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Abstract
In time-series forecasting, future target values may be a�ected by

both intrinsic and extrinsic e�ects. When forecasting blood glucose,
for example, intrinsic e�ects can be inferred from the history of
the target signal alone (i.e. blood glucose), but accurately modeling
the impact of extrinsic e�ects requires auxiliary signals, like the
amount of carbohydrates ingested. Standard forecasting techniques
often assume that extrinsic and intrinsic e�ects vary at similar rates.
However, when auxiliary signals are generated at a much lower
frequency than the target variable (e.g., blood glucose measure-
ments are made every 5 minutes, while meals occur once every
few hours), even well-known extrinsic e�ects (e.g., carbohydrates
increase blood glucose) may prove di�cult to learn. To better uti-
lize these sparse but informative variables (SIVs), we introduce a
novel encoder/decoder forecasting approach that accurately learns
the per-timepoint e�ect of the SIV, by (i) isolating it from intrinsic
e�ects and (ii) restricting its learned e�ect based on domain knowl-
edge. On simulated and real datasets pertaining to the task of blood
glucose forecasting, our approach outperforms baseline approaches
in terms of rMSE (Simulated: 13.07 [11.77,14.16] vs. 14.14, [95% CI:
12.69,15.27]; Real: 20.16 [19.28,21.06] vs. 20.36 [19.46,21.30]). We hy-
pothesize that the smaller improvement observed in the Real dataset
is due to noise and missingness in the SIV signal. By isolating their
e�ects and incorporating domain knowledge, our approach makes
it possible to better utilize noise-free SIVs in forecasting.
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Figure 1: An overview of the SIV problem. In this toy example,
the target variable exhibits oscillatory behavior when only
zero SIV values are present (intrinsic dynamics), and the
presence of a non-zero SIV value causes the target signal to
increase linearly (extrinsic [SIV] dynamics).

1 Introduction
In time-series forecasting, the future values of a target signal

can depend on both intrinsic and extrinsic e�ects. Intrinsic e�ects
are dynamics that depend only on the current and past values of
the target signal. In contrast, extrinsic e�ects are dynamics that
arise due to auxiliary variables. In many cases, the inclusion of such
auxiliary signals as input to a forecasting model, in addition to the
target signal, results in more accurate forecasts [2, 24]. However, in
other settings, including auxiliary variables as input to a forecasting
model produces little to no improvement in forecast accuracy, even
when there is a known relationship between the additional vari-
ables and the target signal. This is particularly true in forecasting
physiological variables like blood glucose. Auxiliary signals like
carbohydrates consumed and bolus insulin administered both have
well-known e�ects on blood glucose, but their inclusion as inputs
to forecasting models has not, in general, led to signi�cant improve-
ments in performance over models based on blood glucose alone
[9, 17, 25]. We hypothesize that this is due in part to a mismatch
in the relative frequency of non-zero values between the auxiliary
signal and the target signal. We refer to forecasting tasks where an
auxiliary signal is sparse but has a known e�ect on the target signal
as the sparse but informative variable (SIV) problem. A forecasting
model that successfully addresses this problem will leverage the
SIV despite its sparsity, leading to overall improved predictions.

ProblemDe�nition. In this work, we introduce and address the
SIV problem (Figure 1), which arises when an auxiliary variable
that occurs infrequently is known to cause an increase or decrease
in the target variable’s magnitude over time, although the exact
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e�ect may be unknown. The sparsity of the SIV often results in
the failure of standard multi-input forecasting approaches in lever-
aging the auxiliary variable, i.e., models that include the variable
perform similarly to univariate-input approaches. A model that has
overcome the SIV problem utilizes the SIV in making its predictions,
resulting in improved forecasting accuracy relative to a model that
does not use the additional variable.

The SIV problem occurs when an important variable is mostly
zero-valued. This is not the same as a sparsely sampled variable
(SSV). In the case of under-sampling, the variable is sparse because
it is not measured. In the SIV problem, we assume that the variable
is measured frequently, but for most timepoints it is zero. While
approaches for addressing missingness (or irregular sampling/SSVs)
have been extensively studied [21], the SIV problem has not.

Challenges. Although developing forecasting strategies that
make use of SIVs has the potential to improve predictive accuracy
in blood glucose forecasting and other domains, it has not been di-
rectly addressed in previous work. Recent multivariate forecasting
approaches attempt to learn complex inter-variable dependencies
[7, 22, 28]. However, these approaches do not explicitly account
for the relative sparsity of some variables. Naive approaches to
addressing the SIV issue include re-sampling the data so that more
samples with non-zero SIV values are given to the network and
carrying forward the SIV values to the end of the input window,
but in practice we have found that these approaches generally fail
to improve performance. As we will demonstrate, the incorporation
of domain knowledge in terms of restricting model outputs could
help encourage a forecasting model to make better use of the SIV.
However, existing state-of-the-art deep forecasting approaches gen-
erally do not use such restrictions in order to maintain �exibility.
Here, we strive for a combination of the two: a forecasting approach
that maintains �exibility while incorporating domain knowledge.

Our Idea. To address the SIV problem we propose a novel fore-
casting approach:“The Linked Encoder/Decoder”, which is inspired
by the recursive nature of autoregressive models of the blood glu-
cose system. Our model integrates two main ideas: (i) the isolation
of intrinsic and extrinsic e�ects, and (ii) the incorporation of do-
main knowledge. We implement the �rst idea with two separate but
connected decoder networks. One network learns per-timepoint
SIV e�ects (the SIV network), and the other learns the intrinsic
dynamics of the target variable (the target network). We imple-
ment the second idea by restricting the output of the SIV network
based on domain knowledge. Combined, these ideas lead to overall
improved usage of the SIV and in turn more accurate forecasts.

