation rate up to layer 𝑙 , which controls the reduction
in temporal dimension as successive temporal convolutions are
applied. The module in Dyn-GWN is shown in Fig. 1.

5 DATASETS
5.1 Financial Market Datasets: Stock Volatilities
We evaluate the time-series forecasting with dynamic graphs in
the context of stock volatilities. Volatilities prediction has been
studied by multiple works [Barigozzi and Brownlees 2019a; Diebold
and Yilmaz 2014, 2015; Engle et al. 2012; Ibrahim et al. 2021]. We
consider 80 companies from S&P500 financial market and define
the daily volatility, as given in Barigozzi and Brownlees [2019a];
Diebold and Yilmaz [2015]; Ibrahim et al. [2021]; Parkinson [1980],
using the daily high and low stock prices:

𝜎̃2
𝑖𝑡 = 0.361

(
log 𝑝high

𝑖𝑡
− log𝑝 low𝑖𝑡

)2
(23)

KDD MILETS, August, 2022, Shibal Ibrahim, Max R. Tell, and Rahul Mazumder

where 𝑝high
𝑖𝑡

and 𝑝 low
𝑖𝑡

denote the maximum and minimum price of
stock 𝑖 on day 𝑡 .

5.1.1 Choice of Dynamic Graphs. We consider two different dy-
namic graphs for this dataset: (i) EDGAR Cosearch Graphs (ii)
Partial Correlation Graphs. While the former are recovered (and
processed) from an alternate data source, the latter are cheaply
computed from the same time-series data to cater to settings when
dynamic graphs are not easily available. We summarize both these
approaches below.

Dynamic Graphs: EDGAR Cosearch Graphs. Based on a paper
by Lee et al. [2015], the EDGAR cosearch dataset builds a graph
from stocks searched in SEC filings. Each company represents a
node, while edge weights are computed by renormalizing the num-
ber of times that company A is searched for immediately before
company B. This weight corresponds to a directed edge from A to
B. We leverage this weighted connectivity matrix to predict time-
series targets such as returns, volatilities, and volumes that are
derived from Yahoo Finance during the timeframe of the EDGAR
dataset. The experiments here focus on on the task of predicting
daily volatilities from the EDGAR cosearch graph with lagged daily
volatilities as the node features. The node features for each are
smoothed by averaging over the preceding 48 steps using a sliding
window approach. We are using graphs from 2005 to 2015 in the
training set, 2015 to 2016 in the validation set, and 2016 to 2017 in
the testing set. For methods that only accommodate a static graph,
we compute an average adjacency over the entire time period.

Dynamic Graphs: Partial Correlations. To further explore the
time-series from the Yahoo Finance data, we construct new graphs
to directly capture the time-series correlation. Beginning with the
raw pairwise time-series, we compute the Ledoit-Wolf covariance
matrix [Ledoit and Wolf 2004] between all companies in the subset
of interest using a rolling window of fixed size. We empirically
find that a window size of 48 is optimal with the SP500 data. To
construct the adjacency, we use matrix inversion to compute the
corresponding precision matrix. With this in hand, we compute par-
tial correlation from the previous matrix as described by Barigozzi
and Brownlees [2019b] and take the absolute value. This provides
a non-negative correlation structure between companies at each
timestep. For the experiments leveraging these graphs, we use
identical data to the original SP500 and EDGAR dataset above and
simply replace the EDGAR graphs with those constructed using
partial correlation.

5.2 Traffic Datasets: METR-LA & PEMS-BAY
As traffic forecasting is a common application of spatio-temporal
methods, we also explore the performance of our model in this
context. We conduct experiments on two datasets used by Li et al.
[2018];Wu et al. [2019]. These areMETR-LA and PEMS-BAY.METR-
LA contains traffic data from loop detectors in the highway of
Los Angeles County (Jagadish et al., 2014). We select 80 sensors
and sample an approximately week long chunk of data for our
experiments. We apply the same methodology to the PEMS-BAY
data. PEMS-BAY dataset was produced by California Transportation
Agencies (CalTrans) Performance Measurement System (PeMS). For
both datasets, we used the validation and test splits used by Wu

et al. [2019]. We used the last 20,000 training samples for METR-LA
and 5000 training samples for PEMS-BAY from the original training
sets.

