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Identifying and Overcoming Transformation Bias in Forecasting
Models
Sushant More

morsusha@amazon.com
Amazon

ABSTRACT
Log and square root transformations of target variable are routinely
used in forecasting models to predict future sales. These transfor-
mations often lead to better performing models. However, they also
introduce a systematic negative bias (under-forecasting). In this
paper, we demonstrate the existence of this bias, dive deep into its
root cause and introduce two methods to correct for the bias. We
conclude that the proposed bias correction methods improve model
performance (by up to 50%) and make a case for incorporating bias
correction in modeling workflow.

We also experiment with ‘Tweedie’ family of cost functions
which circumvents the transformation bias issue by modeling di-
rectly on sales. We conclude that Tweedie regression gives the best
performance so far when modeling on sales making it a strong
alternative to working with a transformed target variable.

ACM Reference Format:
. 2022. Identifying and Overcoming Transformation Bias in Forecasting
Models. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
One of the science goals in Amazon Devices is to determine which
device each customer wants to buy, and ensure that every cus-
tomer’s choice is available for them to purchase at the time and
place they desire. To deliver on this goal, the science team has in-
vested in developing device demand forecasting models, which we
call Versioned Demand Planning (VDP) models. The performance
of VDP models is usually monitored at a region and device type
level.1.

An investigation of these VDP models indicated that many of
the models (built using 𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠) as target variable) suffered from
an issue of negative bias or under-forecasting. This is demonstrated
in Fig. 1. To maintain business confidentiality, we anonymize the
regions by roman numerals (I, II, III, . . .) and device types by upper-
case English letters (A, B, C). Furthermore the metrics – WMAPE
(weighted mean-absolute percentage error) and WBias (weighted
bias) are reported relative to the performance of Linear Regression

1Examples of device types are Alexa Echo, Kindle/ eReader), Tablet, Fire TV etc.
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fee. Request permissions from permissions@acm.org.
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Figure 1: Negative Bias across variousmodels whenmodeled
on a transformed target variable. Persistent negative bias is
seen irrespective of the model type (XGBoost, Random For-
est, Linear Regression, Neural Networks, and ARIMAX) and
region/ device type combination. We report relative metrics
(Eq. (1)) for 4 different time horizons (6, 12, and 24 weeks).

(LR) model for region I and device type A throughout the paper.
For a given model for a region r, device d, and time horizon h:

reported WMAPE r, d, h,model =
WMAPE r, d, h,model

WMAPE r=I, d=A, h,model=LR

reported WBias r, d, h,model =
WBias r, d, h,model

|WBias r=I, d=A, h,model=LR |
(1)

Please refer to Appendix A (Eq. (9) regarding how we define the
MAPE and Bias metrics. As seen in Fig. 1, a systematic negative
bias is present regardless of the model choice (XGBoost, Random
Forest, Linear Regression, Neural networks, ARIMAX) and is seen
irrespective of the region/device type combination.

The above observation will form the basis of this paper. It is
arranged as follows. In the next section, we dive deep into the scien-
tific basis of the observed under-forecasting. After establishing the
root cause for bias in Sec. 2, we look into various methods of bias
correction in Sec. 3. In Sec. 4, we look at the methods that circum-
vent the transformation bias altogether by building models directly
on sales without invoking any transformation. We summarize our
findings and give glimpse of the ongoing work in Sec. 5.

1
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Figure 2: In-samplemodel fit for twomachine learningmod-
els for two different device types. The plots on the left are
the fit in the modeling units. The X and Y axes are target
variable (𝑌 ) and the prediction output from the ML model
(𝑌 ) respectively. The plots on the right are obtained by back-
transforming the values from plots on the left. The red line
is y = x line. Points below the red line are under-forecasts.

Note that even though we use device forecasting as our test
ground, the problem of transformation bias that we tackle and the
methods we develop are applicable to any regression setting where
the target variable is transformed before fitting a Machine Learning
model.

