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ABSTRACT
We propose FQFormer, a novel method for quantile forecasting. We
base our method in the Implicit Quantile Network (IQN) learning
framework, where random samples from theU(0, 1) distribution
are reparameterized to quantile values of the target distribution.
However, in IQNs, each univariate quantile forecast estimation
corresponding to an input quantile level can only be considered
a marginal distribution and correlations among quantile estima-
tions are only modeled in the shared network parameters. Whereas,
probabilistic metrics are based on the joint distribution of (quantile)
samples, for example, the CRPS metric is computed as the Integral
over differencing the predictive CDF with the heavyside function
based on the forecast ground truth. In this paper, we propose to
learn optimal quantile levels conditioned on the input time series’s
history and IDs that replace random levels. To this end, we firstly
train a Transformer model with the well-established IQN frame-
work through randomly sampled quantile levels. In the second
stage, we train another Transformer model based on the same input
to output quantile levels that are fed to the first stage frozen model
and updated by minimizing the empirical CRPS loss that encour-
ages selection of quantile levels estimating the joint distribution
optimally. We experimentally validate the superiority of our pro-
posed two-stage method to state-of-the-art probabilistic forecasting
baselines and ablations to the loss formulation.

KEYWORDS
Probabilistic Forecasting, Implicit Quantile Networks, Sparse At-
tention Transformer, Quantile Proposal Network

1 INTRODUCTION
Time series forecasting is an active area of research with significant
applicability across various domains such as Energy Management,
Urban planning, Retail business forecasting to name a few[14, 22].
Successful application of forecasting solutions to these domains
additionally requires uncertainty quantification in the forecasts.
As a result, many probabilistic forecasting approaches have been
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proposed in prior work. A substantial number of works have com-
bined sequential modeling primitives with likelihood components,
where parameters of a distribution specified apriori are linearly
extrapolated from the sequential encoding of the time series in-
put history. However, the task of specifying a distribution apriori
across various data generating processes of different application
domains can hinder the application of such methods. In this paper,
we focus on Quantile regression [10], a well-understood statistical
method that has been extensively researched for robustly modeling
probabilistic outputs [2, 4] across several data generating processes
and underlying distributions thereof.

However, several prior quantile forecasting methods [15, 27]
require retraining with a different quantile loss parameterization to
provide quantile estimations for quantile levels they are not trained
with. On the other hand, Variational Autoencoder (VAEs)[7, 30],
Generative Adversarial Networks (GANs) [11], Variational Flow
[20] models that estimate the full probabilistic density could pro-
vide quantile estimates at any level. In this regard, we note two
prominent streams, firstly, Multi-Quantile networks (MQ-RNN)
[17, 26] that learn to output a discrete set of multiple quantile
estimations corresponding to different levels jointly and with fur-
ther post-processing interpolation between quantile levels solve
the retraining issue to sufficient extent. Secondly, the approach of
learning the full quantile function, as done in Implicit Quantile Net-
works (IQN)[2]. Merits of IQNs over GANs and VAE based methods
include more stable optimization with piecewise linear quantile
loss functions and arbitrary extension to other quantile levels.

However, both MQNs and IQNs only estimate univariate quan-
tiles and do not model correlations between multiple quantile esti-
mations directly, rather only via shared paramater spaces. On the
other hand, the most widely reported metric, Continuous Ranked
Probability Score (CRPS) is computed as the Integral over differenc-
ing the predictive CDF with the heavyside function based on the
forecast horizon ground truth [5]. Hence, requiring that the joint
distribution based on the samples is correctly estimated. This opens
the question which quantile levels to select given a limited number
of samples to estimate the empirical CRPS metric. In this paper, we
propose to learn optimal quantile levels conditioned on the input
time series’s history and respective IDs by minimizing the empirical
CRPS that leads to selection of quantile levels that estimate the joint
distribution with limited samples more accurately.

We look into two distinct instantiations of the empirical ap-
proximation to the Integral based CRPS loss formulation. The first
empirical instantation is based on the quantile loss formulation
where a sum of piecewise linear quantile loss functions estimates
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the CRPS. Several works have used this instantiation to approxi-
mate the CRPS as a test metric [4, 19, 20] and moreover learning
on multiple quantile loss functions simultaneously as done in MQ-
RNN and related approaches leads to learning on this approximated
empirical CRPS loss. Additionally, we consider the Energy score
based empirical CRPS loss instantiation [5] that models correlations
between quantile estimations as well as requiring that individually
each estimation is a sharp approximation to the ground truth, but
collectively they are maximally spread apart to capture various
underlying modes of the underlying forecast distribution.

Although the equivalence of these two instantiations has already
been established, we propose learning on both the empirical approx-
imations in order to cover inherent biases from both approximations
to the integral. We propose a two-stage optimization framework,
where firstly we train a Transformer method for quantile forecast-
ing with the well-established IQN framework, and in the second
stage we train another Transformer model that acts a proposal net-
work and outputs quantile levels that are learned such that quantile
estimates corresponding to these input levels from the first stage
network can minimize the Energy score equivalent CRPS loss. It
can be intuitively seen that an optimization over the selection of
quantile levels can not be carried out with respect to the minimiza-
tion of the discrete sum of quantile loss function approximation
to the CRPS, since that is prone to degenerate optimization as the
quantile loss functions are parameterized with the same quantile
levels for which the corresponding estimations are made. To recap,
our contributions are:

• We design a novel two-stage optimization framework to
learn quantile levels by minimizing the empirical Energy
score based CRPS loss that leads to an optimal estimate of
the joint distribution of quantile samples.

• We perform extensive experiments to validate FQFormer ’s
performance compared to several probabilistic forecasting
baselines on benchmark datasets.

• We provide an ablation study that validates the optimality
of the two-stage optimization framework.