Contributions. Our main contributions are as follows:
• We present the sparse informative variable (SIV) problem.
• We propose a novel forecasting approach designed to lever-
age the SIV by isolating the e�ect of the SIV and incorporat-
ing domain knowledge through a novel linked encoder/decoder
network.

• We evaluate ourmodel on two blood glucose datasets pertain-
ing to type 1 diabetes (T1D) and show that it more e�ectively
incorporates SIVs compared to several baselines.

2 Problem Setup
Here we formalize our task and describe our motivating setting:

blood glucose forecasting in type 1 diabetes.

2.1 Task Formalization
We focus on the task of multi-input univariate-output time-series
forecasting in which we aim to predict the future values of a single
target variable G 2 R, but have access to an additional auxiliary
variable G 0 2 R that is sparse but informative. More speci�cally, G 0
is zero at a much higher frequency than the target signal and the
presence of non-zero G 0 values has a known e�ect on the target
signal (e.g., they result in either an increase or decrease). Given data
pertaining to the previous) values of the target signal, x�)+1:0, and
the auxiliary signal x0�)+1:0, we aim to predict the next ⌘ timepoints
of the target signal: y = x1:⌘ .

As is common in forecasting work [3], we assume the target
signal is generated by some underlying autoregressive process, and
non-zero SIV values contribute in an additive autoregressive way.
Note, our setup focuses on the setting in which extrinsic e�ects are
driven by an SIV, but there are other settings where extrinsic e�ects
may be driven by a variable that is not sparse, or a combination
of sparse and non-sparse variables. We focus on the SIV problem
and assume that any additional non-sparse extrinsic e�ects can be
modelled using standard forecasting approaches.

2.2 A Motivating Example- Predicting Blood
Glucose

The SIV problem arises in blood glucose forecasting, which has
been extensively studied in the past [26], including in deep learn-
ing settings [5, 7, 19, 25]. Speci�cally, one aims to estimate blood
glucose concentration (i.e., the target variable) for some prediction
horizon into the future, based on a history of blood glucose and
other signals. This represents a challenging forecasting task since
glucose dynamics vary based on activity, time of day, hormone lev-
els and more, resulting in signi�cant non-stationarity throughout
the day.

Accurate models for blood glucose forecasting are critical to the
development of algorithms for managing blood glucose in individ-
uals with diabetes (one in ten people in the US). Individuals with
type one diabetes require insulin injections to maintain healthy
glucose levels, throughout the day and especially around meals.
Carbohydrates (i.e., meals) increase blood glucose, while insulin
decreases blood glucose. However, current approaches do as well
without information on carbohydrates or insulin as with [9, 17, 25].

In this setting, both insulin boluses and carbohydrates are con-
sidered sparse but informative variables or SIVs, since they occur
only a few times a day. In contrast, blood glucose is recorded ev-
ery 5-minutes. Carbohydrates and insulin result in an increase/
decrease (respectively) of blood glucose after a delay of 30 minutes
to an hour. However, the e�ects of these variables are not always
long lasting. As a result, blood glucose forecasters can learn to ig-
nore these variables while still generating accurate predictions for
most timepoints. However, models that utilize these variables will
perform more accurately during critical changes in blood glucose.
3 Methods

Overview. To e�ectively capture the autoregressive dynamics
of forecasting with an SIV, our architecture, the “Linked Encoder/
Decoder”, relies on a recursive framework (Figure 2). It involves
one encoder network and two linked decoder networks, which are
used to isolate the SIV dynamics from the intrinsic dynamics. The
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SIV signal is input directly into the SIV decoder. The two decoder
systems are linked through a shared hidden state, which is pro-
cessed in parallel, so that the intrinsic and extrinsic dynamics can
be learned separately. Once isolated, we restrict the direction of the
e�ect of the SIV on the target signal based on domain knowledge.

3.1 Architecture
Our Linked Encoder/Decoder contains two decoder systems that
separately model intrinsic e�ects and extrinsic SIV e�ects. For
model input windows that only contain zero SIV values, our archi-
tecture functions as a standard encoder/decoder.

Standard Encoder/Decoder. Our approach is based on a stan-
dard encoder/decoder recurrent neural network, as depicted by
the orange and yellow sections of Figure 2. For samples where
x0�)+1:0 = 0, this encoder/decoder is not modi�ed. A single encoder
(k ), takes x�)+1:0 and x0�)+1:0 as input. The encoder outputs a hid-
den state hk= k ( [x�)+1:0;x0�)+1:0]), which is passed through a
decoder LSTM (\ ) that outputs hidden state h\ 1 = \ (hk ) . At each
timepoint in the forecast horizon, the output from the previous
time step h\ C�1 is passed through \ , such that h\ C = \ (h\ C�1).
This learned representation is also passed through fully connected
output network �⇠ at each time step t in the forecast horizon to
output a prediction ~̂C = �⇠ (h\ C ) for C = 1, ...⌘.