2 ROOT CAUSE OF NEGATIVE BIAS
Our goal is to predict daily sales for each individual item given
the relevant features such as selling price, seasonality, holidays,
in-stock status, and product attributes. We build models on past
2-3 years of sales history and predict daily sales at individual item
grain for 6-12 months in future.

Historically, we found it useful (see Sec. 2.2) to build machine
learning (ML) models with 𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠) as target variable and expo-
nentiate the model prediction. To root cause the chronic issue of
negative backtesting bias (refer Fig. 1), we focus on the simplest
ML problem of in-sample model fit by comparing model prediction
(𝑌 ) with target variable (𝑌 ).

In Fig. 2, the graphs on the left are in-sample model fits in the
modeling (i.e, logarithmic) units. Note that we refer to model pre-
diction as ‘vdp_plus_units’. The plots on the right is when the same
model output is back-transformed (exponentiated) to the original
units (without any newmodel fit). Residual = 𝑌 −𝑌 is the difference
between the original value and the prediction. Ideally, we want the
residuals to have a mean of zero. Large positive mean for residuals
implies a negative bias (or under-forecasting). Fig. 2 shows that:
1) Models do not show a bias in the modeling units. The mean of
residuals is close to zero (refer plots’ title). 2) A large negative bias
is introduced when the prediction is back-transformed to original

units. This is seen by a large positive mean of residuals (plots on
right in Fig. 2).

Even though, we only demonstrate the effect of target transfor-
mation in XGBoost (XGB) and Neural Network (NN) models in
Fig. 2, the behavior is qualitatively similar for other model types as
well. Also, it is similar for both logarithm or square-root transfor-
mation of the target variable.

So far, we provided an empirical evidence of how modeling on a
transformed target variable and back-transforming leads to bias. In
the next subsection, we will dive deep into the mathematical basis
of this transformation bias.

2.1 Mathematical basis of transformation bias
Jensen’s inequality states that the convex transformation of mean is
less than or equal to the mean applied after convex transformation
[1]. The opposite is true of concave transformations. In context of
probability theory, for a random variable 𝑋 and a concave function
𝑓 : 𝐸 [𝑓 (𝑋 )] <= 𝑓 (𝐸 [𝑋 ]). In our case, 𝑋 is 𝑠𝑎𝑙𝑒𝑠 and 𝑓 is typically
the logarithm which translates to

𝐸 (𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠)) ≤ 𝑙𝑜𝑔(𝐸 (𝑠𝑎𝑙𝑒𝑠)) (2)
The expectation value, 𝐸, in Eq. (2) is the mean value of forecast
distribution for given item on a given day.

𝐸 (𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠)) is what we obtain as output from ML model built
on a log transformed target variable and optimized onmean-squared
error. Typically, the business is interested in 𝐸 (𝑠𝑎𝑙𝑒𝑠). To obtain
𝐸 (𝑠𝑎𝑙𝑒𝑠), we exponentiate the model output which is 𝐸 (𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠)).
From Eq. (2), we obtain

𝑒𝑥𝑝 (𝐸 (𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠))) ≤ 𝐸 (𝑠𝑎𝑙𝑒𝑠) . (3)
Eq. (3) is the mathematical demonstration of our claim that work-

ing with a transformed target variable and back-transforming leads
to Transformation Bias. Note that even though, we worked with the
special case of logarithm transformation, our conclusions hold for
any concave transformation.

Note that in general transformation bias could be one of the
several sources of bias (e.g., inaccurate trend, selling price etc.) in
the model. The different sources of bias could add up in such a
way that no net bias is observed in the back-transformed units.
Nonetheless, as demonstrated in Eqs. (2) and (3), transformation
bias will always be present when working with transformed target
variable.

2.2 Modeling directly on sales
One of the straightforward ways to avoid transformation bias is to
model directly on sales. Empirically, we find that the performance
deteriorates when a model is built directly on sales (Fig. 3).