2 RELATEDWORK
Probabilistic time series forecasting has been an active area of re-
search, with many prior works being published, and a survey can
be found in [1]. A series of works incorporate a likelihood com-
ponent that outputs parameters for a distribution specified apriori
[14, 18, 22]. DeepAR [22] is a probabilistic forecasting model that
recursively unrolls the hidden state for each time step and a linear
layer extrapolates from the hidden state to Gaussian likelihood
parameters (𝜇, 𝜎) for each time step autoregressively. We also note,
Deep State Space Model (DeepState ) [18] that forecasts through a
linear Gaussian state-space model whose state and transition pa-
rameters are estimated via an underlying RNN component. Another
prominent method, LogTrans is a Convolutional sparse Attention
[14] based decoder only transformer that autoregressively decodes
future forecasts one-step a time. Fundamentally, it is similar to
prior listed works [22] where a linear layer extrapolates from the
Attention representations to estimate Gaussian parameters.

Several probabilistic forecasting approaches are based on Vari-
ational inference as well. Conditional VAE (CVAE ) [30] maps past

trajectory and side information to latent codes, and a decoder maps
these latent codes to future trajectory estimations. Interestingly, in
[30] Determinantal Point Processes (DPP) are also used to sampled
diverse trajectories, which shares the motivation with the Energy
score CRPS definition taking the distance of the samples among
each other into account. STRIPE [13] also uses a conditional VAE
backbone and introduced new DPP processes that explicitly op-
timize for diverse future estimations based on time dilation and
shape warping factors.

We also note a GAN based forecasting model in [11], which
is designed as a single step probabilistic forecasting model with
Generator and Discriminator networks being composed of RNNs.
Adversarial Sparse Transformer (AST ) [27] is a Sparse Attention
model that autoregressively decodes for a single fixed quantile
level. In order to mitigate the known error accumulation problem
through single step decoding, the model is trained with the adver-
sarial framework where a fully connected network subcomponent
discriminates between generated and full forecast output. Orthog-
onally related is the work from [29] where interestingly a GAN
framework is utilized for probabilistic estimation of time series data
to sample augmentation data for downstream applications.

Notably, various probabilistic forecasting methods have been
proposed for multivariate forecasting [19–21]. In [20], a sequential
Transformer model is unrolled over multivariate time series data
and a series of Invertible transformations are applied to derive a
Normalizing Flow based density estimation of the multivariate ob-
servations. We also note, a Gaussian Copula based model [21] that
models the joint multivariate distribution of high dimensional time
series. To reduce the computational complexity, the authors do not
model the entire covariance structure but randomly sample dimen-
sions that are fed to a shared RNN to output the low-rank covariance
matrix parameters. Lastly, Autoregressive Diffusion models have
also been proposed for multivariate forecasting, where, following
previous works, an RNN unrolls providing a time-indexed hidden
state representation on to which a forward-backwards diffusion
process is executed to arrive at a probabilistic estimation of the
observation [19].

Early on [26] combined RNNswith quantile regression to directly
estimate multiple quantiles for multiple future horizons jointly. This
work was followed by [3] where the base sequential modeling was
additionally extended with an Attention mechanism. Additionally,
the focus was on increasing modeling capacity for event indica-
tors and deriving rich Attention based interactions for same target
forecasting horizons but modeled through variable sized history
lengths. The model from [15] also uses a Transformer backbone
trained with quantile loss functions for robust estimates of the 50𝑡ℎ
and 90𝑡ℎ quantile outputs. The SQF-RNNmodel [4] is a distribution-
free quantile regression method that models the quantile function
of the forecast distribution through a monotonic spline based repre-
sentation. Notably, the model is trained with an analytic CRPS loss
formulation based on the spline-representation and pre-specified
quantile levels. Quantile forecasting has already been explored
with implicitly embedding the quantile levels [6, 25]. We note both
works, IQN-RNN [6] where an RNN based encoding of the time se-
ries history is combined with the quantile level embeddeding and
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the model parameters are optimized with the quantile loss parame-
terized with the same quantile levels. In the other work, [25], an
RNN based encoder was combined with a Gaussian Copula that
modeled the latent correlations between the marginal quantile es-
timations. Notably, quantile estimations from prior approaches
[2, 3, 15, 26, 27] can be prone to quantile crosssing phenomena due
to the lack of structural regularization and constraints in the output
space and restricted capability to model correlations between quan-
tile estimations only in the shared parameter spaces. The method
in [17] solves quantile crossing by structuring successive quantile
outputs corresponding to larger quantile level inputs to add on to
preceeding ones and all outputs being constrained to be positive.
Additionally, an analytic CRPS loss formulation was derived similar
to SQF-RNN based on learnable spline components. Also related is
the method in [9], where a multivariate quantile function based
forecasting component is uniquely designed to fulfill monotonicity
constraints with regard to the randomly sampled quantile levels.
Interestingly, the Energy score based CRPS loss was also used to
train the multivariate quantile estimations.

In summary, several works have been proposed for quantile
forecasting, and recently implicit quantile modeling has also been
explored for forecasting. Our work closely follows the same intu-
ition as works in [4, 9, 17] that model explicit correlations between
multiple quantile estimations. However, with FQFormer , we pro-
pose to learn quantile levels and validate that optimally choosing
a limited set of quantile levels can improve modeling the joint
distribution for the forecast horizons.

3 BACKGROUND
3.1 Problem Formulation
We consider 𝑁 related univariate time series data Y ∈ R𝑇×𝑁 where
each time series 𝑌𝑛 ∈ R𝑇 is noted for a total of 𝑡 = [1, ..𝜏, ...,𝑇 ]
timesteps1 and 𝜏 partitions the observations in the input range
and the multiple horizon indexes for forecasting. Additionally, we
consider 𝐶 many social time2covariates 𝑋 ∈ R𝑇×𝐶 that are ob-
served in the entire range3. Our objective is to model the following
conditional distribution:

𝑝 (𝑌𝑛
𝜏+1:𝑇 |𝑌

𝑛
1:𝜏 , 𝑋1:𝑇 ,Θ) (1)

This formulation in Eq. 1 explicitly models for multiple tasks jointly
conditioned on the same input and model parameters Θ.