Dynamic Graphs: Partial Correlations. To further validate the
robustness of our model, we apply the same partial correlation-
based method to these two datasets. For static graph methods, we
use the original spatial adjacency provided by Li et al. [2018].

6 EXPERIMENTS
This section demonstrates validity of temporal convolutions on
the dynamic adjacency space and the TGCL aggregation scheme
on time-series problems with extensive sets of experiments. For
experiments, we employ state-of-the-art models such as STGCN [Yu
et al. 2018] and GWN [Wu et al. 2019] and optimize the models with
proposed modifications. Note that we use a notation of Dyn-model
to indicate models optimized with our proposals.

We study the performance of our models in various settings and
compare against the relevant state-of-the-art baselines for each
setting. The different settings can be summarized as follows:
(i) Comparison of Dyn-STGCN against (static) STGCN and clas-

sical high-dimensional statistical approaches for time-series
forecasting e.g., vector autoregression (VAR) [Sims 1980] and
multioutput Random Forests (RF) [Breiman 2001]. We con-
sider mean absolute errors (MAE) and mean squared errors
(MSE) as evaluation metrics. We consider two types of external
dynamic graphs: EDGAR and Partial Correlations.

(ii) Comparison of Dyn-GWN against (static) GWN on METR-
LA for multi-step horizon forecasting (up to 12). We consider
mean absolute errors (MAE), root mean squared errors (RMSE),
and mean absolute percentage errors (MAPE). Following prior
work, different horizon steps {3, 6, 9} were considered. We
also include average performance across 12 horizons.

(iii) Comparison of Dyn-GWN against dynamic spatio-temporal
models: EvolveGCN and TM-GCN on PEMS-BAY for multi-
step horizon forecasting. We again consider MAE, RMSE and
MAPE for different horizons. In addition, we also compare
training and inference times of Dyn-GWN against those of
EvolveGCN (more promising than TM-GCN in our experi-
ments).

Models Implementation. We implemented our models in Tensor-
flow and PyTorch. We implemented Dyn-STGCN model in Tensor-
flow and Dyn-GWN in PyTorch.

Computing Setup. All experiments are conducted on a Linux
cluster (CPU: IBM POWER9 @ 2.90 GHz, GPU: Nvidia Tesla V100).

6.1 Case Study: Dyn-STGCN on Stock Volatility
We consider daily stock volatility dataset described in Section
5.1 with dynamic EDGAR graphs and dynamic partial correlation
graphs. We study the performance of Dyn-STGCN in this setting
with the two dynamic graphs.

Competing Methods. We compare Dyn-STGCN against (static)
STGCN and classical high-dimensional statistical approaches for
time-series forecasting e.g., vector autoregression (VAR) [Sims 1980]
and multioutput Random Forests (RF) [Breiman 2001]. We used

Dyn-STGCN and Dyn-GWN: Time-Series Forecasting using Dynamic Graphs KDD MILETS, August, 2022,

Table 2: Test Set Performance of Dyn-STGCN on stock volatility dataset with two dynamic graphs (EDGAR and Partial
Correlations). Hyphen (-) indicates the method does not use static and/or dynamic graph.

Model Static Graph Dynamic Graph MSE MAE
RF - - 0.1313 ± 0.0001 0.2908 ± 0.0001
VAR - - 0.1168 ± 0.0000 0.2719 ± 0.0000
STGCN EDGAR - 0.1066 ± 0.0026 0.2558 ± 0.0030
Dyn-STGCN EDGAR EDGAR 0.1038 ± 0.0005 0.2522 ± 0.0007
Dyn-STGCN EDGAR Partial Correlation 0.0716 ± 0.0012 0.2096 ± 0.0018

Ridge regressor in scikit-learn [Buitinck et al. 2013] for setting up
multivariate VAR with ridge penalty. We used multioutput Random
Forests from scikit-learn [Buitinck et al. 2013].