One of the reasons for the poor performance on untransformed
target variable is the skewed nature of sales data as demonstrated in
Fig. 4. The business reason for the right-skewed sales distribution
is the spiky sales seasonality. We have days such as Black Friday,
Prime Day, and Christmas Holidays when we observe significantly
higher sales thanmost days. Moreover, some items aremore popular
than others adding to the skewness of distribution.

This skewed distributionmakes it difficult to preserve homoscedas-
ticity and normality of residuals. Additionally, minimizing mean
squared-error (MSE) is the maximum likelihood estimator when

2
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Figure 3: Performance metrics when a forecasting model is
built directly on sales as a target variable. XGB_linear and
XGB_tree are XGBoost models using linear and tree base
learners respectively. We are typically interested in how the
model performs 6, 12, and 24 weeks in future. The horizon
length is based on business requirements.

Figure 4: Histogram of daily individual item-level sales
data (left) and distribution of data after log transformation
(right). In the left plot, we exclude data points over 95th quan-
tile for plotability.

the noise term is Gaussian. This assumption of a Gaussian noise is
typically ill-suited in presence of a highly skewed distribution (left
plot in Fig. 4).

On the other hand, working with 𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠) makes the distri-
bution look more normal (right plot in Fig. 4) and makes the data
more amenable to modeling. Logarithm also allows us to better
treat the outliers. Note that in our case, outliers (e.g., Black Friday)
are of prime business interest and can’t just be discarded. Another
advantage of using logarithm is that because of exponentiation dur-
ing back-transformation, the prediction is always positive which
makes sense for forecasting of sales.

We will return to modeling on sales again in Sec. 4, but our
conclusion based on the discussion so far is that 1) Modeling directly
on sales leads to poor performance 2) Modeling on 𝑙𝑜𝑔(𝑠𝑎𝑙𝑒𝑠) has
obvious advantages, but introduces a systematic transformation
bias. One of the way ahead is to keep using the log transformation,
but explicitly correct for the bias introduced. This will be the basis
of our discussion in the next section.

3 BIAS CORRECTION TECHNIQUES
Modeling with a transformed variable was acknowledged as prob-
lematic since the 1930s [2]. Formal bias correction for logarithm
was computed in 1941 [3]. In 1960, a general bias correction pro-
cedure for all transformations was developed [4]. In the next two
subsections, we will look at two different methods of bias correction.
The first method (Sec. 3.1) is author’s original work and the second
(Sec. 3.2) is an improvement over an existing method in literature
[5, 6].

Figure 5: Effect of sales weighting on model performance
across different time horizons (6, 12, and 24 weeks).

3.1 Addition of weights in cost function
The standard cost function in regression analysis is the mean-
squared error.

𝐽 =
∑

𝑖∈samples
𝑤𝑖 (𝑦𝑖 − 𝑓 (𝑋𝑖 ))2 (4)

In the default case,𝑤𝑖 = 1 in Eq. (4). That is all the points are equally
weighted. We find that making𝑤𝑖 in Eq. (4) a function of sales helps
mitigate the negative bias. Our prescription is as follows:

(1) Start with the default uniform weight (𝑤𝑖 = 1) and succes-
sively increase the weighting, making it more aggressive
(from log_sales weighting to sqrt_sales to sales and so on).

(2) With successive increases bias increases (from large negative
towards zero) and MAPE (mean-absolute-percentage-error)
decreases. At a certain point bias gets too large and MAPE
deteriorates. Stop when the lowest MAPE and bias numbers
are obtained.

The effect of successive sales weighting on model performance
is demonstrated in Fig. 5. Note that given Eqs. (1), we want relative
metrics to be as close to zero as possible. We find that for region
II device C log_sales (𝑤𝑖 = 𝑙𝑜𝑔(𝑦𝑖 ) in Eq. (4)) is the best weight
for linear learners and sales (𝑤𝑖 = 𝑦𝑖 ) is the best weight for tree
learners. We use XGB for the demonstration here as we have seen
it’s one of the top-performing model for our use case. Note, that
behavior is qualitatively similar regardless of the model choice
though.