Linked SIV Decoder and Gating. For input samples that con-
tain a non-zero SIV value, we augment this standard encoder/decoder
with a second decoder q that aims to model SIV dynamics, depicted
in the blue section of Figure 2. By gating the output of the encoder
based on the SIV values, we separate the extrinsic e�ects of the
SIV on the target variable from the intrinsic e�ects of the target
signal on itself. When the corresponding SIV values are non-zero
(i.e., x0�)+1:0 < 0), the network engages the second decoder, which
processes hidden state h\ C for C = 1, ...,⌘, in parallel with \ , as
described below. Because q is only engaged when an SIV is present,
\ learns to forecast in the absence of an SIV, while q learns the
e�ect of the SIV. Thek network models combined e�ects.

SIV Decoder In order to encourage the SIV decoder to utilize
the SIV, the decoder also receives the entire SIV signal as input.
We shift the SIV signal at each timepoint so that the encoder’s
position in time relative to the SIV is included in the representation
implicitly (see implementation details, section 4.4).

We incorporate knowledge regarding how the SIV a�ects the
target variable in processing the output of q at each time step. We
pass hqC (the output of q) through a ReLU function after it is output
by q , before adding it to h\ C and passing the shared hidden state
to subsequent time steps and the output network. If the SIV is
expected to lead to a decrease in the target signal, hqC is multiplied
by -1 after it is passed through the ReLU function. This restricts the
e�ect of the SIV on the target variable to the expected direction.

Linked Hidden State Processing. Both decoders process a
single hidden state in parallel, and their outputs are summed, after
restriction has been applied to the output of the SIV decoder. At
the �rst time step in the prediction horizon, both decoders take as
input hk , but they each output a unique hidden state (h\ C and hqC ).
At subsequent time steps, these two hidden states are summed to
create a new hidden state (i.e., as illustrated in Figure 2; we de�ne:
h0
\ C = h\ C + hqC ), for C > 0. This combined hidden state (h0

\ C )
is passed to the output network (�⇠) and both decoders for the

next step. The �nal forecast ŷ is a sum of the outputs of the two
decoders capturing both intrinsic and restricted extrinsic e�ects
(i.e., ~̂C = �⇠ (h0

\ C )). Note that when x0 = 0, q is not engaged, and
h0
\ C = h\ C .
Additional Variables. In Figure 2 we present an overview

of the proposed architecture for a setting with a single SIV. In
the setting of multiple SIVs, one would increase the number of
secondary decoders and apply restrictions according to the known
e�ect of each SIV. Each q would take as input only the relevant SIV
signal, along with h0

\ C . h
0
\ C is modi�ed by all SIV decoder systems,

so that the hidden state that is passed to �⇠ and subsequent decoder
steps is a sum of the number of SIVs plus one components. In
addition, non-sparse auxiliary variables, if any, are given to thek
network, along with x and x0, so that non-SIV extrinsic e�ects can
be modeled (by \ , since these variables do not e�ect gating). The \
network must perform well in the absence of non-zero SIV signals,
thus the q network is encouraged to learn the remaining extrinsic
e�ects for samples with non-zero SIV values (which must be the
SIV e�ects).

3.2 SIV Representation
One issue that makes utilizing SIVs di�cult is that they usually
occur at only one timepoint in the input window, having little e�ect
on gradient calculations. To increase its e�ect, we use the sum-total
SIV value up to the current timepoint as input (Figure 3). Up until
the �rst non-zero SIV value of an input time-series, the signal value
is zero. After any non-zero SIV, the input is the sum of observed
values prior to and including that point, in the input time-series
only. SIV values from before the input window are ignored. This
approachwas found to improve performance during baseline tuning
and is used for all analyses reported here, including baselines and
ablations. This sum-total method improved performance for both
the baseline and proposed approaches (see Appendix B).
4 Experimental Setup

We evaluate our approach on two datasets pertaining to blood
glucose forecasting in T1D, which serves as our motivating exam-
ple of the SIV problem. We compare to several relevant baselines,
including common resampling approaches. We evaluate forecast
accuracy and the extent to which each model utilizes the SIVs.

4.1 Forecasting Task
We aim to forecast blood glucose values 30 minutes into the future
(⌘ = 6), based on a history of blood glucose and two sparse but
informative variables: carbohydrate and insulin bolus values from
the past 2 hours () = 24). Here, ⌘ = 6 as it represents a common BG
forecasting benchmark [15] and we set T=24 based on prior work
that suggests longer histories do not provide additional bene�t [26].

4.2 Datasets
We compare the performance of our architecture to baselines on
two T1D-based datasets: Simulated and Real. Both datasets are pub-
licly available and have been previously explored in the context of
forecasting [14, 15, 27]. Each dataset consists of blood glucose, bolus
(fast-acting) insulin, basal (slow-acting) insulin, carbohydrate val-
ues, and sine and cosine of time of day (to capture non-stationarity)
for real or simulated individuals with T1D. Bolus insulin and car-
bohydrate values are considered SIVs. All variables were scaled to
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Figure 2: Our model’s architecture: the Linked Encoder/Decoder, shown with an input length ) and prediction horizon ⌘. The \
network models intrinsic dynamics, while the q network models the SIV dynamics. Thek network models shared dynamics.
Input time-series are gated, such that only inputs ([x�)+1:0, x0�)+1:0]) containing a non-zero SIV at any timepoint are passed
through the q network. The separation between intrinsic and extrinsic dynamics is used to ensure that the relationship between
SIV and target is as expected via the ReLU network shown in grey.