3.2 Quantile Regression
In many real-world applications, a distribution of the future is
required instead of a single point estimate. Hence, we consider
modeling the cumulative distribution (CDF) of the random variable
𝑌𝑛
𝜏+1 ∈R following prior work [4, 10, 17]. Let us denote the CDF by
𝐹𝑌 (𝑦), then the quantile estimate at quantile level 𝛼 ∈ (0, 1) is:

𝑄𝑌 (𝛼) := 𝐹−1𝑌 (𝛼) = inf {𝑦 ∈ R : 𝛼 ≤ 𝐹𝑌 (𝑦)} (2)

Where the function, 𝑄𝑌 is called the quantile function or equiva-
lently the inverse CDF function. Intuitively, 𝛼 ∈ (0, 1) is the proba-
bility that𝑌 is less than𝑄𝑌 (𝛼). We canwrite the 𝛼 quantile estimate

1𝑡 is relative, can correspond to different time across time series
2time-of-the-day, week-of-the-month etc
3We transform covariates from the natural domain to real domain via normalization

as follows:
𝑞𝑛𝛼,𝜏+1 = 𝑄𝑌 (𝛼 |𝑌1:𝜏 , 𝑋1:𝑇 ,Θ) (3)

We can model the 𝛼 quantile estimate by minimizing expected
quantile loss4,

argmin
Θ∈R

E𝑌∼𝐹𝑌 𝜌𝛼 (𝑌, 𝑞𝛼 ) (4)

The loss function, 𝜌𝛼 (𝑌, 𝑞𝛼 ) can be expressed as follows:

𝜌𝛼 (𝑌, 𝑞𝛼 ) = (𝑌 − 𝑞𝛼 ) (𝛼 − I(𝑌 ≤𝑞𝛼 ) )

=

{
𝛼 (𝑌 − 𝑞𝛼 ), if 𝑌 ≥ 𝑞𝛼 ,

(𝛼 − 1) (𝑌 − 𝑞𝛼 ), if 𝑌 < 𝑞𝛼 ,
(5)

Intuitively, the quantile loss is the asymmetric generalization of the
mean absolute error. When 𝛼𝑖 = 0.5 we can estimate the median,
otherwise, if 𝛼𝑖 → 0 the loss penalizes more for overestimation and
less for underestimation. Conversely, when 𝛼𝑖 → 1 the model is pe-
nalized for underestimation significantly more than for overestima-
tion. Choosing a sufficiently large and diverse set of 𝛼1:𝑀 ∈ U(0, 1)
can lead to modeling a corresponding conditional quantile distri-
bution. Notably, Quantile regression offers the flexibility to model
data without any arbitrary assumptions on the data generating
processes such as assuming Gaussianity and has shown to be an
effective choice for modeling across a large class of data generating
distributions in practice [6, 17].

3.3 Continuous Ranked Probability Score
We now extend the discussion towards proper scoring metrics for
evaluating probabilistic forecast distributions. The CRPS is a proper
scoring metric for evaluating probabilistic forecast distributions [5].
A proven proper scoring metric entails the important result that
the score is the least when predicted distribution is equivalent to
data distribution [4, 5, 16] 5. The CRPS metric can be computed as:

CRPS(𝐹𝑌 (𝑦), 𝑌 ) =
∫
R
(𝐹𝑌 (𝑦) − I{𝑌 ≤ 𝑦})2𝑑𝑦 (6)

Where I{𝑌 ≤ 𝑦} denotes the indicator function [5]. Analytic forms
of the integral in Eq.6 for popular distributions such as Gaussian and
Negative-binomial likelihood also exist [5, 8] but for various real-
world applications such assumptions can be overly simplistic and
limit modeling capability. Besides, motivated by the simple quantile
regression formulation, prior works [6] have utilized an equivalent
CRPS formulation for learning based on quantiles [12, 23]6:

CRPS(𝐹𝑌 (𝑦), 𝑌 ) = 2
∫ 1

0
𝜌𝛼 (𝑌, 𝑞𝛼 )𝑑𝛼 ≈

𝑀∑︁
𝑖=1

𝜌𝛼𝑖 (𝑌, 𝑞𝛼𝑖 ) (7)

On the other hand, in this paper we also consider another known
sampled approximation of the CRPS metric based on the Energy
score [5]9. However, we uniquely model this approximation via𝑀
many quantile estimates,

CRPS(𝐹𝑌 (𝑦), 𝑌 ) =
1
𝑀

𝑀∑︁
𝑖=1

��𝑞𝛼𝑖 − 𝑌
�� − 1

2𝑀2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

��𝑞𝛼𝑖 − 𝑞𝛼 𝑗

�� (8)

4In following, we simplify the notation, by dropping the indexes 𝑛 and 𝜏 since the
same loss is applied for all time series and horizons
5Proper scoring metrics are negatively oriented, lower scores are better
6A proof of equivalence is given in these works
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4 METHOD
In this section, we provide a compartmentalized description of our
model, FQFormer for time-series forecasting. The model borrows
ideas from the recent work on Quantile conditional modeling [2],
Sparse attention mechanisms [14], Quantile Proposal Networks
[28] and multi-task learning [26].

4.1 Sparse Attention Encoder
We now describe the encoding of the time series observations. Se-
quential encoding primitives such as Convolutions and Recursive
hidden states have been extensively researched for forecasting ob-
jectives. However, networks based on these primitives are unable
to model long-range interactions prevalent in time-series. Convolu-
tional receptive fields can become bottlenecks hindering learning of
long-range interactions in successive layers and Recurrent neural
networks suffer from catastrophic gradient vanishing for initial
hidden states. In light of these challenges, recently, Transformer
networks [14, 27, 31] have been proposed for time series forecasting.
Transformer networks compute pairwise attention between inputs
at all timesteps. This enhances modeling long-range relations since
input at each timestep can attend to all other input timesteps regard-
less of the distance in-between. As a potential downside, this raises
the complexity to 𝑂 (𝑇 2). Hence, we adopt the Sparse Attention
model proposed in Log Sparse Transformer [14] as our base encod-
ing component. The sparse attention mechanism calculates only
𝑂 (𝑙𝑜𝑔𝑇 ) dot products for each timestep in each layer, effectively
allowing each timestep representation only to attend to previous
observations representations with an exponential step size and it-
self. Hence, the complexity is reduced from 𝑂 (𝑇 2) to 𝑂 (𝑇 log𝑇 ).
We donate this attention computation scheme as LogAttention and
compute encoding as:

𝜉�̃� = [𝑌1:𝑇 𝑋1:𝑇 (𝜉𝑝𝑜𝑠 + 𝜉𝐼𝐷 )] (9)
𝜉�̃� = LogAttention(𝜉�̃�, 𝜉�̃�, 𝜉�̃�) (10)

Where, operator denotes concatenation. It is important to note
that we state the computational complexity and the encoding with
respect to the entire range of time series 𝑇 since we utilize the
known future covariate values for the forecast range. Practically,
we fill the unknown future horizons 𝑡 = [𝜏 + 1, ...,𝑇 ] with 0𝑠 for
𝑌𝜏+1:𝑇 for concatenation on the time axis similar to [31]. Moreover,
we also learn distinct ID embeddings corresponding to various
time series that can help learn richer latent representations [14, 22].
These 𝜉𝐼𝐷 are repeated along the time axis and added to learned
positional embeddings 𝜉𝑝𝑜𝑠 . For completeness, 𝜉𝐼𝐷 and 𝜉𝑝𝑜𝑠 are
embedded with latent dimensionality 𝑑𝑚𝑜𝑑𝑒𝑙 .

4.2 Implicit Quantile Embedding
The Implicit quantile embedding forms the second part of the En-
coding stage. We sample multiple 𝛼1:𝑀 ∈ U(0, 1) levels randomly
in the first stage optimization or later as we see proposed by the
Quantile Proposed Network and embed these with an Attention
based embedding component as follows,

𝜉𝛼 = ReLU(𝛼𝑊𝛼 + 𝑏𝛼 ) (11)
𝜉𝛼 = Attention(𝜉𝛼 , 𝜉𝛼 , 𝜉𝛼 ) (12)

The parameters 𝑊𝛼 ∈ R𝑀×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑏𝛼 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 indicate a
ReLU activated feed-forward layer applied to each quantile level in
a position-wise manner and can be thought of as 1d convolution
with a kernel size 1 [24]. Next, we use anAttention based embedding
to learn a powerful latent representation of the quantile levels. It is
worth noting that we sample multiple 𝛼1:𝑀 values per mini-batch,
and structure the decoding for quantile estimations corresponding
to these levels per input series in themini-batch. Moreover, the same
𝑀 many quantile estimations are made across the forecast horizons.
This is much more efficient than sampling multiple quantile levels
differently for each time series and forecast horizon.

4.3 Decoder
The decoder combines the quantile level encodings and the time
series encoding in an efficient manner exploiting shared parameters
for multiple quantile forecasts.

𝜉𝐹𝑙𝑎𝑡
�̃�

= Flatten(𝜉�̃�) (13)

𝜉�̃�,1:𝑀 = Repeat(𝜉𝐹𝑙𝑎𝑡
�̃�

, 𝑀) (14)
𝑞𝛼𝑖 ,𝜏+1: = [𝜉�̃�,𝑖 𝜉𝛼𝑖 ]𝑊𝑀𝑇𝐿 + 𝑏𝑀𝑇𝐿 ∀𝑖 = [1, ..., 𝑀] (15)

In the above equations, we first flatten the encodings of the time
series to one feature axis (𝑑𝑚𝑜𝑑𝑒𝑙 × len(1 :𝜏)), and repeat these
𝑀 many times to combine these with the quantile embeddings
in Eq. 11. Finally, a shared fully connected layer, given by param-
eters𝑊𝑀𝑇𝐿 ∈ R(𝑑𝑚𝑜𝑑𝑒𝑙×len(1:𝜏))×len(𝜏+1:𝑇 ) ,𝑏𝑀𝑇𝐿 ∈ Rlen(𝜏+1:𝑇 ) is
learned to produce a quantile forecast based on the concatenated
repeated representation of the time series and the embeddings of
the implicit quantile levels.

4.4 Quantile Proposal Network
The Proposal network is inspired by the work in [28], with the
goal of learning optimal quantile levels. It is structured similar
to the Encoder-Decoder components as we have introduced in
the preceding subsections. The aim is to condition the quantile
level outputs on time series values in the input range, their resp.
IDs, and all covariate information. Therefore, in the second stage
optimization, we initialize a new Encoder-Decoder and task it to
predict𝑀 many quantile levels:

𝜉
′𝐹𝑙𝑎𝑡
�̃�

= Flatten(𝜉
′
�̃�
) (16)

𝛼 ′
1:𝑀 = Sigmoid(𝜉

′𝐹𝑙𝑎𝑡
�̃�

𝑊𝑃𝑟𝑜𝑝 + 𝑏𝑃𝑟𝑜𝑝 ) (17)

Where𝑊𝑃𝑟𝑜𝑝 and 𝑏𝑃𝑟𝑜𝑝 are linear layer parameters of the same
input dimensionality as𝑊𝑀𝑇𝐿 and 𝑏𝑀𝑇𝐿 , however predicting the
𝑀 many quantile levels. Lastly, we also differentiate the learned
quantile levels as 𝛼 ′, the structurally similar new second-stage
encoding 𝜉

′ , and the set of collective parameters of the Quantile
Proposal network as Θ′.