Tuning. We perform 1000 trials of hyperparameter tuning with a
random search (via hyperopt [Bergstra et al. 2013]). All models are
tuned with respect to historical lag in the range [5, 100]. For VAR,
𝛼 was sampled uniformly on the log scale in the range [10, 106].
For RF, we tuned over number of trees in the range [1, 100], depths
over [2− 20], minimum samples for split in the set {1, 2, 4, 6, 8} and
minimum samples per leaf in the range [1, 20]. For STGCN and Dyn-
STGCN, we used a single STGCN block with fixed channels: [8, 32].
We tuned over learning rates in the range [10−3, 10−1], batch sizes
over the set {16, 32}, dropout in the range [0.03, 0.1]. Both these
models were run for 500 epochs with early stopping (patience=10)
based on validation set.

Evaluation Metrics. We train the models with mean squared error
objective. To evaluate the performance of the models studied, we
use Mean Squared Error (MSE) and Mean Absolute Error (MAE).
After tuning, we train each model for 50 repetitions (using random
initialization) and report the averaged results along with their stan-
dard errors. We report results for both metrics for all models across
50 trials.

Results. Table 2 shows the results of Dyn-STGCN and baselines
for stock volatility prediction. Clearly, there are benefits from incor-
porating dynamic graph structures into these prediction tasks. Our
proposed model outperforms Dyn-STGCN all baselines with both
types of dynamic graphs in both evaluation metrics. Notably, the
cheaply computed dynamic partial correlation graphs outperform
the externally generated dynamic EDGAR graphs.

6.2 Case Study: Dyn-GWN on METR-LA
We compare performance of Dyn-GWN against (static) GWN on
real-world METR-LA traffic dataset — See Section 5.2 for more de-
tails. We use dynamic partial correlation graphs for Dyn-GWN. We
trained both models with (masked) mean absolute error objective.

Evaluation Metrics. These methods are evaluated based on three
commonly used metrics in traffic forecasting, including (i) Mean
Absolute Error (MAE), (ii) Root Mean Squared Error (RMSE), and
(iii) Mean Absolute Percentage Error (MAPE). Missing values are
excluded in calculating these metrics as done by earlier works [Li
et al. 2018; Wu et al. 2019].

Tuning. The architectures were fixed to 4 blocks for both models.
We used a fixed batch size of 64 and ran the models for 200 epochs

with early stopping (patience=25) based on a validation set. We
tuned over learning rates in the range [0.0001, 0.01]. We report the
performance on held-out test set.

Results. Table 3 shows the comparison of different approaches
for 15 minutes (H3), 30 minutes (H6), 45 minutes (H9) and aver-
age across 5 minute to 1 hour (H1-12) horizon forecasting. We can
observe a clear advantage of using dynamic graphs. Dyn-GWN out-
performs GWN across all metrics and all horizons, which highlights
the importance of capturing the evolution in the graph adjacency
space.

Table 3: Comparison of Dyn-GWN with (static) GWN on
METR-LA dataset for multi-step horizon forecasting

Multi-step horizon forecast
Metric Model H3 H6 H9 H1-12

(average)

RMSE GWN 5.3407 6.3202 6.8835 6.1490
Dyn-GWN 5.3069 6.2715 6.7967 6.0943

MAE GWN 2.8212 3.1962 3.4264 3.1420
Dyn-GWN 2.8139 3.1863 3.4053 3.1342

MAPE GWN 7.3400 8.6800 9.3900 8.4300
Dyn-GWN 7.3200 8.5800 9.2800 8.3600

6.3 Case Study: Dyn-GWN vs EvolveGCN vs
TM-GCN on PEMS-BAY

We compare performance of Dyn-GWN against dynamic graph
representation learning methods on real-world PEMS-BAY traffic
dataset — See Section 5.2 for more details. We use dynamic partial
correlation graphs for all methods. We trained all models with
(masked) mean absolute error objective. These methods are again
evaluated based on (masked) MAE, RMSE, and MAPE.

Competing Methods. We consider EvolveGCN [Pareja et al. 2020]
and TM-GCN [Malik et al. 2021] models. The original implemen-
tations provided by the authors were updated to support training
with (masked) mean absolute error loss.