Figure 3: Our sum-total approach. We use the sum total up
to the current point within an input window as input. This
method allows the SIV signal to make a larger impact on the
gradient while maintaining all temporal information.

be between zero and one. Each dataset was split into overlapping
windows of length ) + ⌘ with a stride of 1, to be used as model
input and ground truth values.

Simulated. Data generated from a commonly-used T1D simula-
tor provide a curated test setting with no missingness or human
measurement error on which to evaluate our approach. We used
the UVA-Padova simulator [14], via a publicly available implemen-
tation [27]. We generated ten days of data for ten individuals (the
ten “adult” patients modeled in the simulator), corresponding to
28,800 timepoints. Carbohydrate and insulin values occurred every
111 timepoints on average (Carbohydrates median, [IQR]: 84 time-
points between occurrences, [60,150]. Boluses: 83, [58,148]). The
meal schedule used to generate simulated data was based on the
Harrison-Benedict equation [10] as implemented in [6], but without
snacks (3 meals a day), to further highlight the SIV problem. In
our simulation, we used the default basal-bolus controller from the
existing implementation to administer insulin, but we delayed three
quarters (randomly selected) of the bolus administrations to be 20

minutes to two hours after the simulated meal, randomly sampled
from a uniform distribution. This delay was to control for a separate
issue that can arise when multiple SIVs occur at precisely the same
time. The delay disentangles their e�ects.

Real. This dataset includes both the OHIOT1DM 2018 and 2020
datasets, developed for the Knowledge Discovery in Healthcare
Data Blood Glucose Level Predication Challenge [16]. The data
pertain to 12 individuals, each with approximately 10,000 5-minute
samples for training and 2,500 for testing, with carbohydrate admin-
istrations occurring every 88 timepoints on average, (median, [IQR]:
70, [56,134]), and insulin boluses occurring every 52 timepoints on
average (36, [28,63]). 12% of glucose values are missing, but we do
not include windows with missing glucose values.

4.3 Baselines
Encoder/Decoder. Our primary baseline is a stand-alone encoder/
decoder system, identical to thek plus \ networks in our full archi-
tecture [5]. Due to the smaller capacity compared to our proposed
approach, we increase the minimum number of training iterations
so that we match the same number of gradient updates as our
complete approach. We also examine a model with capacity that
matches our proposed approach (Full Capacity).

Full Capacity. To ensure that any performance improvements
observed are not due to our model’s increased capacity, we also
compare to a model based on our full architecture, but with no
SIV-specialization (i.e., there is no gating, no direct SIV input into
q , and no output restriction).

Resampling. Resampling is perhaps the simplest common-sense
approach to addressing signal sparsity. In order to rule out re-
sampling as a naive solution to the SIV problem, we implement
our primary baseline method with two re-sampling procedures:
training the model on only windows with SIV samples to initialize
the weights before training on the full sample (SIV Initialize), and
training on the full sample, then �ne-tuning the model on only
windows with non-zero SIV values (SIV Fine-tune). Similar to
our primary encoder/decoder baseline, we increase the minimum
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number of training iterations to match our complete method’s
number of gradient updates.

4.4 Implementation Details
Each LSTM encoder or decoder is implemented as a 2-layer bidirec-
tional LSTM with 100 hidden units. �⇠ is a fully connected linear
network with a single output. Our architecture uses twoq networks,
one for carbohydrates (positive e�ect, reLU restriction) and one
for bolus insulin (negative e�ect, �1⇥ reLU restriction). In order to
input each SIV signal into each q network while maintaining time
information, x0�)+1:0 is front-padded with ⌘ zeros and input to q at
the �rst time step of the forecast horizon. The signal is shifted back
at each timepoint, such that at the 8C⌘ time step of the prediction
horizon, the SIV signal is shifted back 8 � 1 positions, so that it is
front-padded with ⌘� (8�1) zeros and back-padded with 8�1 zeros.
In this way the input corresponds with the encoder’s position in
time. x0�)+1:0 is scaled to have the same mean as h0

\ C for each input.

4.5 Training Details
We split each dataset into training, validation and test sets used for
evaluation purposes. For the simulated dataset we evaluated on the
last 15% of data points, and for the real dataset we evaluated on
the held-out test data from the challenges. For both datasets, the
remaining data were split into 80% train and 20% validation. We
implemented and trained our models in pytorch 1.9.1 and CUDA
version 10.2, using Ubuntu 16.04.7 and a GeForce RTX 2080, using an
Adam optimizer [12] and a batch size of 500. We used a learning rate
of 0.01 and a weight decay of 10�7. When training, mean square
error (MSE) across all timepoints in the prediction horizon was
used as a loss function. Models were trained for at least 25 epochs,
and then until validation data performance did not improve for 10
epochs. For simulated glucose, due to a smaller sample size, we
trained for at least 500 epochs, until performance did not improve
for 50 epochs. Parameters found at the iteration for which the model
performed best on the validation data were used at inference time.
For both datasets, we train and test a model on each subject (10 for
Simulated, 12 for Real), and report across-subject averages.

4.6 Evaluation
All evaluations were performed on held-out test sets. In all com-
parisons, we measured forecasting performance using rMSE and
mean absolute error (MAE). In order to match common practice in
the blood glucose forecasting literature, we calculated error terms
based on the prediction accuracy of the �nal timepoint in the pre-
diction window [15]. We still train using MSE across all forecast
horizon timepoints, as we �nd this added supervision to be gener-
ally helpful. We speci�cally probed the predictions to characterize
to what extent they relied on the SIVs, by examining their error
when forecasting without access to those variables.