When we use sales weighting in cost function, we introduce
a positive bias in logarithmic units. Due to Jensen’s inequality, a
positive bias in log units translates to less negative bias in original
units. As we progressively, make the weights more aggressive, at
some point, introduced bias in log units is just right enough to
obtain zero bias in original units. (This is illustrated in Fig. 10.)

Addition of weights in cost function is easy to implement in
most ML libraries and is seen to give improved performance in
most cases. However, it suffers from the following limitations: 1)
The process is iterative. We don’t know which is the best weight
to use apriori. 2) Performance can widely differ depending on the
weight chosen 3) On a scientific front, it doesn’t tackle the bias
problem head on. This motivates us to explore methods that correct
for transformation bias directly.

3.2 Prediction-based bias correction
In the simplest case of explicit bias transformation, the ‘true’ ex-
pected value of the back-transformed distribution is related to the
back-transformed value obtained from model by a multiplicative

3
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Table 1: Prediction-based BC function for region II device B

log_vdp_plus_units (or prediction) XGB_linear XGB_tree
[0 − 2) 1.503 1.015
[2 − 4) 1.142 1.093
[4 − 6) 1.493 1.099
[6 − 8) 2.112 1.351
≥ 8 2.527 1.687

bias correction (BC) factor.

𝐸 [𝑌 ] = 𝐵𝐶 ∗ 𝑓 −1 (𝐸 [𝑓 (𝑌 )]) (5)

To relate Eq. (5) to Eq. (3), note that 𝑌 = 𝑠𝑎𝑙𝑒𝑠 and 𝑓 = 𝑙𝑜𝑔. Also,
based again on Eq. (3), we know that 𝐵𝐶 ≥ 1.

According to [5, 6], the bias correction factor is related to the
residuals by

𝐵𝐶 ≡ 𝑒𝜖 =

∑𝑁
𝑖=1 𝑒

𝜖𝑖

𝑁
. (6)

On incorporating the bias correction from Eq. 6, we find that it helps
mitigate the bias (by up to 50%), but doesn’t eliminate it (Please
refer to Fig. 11 for details). We will refine this bias correction factor
next.

Fig. 2 informs us that points with higher sales need a stronger bias
correction. However, the BC multiplier from Eq. (6) is independent
of the sales. This motivates us to make bias correction a function of
sales. Obviously, such a correction would have limited applicability,
because we don’t know the sales when we are making out of sample
predictions. Therefore, we use model prediction, 𝑌 , as a proxy for
sales. Revisiting Eq. (5)

𝐵𝐶 (𝑌 ) = 𝐸 [𝑌 ]

𝐸 [𝑓 −1 (�𝑓 (𝑌 ))] (7)

The numerator 𝐸 [𝑌 ] in Eq. (7) is the mean of the original sales data
and the denominator in Eq. (7) is the mean of uncorrected predicted
value. Instead of calculating the BC factor over whole sample (as
in Eq. (6)), we evaluate the right hand side of Eq. (7) over specific
prediction windows. Essentially, we learn a piece-wise linear/step
function for bias correction.

We divide the prediction region in multiples of 2 (in logarithmic
units) and evaluate the right hand side of Eq. (7). For the test case
of region II device B, the function we learn for bias correction is
shown in Table 1.

We see that the prediction based bias correction gets rid of bias
in the back-transformed units. This is evident from the mean of
residuals being very close to zero in the plot in right panel in Fig. 6.
In applying the PB-BC technique to out-of-sample data, we make
the assumption that the correction function learnt (e.g., in Table 1)
carries over to the unseen data as well. There are some obvious
improvements that can be done to the prediction-based correction
function learnt above. For example, the step width is not uniformly
spaced in the original units and the number of data points aren’t
evenly distributed in each prediction window.