Tuning. The architectures were fixed for EvolveGCN and TM-
GCN to default settings. For Dyn-GWN, we used 2 blocks. For a
fair comparison against EvolveGCN, which is prohibitively slow,
we performed only 20 tuning trials for all three models (Dyn-GWN,
EvolveGCN, TM-GCN) that tuned over learning rates in the range

KDD MILETS, August, 2022, Shibal Ibrahim, Max R. Tell, and Rahul Mazumder

[0.0001, 0.01]. We capped the optimization time per hyperparame-
ter trial for EvolveGCN to 5 days (108 hours). In comparison, the
average convergence time per-trial for Dyn-GWN is 2.2 hours.

Results. Table 4 shows the comparison of different approaches
for 15 minutes (H3), 30 minutes (H6), 45 minutes (H9) and aver-
age across 5 minute to 1 hour (H1-12) horizon forecasting. We can
observe a clear advantage of Dyn-GWN over the competing meth-
ods. Dyn-GWN outperforms EvolveGCN and TM-GCN across all
metrics and all horizons with a large margin.

Table 4: Comparison of Dyn-GWNwith dynamic graphmeth-
ods on PEMS-BAY dataset for multi-step horizon forecasting

Multi-step horizon forecast
Metric Model H3 H6 H9 H1-12

(average)

RMSE
TM-GCN 9.7217 10.2726 10.8323 10.3423
EvolveGCN 5.4819 6.1412 6.6995 6.1737
Dyn-GWN 3.0463 4.2872 4.8884 4.0297

MAE
TM-GCN 4.4414 4.6637 4.8809 4.6906
EvolveGCN 4.3084 4.6456 4.9615 4.6800
Dyn-GWN 1.4302 1.8667 2.0991 1.7866

MAPE
TM-GCN 13.120 13.720 14.310 13.800
EvolveGCN 8.768 9.701 10.592 9.815
Dyn-GWN 3.220 4.620 5.430 4.420

Timing comparison with EvolveGCN. We compare the time of
our Dyn-GWN model with time-varying graph-based methods. In
particular, we compare against EvolveGCN [Pareja et al. 2020],
which has more competitive performance (than TM-GCN [Malik
et al. 2021]). We consider both training and inference times in our
comparison. We train both Dyn-GWN model for 1 epoch on a Tesla
V100 GPU. The number of time samples for training and inference
are taken to be 5000. Both models are run with batch-size equal to
64. We show the timing in seconds in Table 5. We can observe that
Dyn-GWN is 300× faster in terms of training time and 2000× faster
in terms of inference.

Table 5: Timing comparison of Dyn-GWNet against
EvolveGCN for 1 epoch with 64 batch size, 𝑇𝑡𝑟𝑎𝑖𝑛 ≈ 5000,
𝑇𝑣𝑎𝑙𝑖𝑑 ≈ 5000, and 80 nodes on Tesla V100 GPU. Our Dyn-
GWN is 300× faster than EvolveGCN.

Model Training Time Inference Time
EvolveGCN 16400s 15400s
Dyn-GWN 52s 8s

7 CONCLUSION
To summarize, we propose a new framework for spatio-temporal
learning from dynamic graphs. The two main components of our
models are: (i) temporal convolution on the time-varying adjacency
space, (ii) Tensor Graph Convolutional Layer (TGCL) which aggre-
gates latent temporal representations of time-varying node features

and time-varying graphs. We generalize previous models to lever-
age both dynamic and static graphs while maintaining a computa-
tionally efficient convolution-based architecture. We demonstrate
our proposals in with two new time-varying graph-based methods
Dyn-STGCN and Dyn-GWN for time-series forecasting. Experi-
ments demonstrate the efficacy of these model across a range of
datasets and tasks. Interestingly, our Dyn-STGCN and Dyn-GCN
models are superior at handling dynamic graphs than existing state-
of-the-art time-varying graph-based methods e.g., EvolveGCN and
TM-GCN in terms of strong generalization while providing both
efficient training and inference. In future, we plan to apply this
methodology to new forecasting tasks e.g., link prediction.

ACKNOWLEDGMENTS
This work is supported by the MIT-IBM Watson AI Lab. The views
and conclusions are those of the authors and should not be inter-
preted as representing the official policies of the funding agencies.
The authors acknowledge Yada Zhu (IBM Research) and Wenyu
Chen (MIT) for discussions. The authors acknowledge the use of
MIT Satori Cluster and MIT SuperCloud resources that have con-
tributed to the research results reported within this paper.

