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ABSTRACT
This work addresses the national security non-proliferation mission

by enhancing traditional methods for real-time nuclear prolifera-

tion detection. First, by adding a novel predictive component that

allows us to move from a reactive to a proactive posture. Second,

by adding the ability to mitigate the operational burden posed by

nuisance alarms during the deployment of unattended radiological

sensors in urban environments. We demonstrate how to success-

fully operationalize the state-of-the-art machine learning (ML) and

natural language processing (NLP) models to quantitatively esti-

mate (1) to what extent historical radiological sensor data is useful

to anticipate future isotope signatures across sensors and locations,

and (2) whether contextual data e.g., language extracted from con-

struction permits can inform and explain future nuclear sensor

and isotope signatures. Our models are trained on real-world data

collected from seven sensors located in Washington, DC and Fair-

fax, VA during the time of seven to nine months in 2019 and 2020.

Our sensor data includes alerts from three medical Tc-99m, I-131

and 511 from Positron Emission Tomography (PET) and one indus-

trial Cs-137 isotope. Our experimental results show clear ability

of ML models to anticipate isotope signatures from historical data

across locations and sensors, and show strong predictive power

of linguistic terms extracted from construction permits to classify

and explain industrial alerts. We found that when learning from

historical data detecting isotopes in Fairfax is easier than in DC,

learning from longer historical windows e.g., month is better than

days and weeks, and 511 signatures are more difficult to predict

than Tc-99m and I-131 across locations.

CCS CONCEPTS
• Information systems→ Sensor networks; •Computingmethod-
ologies → Natural language processing.
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1 INTRODUCTION
The national security community looks to expand threat detec-

tion capability through the deployment of urban sensing systems

that must operate without continuous reliance on human subject

matter expertise. The nature of these systems makes it harder to

detect elicit proliferation activities in the city compared to rural

and industrial areas because of the necessity to be discrete and not

interfere with daily city life. To enable that, we present a pioneer-

ing study that demonstrates and rigorously validates the value of

interpretable ML-driven analytics to anticipate radiological isotope

signatures in real-world urban sensing environments. Traditional

approaches for urban-scale proliferation detection have been re-

active in nature and relied on simulated data when incorporating

contextual information. In this work, we are the first to forecast radi-

ological alerts in urban environments in order to identify anomalous

signals that indicate the presence of suspicious or nefarious activ-

ity. In our experiments, we model isotope time series under three

settings ranging from the most general granularity to the most

specific: aggregated within each location (location-specific), aggre-

gated within each sensor (sensor-specific), and individual isotope

time series (isotope-specific).

AI for Distributed Sensor Networks. Machine learning applied to

distributed sensor networks primarily focuses on solving the task

of anomaly detection, rather than classification or regression. SOTA

deep learning methods such as encode-decoder models [18] and

variational autoencoders with convolutional layers [2] require large

amounts of training data and explode in complexity with additional

layers and parameters that adds strain to deployed systems in an

online setting. Other methods developed using dimentionality re-

duction techniques e.g., principal component analysis (PCA) [22]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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or least square-support vector machines and Gaussian process re-

gression [17] reduce this strain. However, automated, unsupervised

feature selection still suffers from a lack of interpretability of model

decisions which is vital to support the nonproliferation mission.

AI for Proliferation Detection.Machine learning and natural lan-

guage processing approaches have not been widely applied to

support non-proliferating mission by developing and deploying

domain-aware real-time analytics. Some recent examples include

anomaly detection [21, 23] and ML to analyze gamma ray spec-

tra [13, 26], the application of MLmodels to perform nuclear reactor

core diagnosis [14], enhance nuclear energy systems behavior and

decision making [9], and analyze distributed and mobile sensor

networks [4, 7]. However, there have been an increased interest to

take advantage of publicly available information and combine it

with machine learning to discover elicit proliferation activities, as

described in 2021 Nuclear Threat Initiative report [12]. The 2021

report on nuclear proliferation and arms control monitoring, detec-

tion, and verification highlights the role of ML-driven analytics and

open data sources to discover and prevent global proliferation [20].

Unlike any previous work, this paper focuses on interpretableML

models that can be easily operationalized and deployed to advance

the national security mission by analysing real-world radiological

sensor data to anticipate future isotope signatures across sensors

and locations [25], and incorporate real-world contextual data to

disambiguate future physical sensor signatures in urban environ-

ments [24].

Unlike any other efforts, our data-driven approach is:

• Taking advantage of both historical pattern-of-life (PoL) data
from urban sensors and open-source data (e.g., publicly avail-

able construction permits).