SIV Usage metric. Let X denote a dataset with an SIV, and let
X; denote the exact same dataset with all SIV values set to zero.
Let 5 de�ne a mapping 5 : - ! ŷ, where - 2 X, and ŷ 2 R⌘ is a
prediction of the next ⌘ points of the target variable. 5 is trained
and evaluated on X, while 5; is trained and evaluated identically
to 5 , except using X; . Let ! denote the error of the model’s pre-
diction (here, rMSE or MAE). We de�ne SIV usage as !(5; (X;)) -
!(5 (X)). It is inspired by the Shapley Regression Value [13]. This

metric re�ects how error changes when the SIV is removed. When
removing the SIV, we both train and test on data without the SIV
(rather than performing a permutation test or similar), so the model
can learn the maximum amount of information available from the
target variable alone.

E�ect of SIV Magnitude and Timing. We examine the SIV
usage of our model vs the baseline encoder/decoder for input sam-
ples that contain non-zero SIV values vs those that do not, and also
examine only windows that contain a carbohydrate value above the
50C⌘ and 90C⌘ percentiles, including windows from all individuals.
We perform this experiment to validate that our metric and model
are sensitive to the presence of SIVs generally, and highly impactful
SIVs speci�cally. Because boluses and carbohydrates have a de-
layed transient e�ect, we also examine SIV usage for the baseline
encoder/decoder and our proposed approach for windows whose
�nal non-zero SIV value occurs in the �rst, second, third, and fourth
half hours of the two hour input window. We hypothesize that SIV
usage will be higher when non-zero SIV values occur later in the
input window, because the inclusion of an SIV signal should be
most bene�cial when the SIV impacts the forecast horizon without
having time to impact the target signal input.

Individual-level Analyses. We compare the error and SIV
usage of the baseline encoder/decoder to the improvement over
baseline o�ered by our method across individuals in both datasets.
We expect that our model will o�er greater improvement over base-
line for individuals with high baseline error and low baseline SIV
usage, as those are the individuals for which SIVs are most poorly
modeled in the baseline. This would indicate that our approach
addresses baseline de�cits in SIV-modelling.

Ablations. Finally, we perform the following ablation analyses
to examine which elements most contribute to our models perfor-
mance:

(1) No Gating: All samples are passed through both decoders.
(2) No Restriction: The outputs of the SIV decoder systems

are not passed through a ReLU function.
(3) No Dec. SIV Input: The Decoder receives only the hidden

state as input, and not the SIV signal.
(4) Only Dec. SIV Input: The baseline model is used, but with

the modi�cation that the SIV is input to the decoder directly,
as in our model.

4.7 Data and Code Availability
Code, the simulated dataset, and the appendix are publicly available:
https://gitlab.eecs.umich.edu/mld3/sparse-informative-variables.

The Real Dataset (Ohio T1D Blood Glucose Level Prediction
Challenge, 2018 and 2020), can be made available through a data-use
agreementwith the owners: http://smarthealth.cs.ohio.edu/OhioT1DM-
dataset.html.
5 Results and Discussion

We compare our approach to several baselines across two datasets.
We aim to answer the following questions.

• Does our model o�er improvement over baseline approaches
in terms of forecast error and SIV Usage? (Section 5.1)

• How does SIV usage and model performance vary with re-
gard to SIV magnitude and timing? (Section 5.2)

• Across individuals, when does our model o�er the greatest
improvement? (Section 5.3)

https://gitlab.eecs.umich.edu/mld3/sparse-informative-variables
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Figure 4: A sample prediction for a simulated individual
(adult#004). Our model better accounts for the steep rise in
the blood glucose signal following a meal.

• What elements of our model improve forecast accuracy and
SIV usage? (Section 5.4)

• How is our model impacted by SIV missingness and noise?
(Section 5.5)

5.1 Improvement Over Baselines
Our model outperforms baselines across both datasets, leading to
lower rMSE/MAE and greater relative SIV usage (Table 1). Our
model is better able to account for the e�ect of the SIV on the tar-
get signal. For example, accurately predicting sharp rises that the
baseline encoder/decoder is unable to fully account for (Figure 4
shows an example forecast that was selected for illustrating this phe-
nomenon). Also of note, the naive SIV re-sampling approaches are
generally outperformed by other baseline approaches, or perform
similarly. For the simulated blood glucose dataset, our approach
shows a large improvement over baseline (rMSE 13.07 vs 14.14).
On the Real dataset, performance gains are more moderate (rMSE
20.16 vs 20.36). In general, the increased SIV usage of our proposed
approach corresponds to lower error, demonstrating the informa-
tiveness of our approach. Multiple approaches exhibit negative SIV
usage for the Real dataset, indicating that including the SIVs does
more harm then good. We hypothesize that this is due to noise in
the carbohydrate signal (explored further in section 5.5).

Table 1: Forecasting Error and SIV usage for all datasets. Out-
comes are reported as: Error [95% con�dence interval] (SIV
Usage). Our proposed approach outperforms baseline for
both datasets. Con�dence intervals were calculated from
bootstraps with 1,000 re-samples.