In Fig. 7 we look at the out-of-the-sample performance in re-
gion I device B after incorporating prediction-based bias correction.
Takeaways from Fig. 7 are: 1) the prediction-based bias correc-
tion immensely helps the performance. As expected the largest

Figure 6: In-sample model fit for XGB model. The plot on
the left is obtained by back-transforming the output from
ML model without any bias correction. Plot on right is ob-
tained by multiplying the model prediction by prediction-
based bias correction (Table 1)

Figure 7: Improvements from prediction-based bias correc-
tion for region I device type B.

improvement is in the bias metrics. 2) the benefit from bias correc-
tion transfers into MAPE improvement as well. The largest MAPE
improvement of 56% (39% → 25%) is in 12W MAPE.

We acknowledge that MAPE values from PB-BC may not always
perform well especially when compared to addition of weights in
cost function. An example of this is show in Fig. 12. A possible
reason is that the window-based approach used for calculating
PB-BC may not be optimal due to data sparsity for some of the
prediction windows. Checking alternative approaches of estimating
PB-BC function is an ongoing effort.

4 CIRCUMVENTING TRANSFORMATION
BIAS

Performance of any bias correctionmethodwill depend on howwell
it is able to estimate the induced transformation bias. An alternate
approach to tackle this issue head-on will be to not introduce the
transformation bias in the first place byworking directly with actual
sales as target variable.

4.1 Introduction to Tweedie Regression
We established in Sec. 2.2 that building a model on sales with MSE
as a cost function led to poor performance due to skewed nature
of sales data. One of the main ways in which we will generalize
our regression approach will be to replace MSE by ‘deviance’ of a
distribution in the Tweedie family [8–10].

Tweedie distribution are a family of probability distribution that
include Normal, Poisson, and Gamma distributions as special cases.
This is motivated in Eqs. (8). Tweedie distributions are characterized
by the ‘tweedie variance power’, p. The mathematical formulas for
‘tweedie deviance’ (analogous to the cost function) are shown in

4
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Eq. (8).

• Poisson : 2
∑
𝑖

(
𝑦𝑖𝑙𝑜𝑔

𝑦𝑖

𝑦𝑖
− 𝑦𝑖 + 𝑦𝑖

)
• Gamma : 2

∑
𝑖

(
−𝑙𝑜𝑔𝑦𝑖

𝑦𝑖
+ 𝑦𝑖 − 𝑦𝑖

𝑦𝑖

)
• Tweedie : 2

∑
𝑖

(
𝑦𝑖
𝑦
1−𝑝
𝑖

− 𝑦
1−𝑝
𝑖

1 − 𝑝
−
𝑦
2−𝑝
𝑖

− 𝑦
2−𝑝
𝑖

2 − 𝑝

)
• Normal :

∑
𝑖

(𝑦𝑖 − 𝑦𝑖 )2 (8)

Its straightforward to see that:
• setting 𝑝 = 0, recovers MSE; 𝑝 → 1, recovers Poisson; and
𝑝 → 2, recovers Gamma

• 1 < 𝑝 < 2 is referred to as Compound Poisson Gamma or just
Tweedie. In rest of the discussion, we us the term Tweedie
to refer to this case.

𝑦𝑖 and 𝑦𝑖 in Eq. (8) are the data points and fitted values respec-
tively. Just as while optimizing for MSE, we assume that the condi-
tional distribution of target variable is normally distributed around
the point estimate, while optimizing for Tweedie deviance, we as-
sume that the distribution is Tweedie distributed around the point
estimate output from the model.

Literature applications of Tweedie regression is typically for long-
tailed positive data such as number of insurance claims/ rainfall
events per year [11]. An advantage of using Tweedie for sales
forecasting is that the output is always positively valued. (When
using MSE, the output can be negative as well.)

4.2 Experimental set up
We will next look at results with using Tweedie cost function. The
goal of these experiments is to test the effect of model design choice
(specifically target transformation and cost function) on perfor-
mance. To achieve this, we choose the same algorithm (XGB), fea-
ture set, and hyper-parameters.

The design choices that we evaluate are the following:
(1) Using actual sales as target variable and MSE as the cost

function
(2) Using actual sales as target variable and pseudoHuber loss

as the cost function. We use pseudoHuberloss as the twice
differentiable alternative to mean absolute error (MAE).