4.5 Two-Stage Optimization
We propose a two-stage optimization process where the Encoder-
Decoder as introduced above are first optimized to output quantile
estimations corresponding to input randomly sampled quantile
levels. We use the sum of quantile loss functions approximating the
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CRPS loss to train this first stage network,

argmin
Θ∈R

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=𝜏+1

𝑀∑︁
𝑖=1

𝜌𝛼𝑖 (𝑌𝑛
𝑡 , 𝑞

𝑛
𝛼𝑖 ,𝑡

) (18)

Notably, we use the same quantile loss parameterized by quantile
level 𝛼𝑖 for all time series and forecast horizons considered in the
mini-batch. On the other hand, we minimize the empirical CRPS
loss based on the Energy score to estimate the parameters of the
Quantile Proposal Network,

argmin
Θ′∈R

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=𝜏+1

©« 1
𝑀

𝑀∑︁
𝑖=1

���𝑞𝑛𝛼′
𝑖
,𝑡
− 𝑌𝑛

𝑡

��� − 1
2𝑀2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

����𝑞𝑛𝛼′
𝑖
,𝑡
− 𝑞𝑛

𝛼′
𝑗
,𝑡

����ª®¬
(19)

The above equation is differentiated from Eq. 18 with regard to
the learned quantile levels 𝛼 ′. As we noted before, although the
equivalence of these two instantiations has already been estab-
lished, learning on both the empirical approximations stands to
cover inherent biases from both approximations to the integral.
From a practical standpoint, once the Encoder-Decoder are trained
to estimate the quantile function of the forecast distribution, we
move to optimize the quantile levels in the second stage with the
energy score based CRPS loss (Eq. 19) that models the correlations
among the quantile estimations directly as we can see with the
pairwise component of the loss. The pairwise component of the
loss intuitively maximizes the distance between the quantile estima-
tions to capture various modes of the underlying data distribution.
Hence, by learning and selecting quantile levels, and subsequent es-
timations based on these that serve this criteria and are individually
sharper quantile estimations nevertheless, as optimized for through
the first component of the loss, we aim to optimally estimate the
joint distribution of the quantile estimations.

It is worth reiterating that the quantile loss based formulation
cannot be used to optimize the quantile level selection. Moreover,
directly learning on the energy score loss is also not feasible given
the computational complexity with regard to the pairwise distances
and considering the competition among the two sub loss com-
ponents requiring sharp estimations while simultaneously being
spread apart. Therefore, we first propose to take advantage of the
well-established IQN framework and optimize for the quantile es-
timations by randomly sampling quantile levels and then freeze
the parameters of the first network, when training the proposal
network on the energy score based CRPS loss in the second stage.

5 EXPERIMENTS7

The experiments are based on 2 real-world datasets on 4 differ-
ent forecasting tasks. We follow the experimental protocol from
previous works [14, 22].

5.1 Dataset Statistics
1) electricity is an hourly Kilo Watts time series dataset of

electricity consumption of 370 households from January 2011
to end of 2014

7github.com/super-shayan/fqformer; Baseline implementation details are given in the
Appendix

electricity traffic

# time series, 𝑁 370 963
time granularity hourly hourly

domain R+ [0, 1]
# training examples 500K 500K
# input length, [1...𝜏] 168 168

# forecasting length, [𝜏, ...,𝑇 ] 24/168 24/168
Table 1: Time series dataset statistics including the number
of training windows generated through the sliding window
procedure

2) traffic dataset notes the hourly occupancy rates in the
range[0, 1) of 963 car lanes across different freeways in San
Francisco during the first half of year 2008.

Following the preprocessing described in [14, 22] we exploit the
sliding window procedure to generate training samples from the
datasets. Multiple windows are sampled for each dataset with fixed
conditioning and forecasting length by sampling 𝜏 several times
across the full time series ranges as noted in Table. 1. We also utilize
the same weight sampling and scaling techniques as described in
[14, 22] in order to consistently compare the results on the bench-
mark from [14].

5.2 Proposed Model and Ablations
We now describe the ablations to the proposed model, that validate
the effect of the loss components and two-stage optimization.

1) FQFormer-BASE is the base version of FQFormer that is trained
with only the quantile loss functions and randomly sampling
the quantile levels following the IQN framework.

2) A-FIX is the Transformer based approach for fixed quantile
modeling; it generates 99 discrete quantile level estimations
with multi-task decoding. This model is also trained with
quantile loss functions.

3) A-DIR is the same Transformermethod as in FQFormer-BASE ,
however it is optimized directly with Energy score based
CRPS loss without any Quantile loss functions.

4) A-PRE-DIR pretrains FQFormer-BASEwith the quantile loss
and in the second stage the model is optimized again with
only Energy score CRPS loss for the same number of epochs.

5) FQFormer is the proposed model which uses the pretrained
FQFormermodel from the first stage and optimizes the quan-
tile proposal network in the second stage to minimize the
Energy score based CRPS loss.

5.3 Results
We report the comparison of our proposed FQFormerwith several
baselines in Tables. 2,3. We did extensive hyperparameter search
for all baselines, ablations and proposed methods separately for
each task with fair computational budgets. Each hyperparameter
configuration was run for the first 3 integer seeds, and we report the
test performance corresponding to the least validation error across
configs on held-out 10% validation set windows sampled randomly
in the training range [14]. Whereas, the test range corresponds to
the last 7 days. The evaluation metrics correspond to loss functions
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Table 2: Comparison to forecasting baselines in terms of two QL metrics. Results are formatted with ·102, columnar least is
boldfaced, second-least is underlined. Results in brackets denote reimplementation results

electricity24 electricity168 traffic24 traffic168
QL0.5 QL0.9 QL0.5 QL0.9 QL0.5 QL0.9 QL0.5 QL0.9

Re
po

rte
d
in

[1
4] ARIMA 15.4 10.2 28.3 10.9 22.3 13.7 49.2 28

ETS 10.1 7.7 12.1 10.1 23.6 14.8 50.9 52.9
TRMF 8.4 – 8.7 – 18.6 – 20.2 –
DeepState 8.3 5.6 8.5 5.2 16.7 11.3 16.8 11.4
DeepAR 7.5(6.198) 4.00(5.448) 8.2(8.264) 5.3(6.554) 16.1(12.041) 9.9(9.697) 17.9(15.657) 10.5(12.301)
LogTrans 5.9(5.781) 3.4(2.972) 7(7.614) 4.4(3.845) 12.2(12.27) 8.1(7.891) 13.9(14.014) 9.4/(8.567)

VA
E

CVAE MSE 6.693 6.622 8.137 6.494 13.268 11.661 15.244 12.329
CVAE DIL 7.110 5.584 16.424 20.061 38.266 33.855 17.544 17.668
STRIPE DIL 12.141 8.978 13.046 10.455 38.471 32.648 28.000 53.498