Model rMSE [95%CI] (Usage) MAE [95%CI] (Usage)

Simulated
Encoder/Decoder 15.63,[14.08,16.89] (11.13) 12.42,[11.14,13.59] (6.63)
SIV Fine-tune 27.30,[24.66,29.09] (-0.54) 22.22,[19.9,23.89] (-3.17)
SIV Initialize 15.37,[13.63,16.86] (11.39) 11.99,[10.68,13.17] (7.06)
Full Capacity 14.14,[12.69,15.27] (12.62) 11.21,[9.97,12.24] (7.85)
Proposed 13.07,[11.77,14.16] (13.69) 10.45,[9.37,11.37] (8.61)

Real
Encoder/Decoder 20.36,[19.46,21.30] (0.08) 14.67,[14.11,15.24] (0.24)
SIV Fine-tune 21.74,[20.87,22.64] (-1.30) 16.25,[15.68,16.85] (-1.35)
SIV Initialize 20.98,[20.00,21.97] (-0.54) 14.99,[14.42,15.59] (-0.09)
Full Capacity 20.98,[20.04,21.92] (-0.54) 15.09,[14.5,15.69] (-0.18)
Proposed 20.16,[19.28,21.06] (0.28) 14.64,[14.09,15.20] (0.27)

Figure 5: (a) Our architecture and baseline encoder/decoder
SIV usage for windows without/with carbohydrates, and win-
dows with carbohydrates above the 50C⌘ and 90C⌘ percentiles
(Simulated dataset). Usage increases when larger carbs are
present. (b) SIV usage for windows who’s �nal non-zero SIV
value occur in each quartile of the input time series (Simu-
lated data). Usage peaks in the third quartile, which is the
point at which carbohydrates and boluses most e�ect the
prediction window.

5.2 Input Level Results
We do not expect the bene�t of our proposed approach to be con-
stant across all settings. In particular, when the magnitude of the
SIV is small or the SIV occurs early on in the prediction window,
a model that ignores the SIV might still generate accurate fore-
casts. Thus, we evaluate di�erences between our approach and the
encoder/decoder baseline as the magnitude and timing of the SIV
varies.

Comparing the performance of the baseline and the proposed
approach on windows that do not contain SIV vs those that do
(Min. Carb. Percentile >0), performance gains over the baseline
increase when SIV are present (Figure 5 (a), left most box plots).
Furthermore, SIV usage of both models increases as a function of
carbohydrate value (i.e., magnitude), indicating that larger values
more greatly impact forecast error, as expected.

In our examination of SIV usage and SIV position within the
input window, usage peaks in the third quartile (i.e., between 30 and
60 minutes prior to the prediction horizon, Figure 5 (b)). This is the
point at which carbohydrates and boluses most e�ect the prediction
window, given their delay in e�ects and the length of the prediction
horizon. If a non-zero SIV value occurs early enough in the window,
its information is encoded in the input signal prior to the forecast
horizon. This is why usage is low for windows with �rst quartile
SIVs; the e�ect of the SIV is already captured by the target signal
and the SIV can be ignored. Usage is highest in the third, rather
than fourth, quartile, likely because the 30 to 60 minute delay in
SIV e�ect is such that fourth quartile SIVs have not fully in�uenced
the target value at the time of the forecast horizon. These trends
hold to a certain extent on the Real data. However, the di�erence is
less pronounced given the overall di�culty of the forecasting task
with real data (Appendix A, Figure 8).
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Figure 6: (a) Our architecture’s improvement over the en-
coder/decoder baseline vs baseline SIV usage for the Simu-
lated dataset. Our method’s bene�t increases as baseline SIV
usage decreases. (b) Improvement over baseline vs baseline
prediction error for Simulated data, for each individual in the
simulated dataset. Improvement over baseline is positively
correlated with baseline error, indicating that our model ad-
dresses per-subject de�cits in the baseline approach.

5.3 Individual Level Results
In our simulated results, we consider ten di�erent individuals who
di�er in terms of meal schedules and simulated physiological param-
eters. Here, we investigate how model performance with respect to
the baseline (i.e., the Encoder/Decoder) varies across these ten indi-
viduals. And in particular, we identify trends that predict settings
in which our approach is more bene�cial.

For both datasets, our model’s bene�t over the baseline en-
coder/decoder varies inversely with the extent to which the baseline
approach relies on the SIV (i.e., SIV usage) across individuals (Simu-
lated: Pearson r=-0.65, p=0.041 [Figure 6 (a)], Real: Pearson r=-0.59,
p=0.042, [Appendix A Figure 9 (a)]). This supports the hypothesis
that our model’s improved performance over the baseline is due in
part to the increased usage of the SIV. For individuals for whom
the baseline model was able to achieve high usage, our model was
not necessary, while individuals with low usage stood to bene�t.

We also observe a strong correlation between baseline error and
our approach’s improvement (r=0.80, p= 0.0056, Figure 6 (b)). This
suggests that our approach addresses the de�cits of the baseline at
the individual level, decreasing variation in the error across indi-
viduals. The higher variability in the performance of the baseline
across individuals compared to the proposed approach (range: 6.3
vs 9.5) may be due in part to di�culties in SIV modeling, which
our model is able to compensate for. With respect to the real data,
while the overall trend was the same, the correlation between base-
line error and our approach’s improvement over baseline was not
signi�cant (r=0.22, p=0.49, Appendix A Figure 9 (b)). We hypoth-
esize that this again might be due to the presence of noise in the
carbohydrate signal, which prohibits our model from accurately
modeling the SIV signal (explored in Section 5.5). Alternatively, the
intrinsic dynamics in the Real dataset may simply be more complex
and thus result in more variability across individuals.