(a) Amotivation for using pseudoHuberloss is that it is closely
aligned with MAPE which is our model evaluation metric.

(b) We also note that optimizing on MAE/ MAPE outputs
median sales distribution for a given item for a given day.
Medians aren’t additive and therefore summing up daily
sales estimate to obtain for example estimate for weekly
sales is incorrect. This limits the practical usability of
models optimized on MAE.

(3) Using the actual sales as target variable and tweedie deviance
as cost function. Experiments were done using the tweedie
variance power 1.1, 1.3, 1.5, 1.7, and 1.9.

(4) Using log(sales) as target variable and not doing any bias
correction. We know from Sec. 2 that this is suboptimal and
these results are only for reference.

Figure 8: Performance of various Tweedie models for region
I device type G

(5) Using log(sales) as target variable and sqrt(sales) as weight.
The weight is added to correct for transformation bias. This
is the dominant setting used in production and we use this
as a benchmark.

4.3 Tweedie regression results
In Fig. 8 we present results for a specific backtesting period for one
of the region device type combinations. Performance for rest of
the combinations is in Appendix C. Also note that in the results
presented below, we report the performance of tree-based learner
in the XGB algorithm as its almost always better than linear learner.
While evaluating MSE and Huber cost function we set the negative
predictions if any to zero.

Observations from the Tweedie regression results are as follows:
(1) The model built on actual sales with MSE as cost functions

performs very poorly consistently.
(2) The model built using pseduoHuber loss performs much

better than MSE, but still has high MAPE/bias values.
(3) For few of the regions (e.g, I and IV), the Tweedie regression

(TR) models perform better than XGB models with bias cor-
rection (BC) — current benchmark. For many other countries,
TR performance is comparable to the current benchmark. A
detailed survey of TR performance can be found in Appen-
dix C.

(4) Variance power of 1.1–1.3 gives the best results for majority
of the cases.

(5) Bias values in TR are sensitive to the variance power. Specif-
ically, as the variance power is increased the bias decreases
(become more negative if it is around zero at var_power =
1.1)

4.4 Making sense of TR results
An unmistakable pattern in the Tweedie results (Fig. 8) is that
model using MSE as cost function has a very high bias and hence a
high MAPE. For Tweedie, we see a pattern of decreasing bias (not
always a good thing because bias can have high negative values)
with increase in the variance power — a hyperparameter in the
Tweedie regression.

To make sense of this, we plot the deviance/ cost function (refer
Eqs. (8)) for various values of variance power, p. Specifically, we
set actual = 100 (an arbitrary choice) and plot the tweedie deviance
as prediction varies between 10 and 190. For reference, we also
plot the MSE and MAE cost functions. We see that the deviance
for 1.1 is more convex than 1.5 which in turn is more convex than
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Figure 9: Tweedie deviance for variance power 1.1, 1.5, and
1.9. MSE and MAE are plotted for reference.

1.9. This implies that p=1.1 is more likely to give higher prediction
values than p=1.9. Compared to these, MSE is much more convex
and naturally gives much higher bias.

On an unrelated note, tweedie deviance functions are asym-
metric around zero, penalizing under-prediction more than over-
prediction. This might be desirable given that business cost of lost
sales is higher than having an overhang.

5 CONCLUSION AND NEXT STEPS
In this work, we demonstrated that a concave transformation of
target variable will introduce a negative bias in regression models
which is a manifestation of Jensen’s inequality. We proposed two
methods to correct the transformation bias 1) addition of weights
in cost function 2) direct prediction-based bias correction. These
bias correction methods significantly improve both MAPE (up to
50%) and bias (up to 20X, e.g., refer Fig. 7) over different forecasting
horizons.

The optimal method for bias correction is best chosen by ex-
perimentation. Sales weighting is easy to implement in most ML
libraries but requires more experimentation. On the other hand,
PB-BC has a more involved implementation, but involves less exper-
imentation (once the piece-wise linear correction is determined).