REFERENCES
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop:
Higher-order graph convolutional architectures via sparsified neighborhood mix-
ing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pages 21–29. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/abu-el-haija19a.html.

M. Barigozzi and C. Brownlees. Nets: Network estimation for time series. Journal of
Applied Econometrics, 34(3):347–364, 2019a.

Matteo Barigozzi and Christian Brownlees. Nets: Network estimation for time series.
Journal of Applied Econometrics, 34(3):347–364, 2019b. doi: https://doi.org/10.1002/
jae.2676. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2676.

Tanya Y. Berger-Wolf and Jared Saia. A framework for analysis of dynamic social
networks. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, page 523–528, New York, NY,
USA, 2006. Association for Computing Machinery. ISBN 1595933395. doi: 10.1145/
1150402.1150462. URL https://doi.org/10.1145/1150402.1150462.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In
Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 115–123, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/bergstra13.html.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, et al. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pages 108–122, 2013.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and
deep graph convolutional networks. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 1725–1735. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/chen20v.html.

Yingmei Chen, Zhongyu Wei, and Xuanjing Huang. Incorporating corporation rela-
tionship via graph convolutional neural networks for stock price prediction. In
Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM ’18, page 1655–1658, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450360142. doi: 10.1145/3269206.3269269. URL
https://doi.org/10.1145/3269206.3269269.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language model-
ing with gated convolutional networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, page 933–941. JMLR.org,
2017.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Proceedings of the 30th

https://proceedings.mlr.press/v97/abu-el-haija19a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2676
https://doi.org/10.1145/1150402.1150462
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1023/A:1010933404324
https://proceedings.mlr.press/v119/chen20v.html
https://doi.org/10.1145/3269206.3269269

Dyn-STGCN and Dyn-GWN: Time-Series Forecasting using Dynamic Graphs KDD MILETS, August, 2022,

International Conference on Neural Information Processing Systems, NIPS’16, page
3844–3852, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Tyler Derr, Yao Ma, and Jiliang Tang. Signed graph convolutional networks. In 2018
IEEE International Conference on Data Mining (ICDM), pages 929–934, 2018.

F. X. Diebold and K. Yilmaz. On the network topology of variance decompositions:
Measuring the connectedness of financial firms. Journal of Econometrics, 182(1):
119–134, September 2014.

Francis X. Diebold and Kamil Yilmaz. Financial and Macroeconomic Connectedness.
Oxford University Press, March 2015. doi: 10.1093/acprof:oso/9780199338290.001.
0001. URL https://doi.org/10.1093/acprof:oso/9780199338290.001.0001.

R. Engle, G. Gallo, and M. Velucchi. Volatility spillovers in east asian financial markets:
A mem-based approach. Review of Economics and Statistics - REV ECON STATIST, 0:
222–223, 02 2012.

F. Feng, X. He, X. Wang, C. Luo, Y. Liu, and T. Chua. Temporal relational ranking for
stock predictions. ACM Transactions on Information Systems (TOIS), 37(2), 2019.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

Shibal Ibrahim, Wenyu Chen, Yada Zhu, et al. Knowledge graph guided simultaneous
forecasting and network learning for multivariate financial time series. InWorkshop
on Machine Learning in Finance, 2021.

Renhe Jiang, Du Yin, Zhaonan Wang, Yizhuo Wang, Jiewen Deng, Hangchen Liu,
Zekun Cai, Jinliang Deng, Xuan Song, and Ryosuke Shibasaki. Dl-traff: Survey and
benchmark of deep learning models for urban traffic prediction. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management,
pages 4515–4525, 2021.

Eric Kernfeld, Misha Kilmer, and Shuchin Aeron. Tensor–tensor products with
invertible linear transforms. Linear Algebra and its Applications, 485:545–570,
2015. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2015.07.021. URL https:
//www.sciencedirect.com/science/article/pii/S0024379515004358.