Table 2: rMSE and MAE, with SIV usage, for each ablation on
the Simulated dataset. Outcomes are reported as: Error [95%
con�dence interval] (SIV Usage).

Model rMSE [95%CI] (Usage) MAE [95%CI] (Usage)

No Gating 13.93,[12.57,15.04] (12.84) 11.11,[9.94,12.11] (7.95)
No Restriction 13.12,[11.8,14.21] (13.64) 10.43,[9.31,11.38] (8.62)
No Dec. SIV Input 14.20,[12.67,15.36] (12.56) 11.18,[9.96,12.23] (7.87)
Only Dec. SIV Input 13.97,[12.58,15.10] (12.79) 11.12,[9.96,12.15] (7.94)
Full Model 13.07,[11.77,14.16] (13.69) 10.45,[9.37,11.37] (8.61)

5.4 Ablations
To better understand the bene�t of each part of our approach, we
run ablations on both the simulated and real datasets. Simulated
dataset. Ablation analyses reveal that, in general, our approach’s
strong SIV usage and forecast accuracy are a combined e�ect of
each implementation detail taken together, rather than only one
component. Table 2 shows the results of our ablation study on the
simulated dataset: removing any component results in a decrease
in performance accuracy and SIV usage for all metrics. For the
Simulated dataset, we see that our model performs similarly when
the restriction is removed, i.e. when the ReLU functions are not
included. This is likely because, in the Simulated dataset, the e�ect
of the insulin boluses and carbohydrate administrations are clear
enough that the model can learn them easily without supervision.

Real dataset. The restriction element is important for the Real
dataset (Appendix A Table 3, rMSE increases to 20.38 from 20.16
when restriction is removed), which presents a more di�cult chal-
lenge due to noise in the SIV signal and more complex target vari-
able dynamics. For the real dataset, we see a decrease in perfor-
mance for each ablation. Our architecture works by isolating the
e�ect that the SIV signal has on the target variable and enforc-
ing consistency with domain knowledge. Although the domain
knowledge is very general (we only restrict the signal direction),
it improves performance, o�ering a bene�t over isolation alone
for the Real dataset. More restrictive model guidelines, such as
directly restricting the architecture to use a detailed physiologi-
cal model, could be bene�cial, but during model development, we
found that “less is more,” in that a small amount of restriction with
signi�cant �exibility was most e�ective. However, some sort of
domain-knowledge-based-guidance is helpful to overcome the chal-
lenges posed by the SIV problem, since without it, it is di�cult to
learn anything useful from the small number of non-zero samples.

5.5 Sensitivity Analyses: Missingness and Noise
We hypothesize that the smaller gains on the real dataset may
be due in part to noise in the measurement of the SIV. We use
simulated data to examine this hypothesis, because in this dataset
we have ground truth carbohydrate values. In the real data not
only may the magnitude of these values be inaccurate (they are
estimated by the patient), but the timingmight also be o�. Moreover,
patients may skip recordings altogether. In order to examine the
hypothesis that unreliable carbohydrate values hamper our model’s
performance on real data, we randomly hide between 10% and
50% of the carbohydrate values (by setting their value to zero)
and add between 10% and 50% magnitude random noise to the
remaining non-zero carbohydrate measurements (both after data
generation, and to both training and testing datasets), to evaluate
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Figure 7: Baseline and proposed performance as simulated
carbohydrate values are hidden from the model and noise is
added to their magnitudes. As noise increases, our model’s
advantage disappears.

the performance of our model vs the stand-alone encoder/decoder
baseline as carbohydrate values become unreliable. We chose a
simulated individual for which our method performed strongly
(adult#010) for this analysis.

We �nd that as the missingness and noise increase, our ap-
proach’s performance degrades (Figure 7). Our approach is more
impacted by missing or noisy SIV values relative to the baseline, in
part because of the increased dependence on the SIV (i.e., greater
SIV usage). When 20% of carbohydrates are missing and the remain-
ing carbohydrate values have 20% random noise added, our model
no longer o�ers an improvement over baseline, and in fact performs
slightly worse. We also see that SIV usage drastically decreases as
the carbohydrate signal becomes unreliable. The model trained and
tested without insulin and carbohydrates is not be e�ected by the
noise, so baseline SIV usage is a constant minus baseline perfor-
mance across missingness and noise values. Once the noise reaches
40% missing values with 40% added noise, performance of both
approaches becomes worse than the SIV-hidden baseline, which
means that the models have negative usage values. This indicates
that including SIVs in the model can cause more harm than good if
they are noisy enough.
6 Related Work

We are the �rst to identify the SIV problem that arises when
using RNNs for multi-input forecasting and the �rst to propose a
solution. The SIV problem frequently arises in healthcare, and SIVs
are often associated with time periods during which a patient is
most vulnerable (i.e., medication administration). Therefore, pre-
diction models that address the SIV problem could lead to more
accurate predictions during time periods that are critical for health
outcomes. While sparsely sampled variables (SSVs) have been stud-
ied, interpolation approaches for addressing missingness and noise
in such cases are not directly applicable to the SIV setting, as the
majority of samples are not missing. Future work may look into the
possibility of adapting these approaches to function in the SIV set-
ting, but it is not immediately clear that they will apply. Although
the SIV problem has not yet been addressed, several techniques
have been proposed to learn inter-variable relationships in fore-
casting tasks, which in part inspire our approach. However, each

has limitations in an SIV setting as discussed below, and thus are
not directly comparable.