We also found that leveraging Tweedie family of cost functions
is a great alternative when constructing model directly on sales
without any transformation. This allows us to circumvent the issue
of transformation bias by avoiding target transformation altogether.
We observed that tweedie variance power has a marked effect on
the bias metrics and we were able to explain this based on the cost
function behavior as a function of variance power.

In our work, we treated variance power as a hyper-parameter
and chose it depending on the values which gave the best backtest
metrics. A related question, we ask next is if we can estimate the
best tweedie variance power without backtesting. This involves
looking at the distribution of deviance residuals. Deviance residuals
are generalization of residuals when using generalized cost func-
tions (refer Eq. (8)). We expect deviance residuals to be normally
distributed if the model chosen closely reflects the underlying data
generation process. This forms the basis of our ongoing work.

6 SCIENCE AND BUSINESS OUTLOOK
Even though we exclusively focused on forecasting models in this
paper, the issues and methods discussed are relevant anytime we
have a right-skewed distribution. Log transformation is a standard

practice in many regression settings and this work highlights the
risk associated with it. Moreover, the methods presented in this
paper such as changing the cost function to a weighted MSE or a
Tweedie deviance are relatively straightforward and easy to imple-
ment in most business settings.
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A VDP MODEL METRICS
Performance of various VDP models built on transformed target
variable is shown in Fig. 1. The performance is measured across
different horizons (6 week, 12 week, and 24 week). We generate a
new forecast every week labeled by VDP_YYYYMMDD. The MAPE
(mean absolute percentage error) and bias metrics are generated
for each forecast version. The reported metrics for a given model
are sales-weighted average over multiple forecast versions. The
details of the WMAPE (weighted MAPE) and wbias (weighted bias)
calculation are as follows:

𝐹𝑖,𝑉 ,𝑑 : Forecasted units for item i for forecast version V on day d

𝐴𝑖,𝑉 ,𝑑 : Actual units for item i for forecast version V on day d

𝐴𝑖,𝑉 : Actual units for item i for forecast version V across time horizon
ℎ : set of all days in time horizon of metric

𝑃𝐸𝑖,𝑉 =

∑
𝑖∈ℎ 𝐹𝑖,𝑉 ,𝑑 − ∑

𝑖∈ℎ 𝐴𝑖,𝑉 ,𝑑∑
𝑖∈ℎ 𝐴𝑖,𝑉 ,𝑑

𝑊𝑀𝐴𝑃𝐸𝑉 =

∑
𝑖 𝐴𝑖,𝑉 ∗

��𝑃𝐸𝑖,𝑉 ��∑
𝑖 𝐴𝑖,𝑉

𝑊𝐵𝑖𝑎𝑠𝑉 =

∑
𝑖 𝐴𝑖,𝑉 ∗ 𝑃𝐸𝑖,𝑉∑

𝑖 𝐴𝑖,𝑉
(9)

B BIAS CORRECTION DETAILS
B.1 Sales weighting effect
When we use sales weighting in cost function, we introduce a posi-
tive bias in logarithmic units. Due to Jensen’s inequality, a positive
bias in log units translates to less negative bias in original units. As
we progressively, make the weights more aggressive, at some point,
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Figure 10: In-sample model fit for region II device B for
XGB_tree using different weights in the cost function. The
plots on the left are the fit in the modeling units (logarithm
in this case). The Y axis is the prediction output from the
ML model. The plots on the right are obtained by back-
transforming (exponentiating in this case) the values from
plots on the left. In particular, we don’t do any model refit
while going from plot on left to the plots on right.

introduced bias in log units is just right enough to obtain zero bias
in original units. This is illustrated in Fig. 10. Note that residual =
actual − prediction. So, negative bias⇒ mean(residual) > 0

B.2 Direct bias correction
According to [5, 6], the bias correction factor is related to the vari-
ance of residuals as

𝐵𝐶 = 𝑒𝜎
2/2 . (10)

Eq. (10) holds when the residuals are normally distributed. If resid-
uals are not normally distributed, ‘a smearing estimate of bias’ is
recommended:

𝐵𝐶 ≡ 𝑒𝜖 =

∑𝑁
𝑖=1 𝑒

𝜖𝑖

𝑁
(11)

where 𝜖𝑖 is the 𝑖th regression residual. We calculate BC multiplier
from Eqs. (10) and (11) for test case of region II device B. The
multipliers obtained are shown in Table 2.