Q
ua
nt
ile

AST 7.380 4.636 8.887 5.726 20.534 14.047 38.816 19.545
MQ-RNN 7.572 3.847 9.145 4.726 11.662 8.452 14.499 10.400
SQF-RNN 6.952 5.098 7.977 4.982 11.792 9.603 15.206 10.521
IQN-RNN 6.429 4.652 8.419 6.813 12.155 8.984 14.940 9.823

Pr
op FQFormer 6.418 3.133 7.88 3.729 11.023 7.890 13.255 9.353

FQFormer-BASE 6.315 3.133 7.876 3.745 10.756 7.866 13.758 9.676

A
bl
at
. A-FIX 6.252 3.344 7.359 4.192 12.168 10.226 14.959 12.725

A-DIR 7.121 5.472 7.793 6.762 11.687 13.459 12.578 13.366
A-PRE-DIR 6.798 3.325 8.712 4.057 11.301 8.060 14.335 9.435

introduced before, and exact definitions ofmetrics used are provided
in the Appendix B. Q-AVG refers to the averaged quantile loss
(Eq. 7) over 99 quantile estimations on the discrete grid 𝛼1:𝑀 =

[0.01, 0.02, ..., 0.99], and E-CRPS corresponds to the loss stated in
Eq. (8) estimated through the same quantile estimation as in Q-AVG
with the exception of FQFormer results, given for it the predicted
quantile levels are used instead.

A number of interesting observations can be drawn from these re-
sults. We first discuss the results corresponding to the 50𝑡ℎ and the
90𝑡ℎ quantile loss functions, QL0.5 and QL0.9 resp. We can see that
thewins across tasks are unevenly distributed and FQFormer performs
better on the long-range forecasting relative to other baselines.

The LogTrans baseline appears to be the strongest contender,
showcasing the importance of Attention mechanism for forecasting
tasks relative to the predominant RNN based models. We hypoth-
esize that autoregressive decoding combined with the extensive
prior literature on modeling Electricity dataset with Gaussian like-
lihood is the reason for LogTrans outperforming other baselines
on the electricity24 task. On the other hand, we can note the
comparisons with regard to ablations and other FQFormer variants.
Given that these share the same underlying modeling primitives
as the FQFormer the performances are more or less in the similar
range.

We now move to discuss the results for the CRPS metrics, which
are more representative probabilistic metrics for judging the per-
formance of the forecasts. It is, specifically here, that we see wins
for the FQFormermodels against the ablations. Notably, when the
hyperparameters are tuned fairly for ablations, it is possible to see
one time lifts for ablations such as we see for A-FIX on the QL0.5
metric for the electricity168 task however on the more represen-
tative probabilistic metrics the ablation model is unable to outper-
form the FQFormer on this task. Similarly, comparing A-DIR and

FQFormer for the traffic168 task also supports this argument.
Another set of observations can be derived from benchmark-

ing the performance of the Gaussian likelihood based DeepAR and
quantile methods MQ-RNN , IQN-RNN and SQF-RNN . Given how these
methods are based on RNNs, the underlying model complexity is
comparable, however, we see that the quantile methods are able
to outperform DeepAR showcasing the importance of the quantile
modeling. Additionally, we can observe that IQN-RNN is able to
outperform MQ-RNNwith significant margins on the electricity fore-
casting datasets, and coming close in the other 2. It is therefore
plausible that learning on several quantile levels provides addi-
tional auxiliary regularization that leads to a generalization effect
on the test set. CVAE MSE and CVAE DIL [13, 30] models also approx-
imate the true forecast distribution with the Gaussian distribution
through variational learning and use less powerful RNNs as the
base sequential encoders and decoders, which might be the reason
for lack of competitive results. On the other hand, we can note
that CVAE DIL does not outperform the mean squared counter-
part variational model. The poor performance from CVAE DIL also
affects the STRIPE DILmodel performance. The reason is that
STRIPE DIL is a two-stage method that uses a pretrained CVAE
DILmodel. We also found that the two stage optimization of the
STRIPE DILmodel is prone to unstable optimization despite using
available official code. Similarly, AST involves the notable difficulties
in training GANs, and we find that the baseline performs poorly
for the traffic forecasting tasks on the QL0.5 and QL0.9 metrics.
Moreover, retraining it independently for each quantile level to
report the CRPS metrics is computationally intensive, especially
considering hyperparameter configurations for each quantile level.
Notably, despite how quantile loss for the 90𝑡ℎ quantile estimation
is weighted less in the loss formulation than the 50𝑡ℎ quantile, and
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Table 3: Comparison to forecasting baselines in terms of averaged quantile loss metric and the Energy score based CRPS metric.
AST requires retraining per quantile level, so we do not report CRPS for it. Results are formatted like before. Noatbly, E-CRPS
metric is computed with predicted quantile levels for the FQFormer

electricity24 electricity168 traffic24 traffic168
Q-AVG E-CRPS Q-AVG E-CRPS Q-AVG E-CRPS Q-AVG E-CRPS

Ga
us DeepAR 5.704 5.680 7.836 7.814 9.606 9.525 14.107 14.026

LogTrans 4.388 4.342 6.168 6.107 9.254 9.173 10.719 10.604

VA
E

CVAE MSE 6.588 6.578 8.014 8.005 12.688 12.65 14.847 14.829
CVAE DIL 6.982 6.974 16.069 16.044 37.980 37.960 17.093 17.064
STRIPE DIL 11.629 11.618 12.628 12.575 36.605 36.540 24.372 24.243

Q
ua
nt
ile

AST – – – – – – – –
MQ-RNN 5.927 5.859 7.542 7.474 9.417 9.320 12.112 11.989
SQF-RNN 5.772 5.719 6.705 6.648 10.083 9.999 12.128 12.008
IQN-RNN 5.411 5.370 6.798 6.741 9.971 9.872 12.157 12.039

Pr
op FQFormer 4.853 4.8* 5.952 5.888* 8.506 8.425* 10.227 10.138*

FQFormer-BASE 4.770 4.739 5.952 5.913 8.327 8.267 10.574 10.475

A
bl
at
. A-FIX 4.981 4.955 5.974 5.947 10.432 10.393 12.953 12.911

A-DIR 7.121 7.121 7.793 7.793 11.687 11.687 12.578 12.578
A-PRE-DIR 5.230 5.201 6.838 6.801 8.833 8.774 12.730 10.991

is generally an easier objective to learn, we see that some base-
lines are unable to provide spread apart quantiles and as a result
the error metrics for the 50𝑡ℎ quantile are lesser in magnitude.