Notably, Pantiskas et al. and Qin et al. use attention mechanisms
to identify which variables to focus on [20, 22], but these approaches
do not account for signals that are mostly zero-valued, nor do they
incorporate domain knowledge as our approach does. In a proba-
bilistic setting, normalizing �ows have been used to directly model
the joint probabilities between variables [4, 23]. This approach does
not address the SIV setting because SIVs are often too sparse to accu-
rately estimate a joint probability. Several approaches are based on
using convolutional neural networks (CNNs) to process input vari-
ables prior to using a downstream forecaster [7, 8, 20], while other
approaches attempt to model the relationship between variables
via correlation graph inputs [1], multitask prediction across vari-
ables with a shared hidden state [28], or separate networks for each
variable which are concatenated downstream [19]. Although each
of these approaches explicitly models inter-variable relationships,
none explicitly address the sparsity issue, which our architecture
was designed to overcome. While some of these architectures iso-
late inter-variable e�ects, none use this isolation to restrict model
outputs to match expectations. In contrast, we used isolation to
inject domain knowledge by putting restrictions on the SIV e�ect.

Previous work in forecasting has combined deep learning with
domain knowledge to reduce the hypothesis space. However, au-
thors have relied on strong assumptions, e.g. structuring deep archi-
tectures to match clinical intuition [19], combining deep approaches
with physiological-model-based simulators [18], and estimating ex-
pert judgements on model outputs via Monte-Carlo approximations
[11]. In contrast, we only restrict the sign of the SIV network’s hid-
den state.
7 Conclusions

The SIV problem arises in forecasting domains when the relative
sparsity of an auxiliary signal makes it challenging to learn its e�ect
on a target signal. Here, we introduce the problem and propose a
forecasting approach that leverages SIVs. Our approach isolates SIV
dynamics and restricts them based on domain knowledge, achieving
higher SIV-usage than baselines and much stronger forecasting
performance on simulated data. On real data, our model o�ers
only modest improvements in forecasting error due to noise in
the SIV signal. However, ablation results show that each aspect of
our approach is bene�cial, even in this noisy setting. Future work
could focus on �rst reducing input noise, which would potentially
enable our model to perform well in the real blood glucose data
setting.We also note that while ourmotivating task of blood glucose
forecasting involves a user-estimated and therefore highly noisy
variable, there are other SIV settings where all variables are less
noisy, such as medication administrations in vitals forecasting.

While there are many di�erent ways to forecast signals, we focus
on a family of RNN-based techniques. Our primary contribution
is the identi�cation of the Sparse but Informative variable (SIV)
problem in forecasting, and the failure of common RNN-based ap-
proaches to address this problem. We demonstrate how addressing
the SIV problem can lead to improvements over directly comparable
baselines. We do not claim SOTA in forecasting, but instead focus
on advancements to a speci�c family of techniques. Our �ndings
could apply to many settings in which variants of RNNs are applied
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to forecasting problems with SIVs. Our approach to addressing the
SIV problem involves gating, output restriction, and inputting vari-
ables directly to the decoder. While none of these methodological
developments are unprecedented on their own, their combined ap-
plication to the SIV problem poses a novel direction for forecasting
in related domains.

Our study is not without limitations. First, con�dence intervals
overlapped in several experiments. This is likely due to the small
number of datapoints with non-zero SIV values. Although di�er-
ences were small, manywere consistent across patients and datasets.
Second, our approach involved splitting the data into discrete win-
dows in order to train using stochastic gradient descent. A problem
with this approach is that any SIV values that appear before the
input window, even only one time step before, are ignored. This
means that windows that are assumed to not contain an SIV can
still be in�uenced by them. If our approach was to be rolled out for
real time patient blood-glucose prediction, for example, continuous
acquisition and prediction could alleviate this problem by allowing
SIV e�ects to go past the input window length. Although our ap-
proach is limited by this explicit �xed SIV e�ect time window and
an inability to address noisy SIV signals, our model shows improve-
ment over baseline performance in prediction error. This suggests
that SIV e�ects can be better incorporated into a forecasting model,
provided that domain knowledge is adequately leveraged.

Our approach was designed with blood glucose forecasting in
mind, but does not directly address all problems that arise in this
domain. If more than one SIV are present (as in blood glucose
forecasting), our approach relies on having some non-overlapping
SIV signals (i.e., there must be timepoints where one SIV occurs, but
not the other). This is limiting in some simulated settings, however,
in real patient data, we can expect to see many non-overlapping
signals because bolus administrations often follow carbohydrate
consumption by an hour or more. We also do not address missing
glucose signals in this work, which is a common issue in real data.
Generally, and in blood glucose forecasting speci�cally, an SIV
measurement early in the input window may have less of an e�ect
on the target variable at the time of forecast. This is learned by q ,
which can learn a decay e�ect over time.

While we restrict our analysis to blood glucose forecasting in
T1D, the SIV problem is potentially relevant whenever an informa-
tive auxiliary signal is mostly zeros (or some other constant). The
�ndings here could be applied more broadly to other domains, e.g.
blood pressure prediction, where the SIV is vassopressor/vasodilator
administration; the prediction of other vital signs, wheremedication
administration represents an SIV; stock prediction, where quarterly
reports are produced much less frequently than stock valuations;
and travel, where holidays and major events are SIVs.
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