BC multipliers from Eq. (10) and (11) are similar as shown in Ta-
ble 2 because for these models the residuals are normally distributed
to a good approximation.

In Fig. 11, we plot the raw uncorrected back-transformed values
on left (these are similar to plots on right in Fig. 2). The plots on

Table 2: Bias correction multipliers for region II device B

XGB_linear XGB_tree
Variance-based multiplier [Eq. (10)] 1.29 1.07
Mean-based multiplier [Eq. (11)] 1.27 1.07

Figure 11: In-sample model fit for region II device B for
XGB model. The plots on the left are obtained by back-
transforming the output from ML model without any bias
correction. Plots on right are obtained by multiplying the
model prediction by mean-based bias correction (Eq. (11)).

right in Fig. 11 are obtained by correcting for bias transformation
using Eq. (11). Specifically, we multiply the model predictions by
second row in Table 2. Few observations, we make from Fig. 11:

(1) The negative bias definitely decreases after correction. This
can be seen from the mean of residuals moving closer to
zero. In fact, for both XGB_tree and XGB_linear, the bias
decreased by about 50%.

(2) Nonetheless, we are still far from completely removing bias.
For instance, the mean of residuals in log units (left panel
in Fig. 2) is much closer to zero than what we have in the
original units even after bias correction

(3) We notice that points with higher sales show a more promi-
nent bias than lower sales. This motivated us to derive a
‘prediction-based’ bias correction.

B.3 Bias correction derivation
Here we derive the BC factor in Eq. (10). Following the approach
in [6], in case of linear regression we have:

𝑙𝑜𝑔(𝑌 ) = 𝑏0 + 𝑏1𝑋 + 𝜖 (12)

𝜖 has a mean 0 in logarithmic units but not in the original arithmetic
units. Because the mean will not be zero after back-transformation,
the error term must be retained during back transformation:

𝑌 = 𝑏0𝑒
𝑏1𝑋 𝑒𝜖 (13)
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Figure 15: Performance of various Tweedie models for re-
gion II device type D

Figure 16: Performance of various Tweedie models for re-
gion II device type E

Figure 17: Performance of various Tweedie models for re-
gion III device type D

Figure 18: Performance of various Tweedie models for re-
gion IV device type G

Figure 12: Improvements from prediction-based bias correc-
tion for region II device type B

Figure 13: Performance of various Tweedie models for re-
gion I device type B

Figure 14: Performance of various Tweedie models for re-
gion I device type F

𝑒𝜖 is the bias correction factor (Eq. (11)). If we assume that 𝜖
follows a normal distribution with mean 0 and variance 𝜎2,

𝐸 [𝑒𝜖 ] =
∫ ∞

−∞
𝑒𝜖N(0;𝜎2) 𝑑𝜖 = 𝑒𝜎

2/2 (14)

Eq. (14) is the bias correction factor we had in Eq. (10).
Another point to note is that

𝐸 [𝑒𝜖 ] ≥ 𝑒𝐸 (𝜖) (15)
⇒ 𝐸 [𝑒𝜖 ] ≥ 1 . (16)

In Eq. (16), we use the property that 𝐸 (𝜖) = 0 or that mean of
residuals is zero in the modeling units. Note that we don’t make any
assumptions on the distribution of error term, 𝜖 , in the derivation
of Eq. (16).

Equation (16) tells us that the Bias correction factor will always
be greater than equal to 1. Implying that our back-transformed
forecasts will always under-forecast on average.

C BIAS CORRECTION AND TWEEDIE
RESULTS

We provide a survey of Tweedie regression performance in Fig. 13
through Fig. 18. The takeaways from these results are presented in
Sec. 4.3.
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