We can also compare the performance of FQFormer to ablations
dealing with architectural and optimization alternatives. Firstly, we
can see that FQFormer is able to outperform FQFormer-BASE on the
long-range forecasting task. However, the FQFormer-BASE performs
better on the short-range rolling forecasting task. This showcases
the importance of the quantile level selection through the two-
stage optimization is most beneficial for the long-range forecasting.
This is also intuitive in terms of model complexity given that for
the rolling forecasting tasks, the multi-task estimation covers 24
forecast horizons vs. 168 in the direct forecasting scenario, which
makes the latter a more complex task where additional parameters
and quantile level optimization through the Energy score CRPS
loss is more helpful. On the other hand, comparing FQFormer to
the A-FIX baseline showcases the important result of learning the
quantile function implicitly compared to fixed discrete quantile
levels. Moreover, regarding optimization, comparing FQFormer to
A-DIRwe can see that optimization alone through the Energy score
based CRPS loss is suboptimal compared to the proposed two-stage
optimization. Additionally, we explored sequential two-stage op-
timization in A-PRE-DIR , in order to ensure that the performance
gain is not observed through additional training epochs as required
in the proposed two-stage optimization, however as we observe
selection of quantile levels outperforms this ablation as well.

6 CONCLUSION
In this work, we developed a quantile proposal network that out-
puts learned quantile levels conditioned on input time series’s his-
tory and context features. We trained it with a novel optimiza-
tion process by minimizing the Energy score based CRPS loss. We
showcased that learning quantile levels and modeling correlations
between the estimations based on these levels leads to an opti-
mal estimate of the forecast distribution with limited samples, as

validated through extensive empirical evaluation on real-world
datasets. In future work, we shall research multivariate forecasting
extensions that model correlations among quantile functions of
covariate channels.

ACKNOWLEDGEMENTS
This work is co-funded by the industry project Data-drivenMobility
Services of ISMLL and Volkswagen Financial Services. We also
acknowledge funding by the Federal Ministry for Economic Affairs
and Climate Action (BMWK), Germany, within the framework of
the IIP-Ecosphere project.

REFERENCES
[1] Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Bernie

Wang, DanielleMaddix, Caner Turkmen, Jan Gasthaus,Michael Bohlke-Schneider,
David Salinas, Lorenzo Stella, et al. 2020. Neural forecasting: Introduction and
literature overview. arXiv preprint arXiv:2004.10240 (2020).

[2] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. 2018. Implicit
quantile networks for distributional reinforcement learning. In International
conference on machine learning. PMLR, 1096–1105.

[3] Carson Eisenach, Yagna Patel, and Dhruv Madeka. 2020. Mqtransformer: Multi-
horizon forecasts with context dependent and feedback-aware attention. arXiv
preprint (2020).

[4] Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram,
David Salinas, Valentin Flunkert, and Tim Januschowski. 2019. Probabilistic
forecasting with spline quantile function RNNs. In International conference on
Artificial Intelligence and Statistics. PMLR.

[5] Tilmann Gneiting and Adrian E Raftery. 2007. Strictly proper scoring rules,
prediction, and estimation. Journal of the American statistical Association 102,
477 (2007), 359–378.

[6] Adele Gouttes, Kashif Rasul, Mateusz Koren, Johannes Stephan, and Tofigh
Naghibi. 2021. Probabilistic Time Series Forecasting with Implicit Quantile
Networks. arXiv (2021).

[7] Vincent Le Guen and Nicolas Thome. 2020. Probabilistic time series forecasting
with structured shape and temporal diversity. arXiv preprint arXiv:2010.07349
(2020).

[8] Alexander Jordan, Fabian Krüger, and Sebastian Lerch. 2017. Evaluating proba-
bilistic forecasts with scoringRules. arXiv preprint arXiv:1709.04743 (2017).

[9] Kelvin Kan, François-Xavier Aubet, Tim Januschowski, Youngsuk Park, Kon-
stantinos Benidis, Lars Ruthotto, and Jan Gasthaus. 2022. Multivariate Quantile
Function Forecaster. In International Conference on Artificial Intelligence and
Statistics. PMLR, 10603–10621.



Conference’17, July 2017, Washington, DC, USA Shayan Jawed and Lars Schmidt-Thieme

[10] Roger Koenker and Kevin F Hallock. 2001. Quantile regression. Journal of
economic perspectives 15, 4 (2001), 143–156.

[11] Alireza Koochali, Andreas Dengel, and Sheraz Ahmed. 2021. If You Like It, GAN
It—Probabilistic Multivariate Times Series Forecast with GAN. In Engineering
Proceedings.

[12] Francesco Laio and Stefania Tamea. 2007. Verification tools for probabilistic
forecasts of continuous hydrological variables. Hydrology and Earth System
Sciences (2007).

[13] Vincent Le Guen and Nicolas Thome. 2020. Probabilistic time series forecasting
with shape and temporal diversity. Advances in Neural Information Processing
Systems 33 (2020).

[14] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting. Advances in Neural Information
Processing Systems (NeurIPS) (2019).

[15] Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. [n. d.]. Tempo-
ral fusion transformers for interpretable multi-horizon time series forecasting.
International Journal of Forecasting ([n. d.]).

[16] James E Matheson and Robert L Winkler. 1976. Scoring rules for continuous
probability distributions. Management science 22, 10 (1976), 1087–1096.