Misha E. Kilmer, Karen Braman, Ning Hao, and Randy C. Hoover. Third-order tensors
as operators on matrices: A theoretical and computational framework with applica-
tions in imaging. SIAM Journal on Matrix Analysis and Applications, 34(1):148–172,
2013. doi: 10.1137/110837711. URL https://doi.org/10.1137/110837711.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-dimensional
covariance matrices. Journal of Multivariate Analysis, 88(2):365–411, 2004. ISSN
0047-259X. doi: https://doi.org/10.1016/S0047-259X(03)00096-4. URL https://www.
sciencedirect.com/science/article/pii/S0047259X03000964.

Charles M.C. Lee, Paul Ma, and Charles C.Y. Wang. Search-based peer firms: Aggregat-
ing investor perceptions through internet co-searches. Journal of Financial Econom-
ics, 116(2):410–431, 2015. ISSN 0304-405X. doi: https://doi.org/10.1016/j.jfineco.2015.
02.003. URL https://www.sciencedirect.com/science/article/pii/S0304405X15000197.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=SJiHXGWAZ.

Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E. Kilmer, and Haim Avron.
Dynamic graph convolutional networks using the tensor m-product. In Proceedings
of the 2021 SIAM International Conference on Data Mining (SDM), pages 729–737.
Society for Industrial and Applied Mathematics, January 2021. doi: 10.1137/1.
9781611976700.82. URL https://doi.org/10.1137/1.9781611976700.82.

Jean-François Mas. Spatio-temporal dataset of covid-19 outbreak in mexico. Data
in brief, 35:106843–106843, 04 2021. doi: 10.1016/j.dib.2021.106843. URL https:
//pubmed.ncbi.nlm.nih.gov/33589875.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hi-
roki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. EvolveGCN:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

M. Parkinson. The extreme value method for estimating the variance of the rate of
return. The Journal of Business, 53(1):61–65, 1980. ISSN 00219398, 15375374.

Simone Piaggesi and André Panisson. Time-varying graph representation learning via
higher-order skip-gram with negative sampling. EPJ Data Science, 11(1):33, 2022.

Valentina Shumovskaia, Kirill Fedyanin, Ivan Sukharev, Dmitry Berestnev, and Maxim
Panov. Linking bank clients using graph neural networks powered by rich transac-
tional data. International Journal of Data Science and Analytics, 12(2):135–145, 2021.
doi: 10.1007/s41060-021-00247-3. URL https://doi.org/10.1007/s41060-021-00247-3.

Christopher A. Sims. Macroeconomics and reality. Econometrica, 48(1):1–48, 1980.
ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1912017.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph
wavenet for deep spatial-temporal graph modeling. CoRR, abs/1906.00121, 2019.
URL http://arxiv.org/abs/1906.00121.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. Connecting the dots: Multivariate time series forecasting with graph neural
networks, 2020.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/1511.07122.

https://doi.org/10.1093/acprof:oso/9780199338290.001.0001
https://www.sciencedirect.com/science/article/pii/S0024379515004358
https://www.sciencedirect.com/science/article/pii/S0024379515004358
https://doi.org/10.1137/110837711
https://www.sciencedirect.com/science/article/pii/S0047259X03000964
https://www.sciencedirect.com/science/article/pii/S0047259X03000964
https://www.sciencedirect.com/science/article/pii/S0304405X15000197
https://openreview.net/forum?id=SJiHXGWAZ
https://doi.org/10.1137/1.9781611976700.82
https://pubmed.ncbi.nlm.nih.gov/33589875
https://pubmed.ncbi.nlm.nih.gov/33589875
https://doi.org/10.1007/s41060-021-00247-3
http://www.jstor.org/stable/1912017
http://arxiv.org/abs/1906.00121
http://arxiv.org/abs/1511.07122

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed architectures: Dyn-STGCN and Dyn-GWN
	4.1 Gated Temporal Convolution Layers with Residual Connections
	4.2 Tensor Graph Convolutional Layer
	4.3 Complete architectures: Dyn-STGCN and Dyn-GWN

	5 Datasets
	5.1 Financial Market Datasets: Stock Volatilities
	5.2 Traffic Datasets: METR-LA & PEMS-BAY

	6 Experiments
	6.1 Case Study: Dyn-STGCN on Stock Volatility
	6.2 Case Study: Dyn-GWN on METR-LA
	6.3 Case Study: Dyn-GWN vs EvolveGCN vs TM-GCN on PEMS-BAY

	7 Conclusion
	Acknowledgments
	References