[17] Youngsuk Park, Danielle Maddix, François-Xavier Aubet, Kelvin Kan, Jan
Gasthaus, and Yuyang Wang. 2021. Learning Quantile Functions without Quan-
tile Crossing for Distribution-free Time Series Forecasting. arXiv preprint
arXiv:2111.06581 (2021).

[18] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time
series forecasting. NeurIPS (2018).

[19] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. 2021. Au-
toregressive denoising diffusion models for multivariate probabilistic time series
forecasting. In International Conference on Machine Learning. PMLR, 8857–8868.

[20] Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs Bergmann, and Roland
Vollgraf. 2020. Multivariate probabilistic time series forecasting via conditioned
normalizing flows. arXiv (2020).

[21] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and
Jan Gasthaus. 2019. High-dimensional multivariate forecasting with low-rank
gaussian copula processes. Advances in neural information processing systems 32
(2019).

[22] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting 36, 3 (2020), 1181–1191.

[23] Phillip Si, Allan Bishop, and Volodymyr Kuleshov. 2021. Autoregressive Quantile
Flows for Predictive Uncertainty Estimation. arXiv preprint arXiv:2112.04643
(2021).

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

[25] Ruofeng Wen and Kari Torkkola. 2019. Deep generative quantile-copula models
for probabilistic forecasting. arXiv preprint arXiv:1907.10697 (2019).

[26] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka. 2017. A multi-horizon quantile recurrent forecaster. arXiv preprint
arXiv:1711.11053 (2017).

[27] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang.
2020. Adversarial sparse transformer for time series forecasting. NeurIPS (2020).

[28] Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. 2019.
Fully parameterized quantile function for distributional reinforcement learning.
NeurIPS 32 (2019).

[29] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. 2019. Time-series
generative adversarial networks. Advances in Neural Information Processing
Systems 32 (2019).

[30] Ye Yuan and Kris Kitani. 2019. Diverse trajectory forecasting with determinantal
point processes. arXiv preprint arXiv:1907.04967 (2019).

[31] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of AAAI.

A HYPERPARAMETER TUNING
We describe here the hyperparameter tuning done for our models
and baselines. All hyperparameter tuning was done on the vali-
dation split. For our proposed models, FQFormer , FQFormer-BASE
and ablations, we tuned the hyperparameter number of Sparse At-
tention Layers in the grid [1, 2, .., 10] for each dataset separately
[27], and we sampled the learning rate on log-scale uniformly at
random in the range [10−4, 10−1] for each initial seed value. In total,

we ran 30 configurations per dataset, each for a total of 20 epochs as
in [14]. All other hyperparameters were kept constant as the base
sparse attention model [14]. Once, the best configuration was found
for the FQFormer-BASEwe froze its parameters and combined it
with a 1 layer Transformer proposal network and trained for an-
other 20 epochs. The results stated in Tables 2,3 correspond to the
best found checkpoint (on validation split) found on the second
stage optimization for the FQFormermodel.

We also note that for all experiments in our paper, we used the
fixed batch size 64 and sampled number of windows as indicated in
the dataset statistics (Table. 1), including proposed model, ablations
and baseline experiments.

On the other hand, for the Transformer baselines, LogTrans and
ASTwe used tuned the same hyperparameters as done for our model
on the same range and ran the hyperparameter configurations for 20
epochs as well. We used the official code provided by authors8. For
the RNN baselines, DeepAR 9, SQF-RNN 9, IQN-RNN 10 and MQ-RNN 9

we tuned the hyperparameters number of RNN layers in the grid
[4, 8], and the cell size in [256, 512] and ran these configurations for
the same seeds and sampled learning rate in the log-space range as
described above. We used the official code for these models, and ran
these models for double the number of epochs 40 per configuration;
ensuring fair computational budgets relative to proposed model.

For the Variational autoencoder based baselines, we recall that
the CVAE MSE , CVAE DIL are based on RNNs and use the Mean
Squared Error and the DILATE loss [7] and we tuned the cell size
and number of layers of RNN similar to noted above for other RNN
based models. Additionally, we tuned the fully connected layer
dimensionality in the grid [512, 1024] that extrapolates for the fore-
cast in the decoder. We used the best found checkpoint for the CVAE
DILmodel to run the second stage optimization STRIPE DILmodel.
All hyperparameter configurations for CVAE MSE , CVAE DILwere
trained for 40 epochs. We trained 1 epoch each for the second
stage optimization routines stripe shape loss and subsequently time
loss based optimization. For these experiments, we also used the
author’s provided official code11.

B EVALUATION METRICS
We report here the exact definition of the normalized metrics we
used to report the results for the metrics, QL0.5, QL0.9, Q-AVG and E-
CRPS. The metrics are summed over all time series, i.e.,𝑛 = [1, ...𝑁 ],
and over the whole prediction range, i.e., 𝑡 = [𝜏 + 1, ...,𝑇 ] [14, 22].
The quantile loss metrics can be stated w.r.t 𝛼 as follows:

𝑄𝐿𝛼𝑖 =

∑
𝑛,𝑡 𝜌 (𝑌𝑛

𝑡 , 𝑞
𝑛
𝛼𝑖 ,𝑡

)∑
𝑛,𝑡 |𝑌𝑛

𝑡 | (20)

The Q-AVG corresponds to the average of the 99 quantile loss
functions shown above, for 𝛼 = [0.01, 0.02, ..., 0.99]. Similarly, we
can state the E-CRPS metric as:

𝐸−𝐶𝑅𝑃𝑆 =

∑
𝑛,𝑡

(
1
𝑀

∑𝑀
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𝑡

��� − 1
2𝑀2

∑𝑀
𝑖=1

∑𝑀
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���𝑞𝑛𝛼𝑖 ,𝑡 − 𝑞𝑛𝛼 𝑗 ,𝑡

���)∑
𝑛,𝑡 |𝑌𝑛
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(21)

8https://github.com/hihihihiwsf/AST
9https://github.com/awslabs/gluon-ts
10https://github.com/zalandoresearch/pytorch-ts/tree/master/pts
11https://github.com/vincent-leguen/STRIPE
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