• Capable of anticipating radiological isotope signatures of

three medical Technetium-99m, radioactive iodine (I-131)

and 511 from Positron Emission Tomography(PET) and one

industrial isotope Caesium-137 (Cs-137).

• Making reliable predictions with confidence levels reported

across multiple sensors in multiple locations – Washington,

DC and Fairfax, VA.

2 DATA
2.1 Radiological Sensor Data
We collected radiological sensor data of four isotopes from static

sensors in two locations – Washington, DC [6] and Fairfax, VA [11].

DC data was collected from 5 sensors between October 2019 and

January 2021. Fairfax data was collected from 4 sensors between

March 2019 and October 2019. All sensors were placed in or near

fire stations. Though the exact detection range is dependent on

factors such as the strength, type, and speed of the source, the

urban sensors used for our data collection are typically capable

of detecting gamma-ray sources within a radius of several tens

of meters from each sensor. To separate gamma-ray spectra from

background noise and to classify which isotope generated that

spectra, sensor alerts were summed into 3-second-long increments.

A spectrum is distinguished from background noise if its gross

count rate was an anomalously large increase over the mean rate

obtained from a moving average. The spectra thus flagged were

normalized and clustered using k-means [16] with Kullback-Leibler

(a) Washington, DC

(b) Fairfax, VA

Figure 1: Location-specific radiological sensor data aggre-
gated over 5 sensors in DC and 4 sensors in Fairfax repre-
sented as the daily number of alerts (log-scale) over several
months for four isotopes: Tc-99m, I-131, 511, and Cs-137.

divergence [10] as the distance metric. The resulting clusters were

culled and hand-labeled by subject matter experts (SMEs) with the

isotope responsible for that cluster of anomalies
1
. Non-anomalous

spectra were also used to characterize the background signal [15].

Then the identified isotopes were searched for in all of the spectra

according to the method described in [3]. During the time period

in which the sensors were recording data, no isotopes associated

with nuclear proliferation efforts e.g., plutonium, highly-enriched

uranium, or tritium were detected. Thus, we focus on modeling and

forecasting only the isotopes present in the data.

Figure 1 shows the number of daily of alerts (log-scale) across the

two locations. Three of the four detected isotopes, Technetium-99m

(Tc-99m), radioactive iodine (I-131), and 511 gamma photons (511),

are typically associated with medical procedures. For example, an

alert of 511 might mean a person passing close to a sensor had

a recent positron emission tomography (PET) scan. The fourth

isotope, Cs-137, is commonly associated with construction work.

Across all sensors, isotope Tc-99m is the most abundant with 10,283

alerts between both locations. We analyzed weekly patterns for all

isotopes with the majority of activity occurring during weekdays.

For our experiments we construct two datasets of radiologi-

cal sensor data split by time and sensor. For location-specific and

sensor-specific experiments, we include the entire time period of

Fairfax detections and include up to July 2020 of DC detections (Sen-
sor Data A). Note, due to sparse signal from these four isotopes in

some sensors, we dropped one sensor from Fairfax and one sensor

from DC from Sensor Data A. The daily frequency of alerts from the

remaining sensors are shown in Figure 2. We see sensor 17178701

1
We acknowledge there are limitations with this approach and possibly erroneously

clustered spectra, however, without knowing the true isotopes to pass by the sensors

we must trust our SME labels.



Domain-Aware ML-Driven Predictive Analytics for Real-Time Proliferation Detection in Urban Environments Conference’17, July 2017, Washington, DC, USA

(a) Washington, DC

(b) Fairfax, VA

Figure 2: Sensor-specific data in DC and Fairfax represented
as the daily number of alerts for four isotopes: Tc-99m, I-131,
511, and Cs-137.

(a) Washington, DC (b) Fairfax, VA

Figure 3: Construction permit signal coverage around radio-
logical sensors (marked as red pins) in both locations. Red re-
gions represent areas with higher density, and lighted green
areas - with lower density.

from Fairfax has the most number of alerts (6,290), and the 18346019

sensor from DC has the least number of alerts (307) during the time

period. For isotope-specific experiments, we include the full time

period for both cities, but filter to only Cs-137 isotope alerts. With

the full time frame included, the two sensors previously dropped

from Sensor Data A contain many more Cs-137 alarms (1,935) and

thus are kept in Sensor Data B. However, three of the DC sensors

continued to have no Cs-137 detections. Sensor Data B consists of

Cs-137 alerts from two sensors located in DC and four sensors in

Fairfax.

2.2 Open Source Contextual Data
We collected contextual data, specifically construction permits from

two county websites forWashington, DC
2
and Fairfax, VA

3
. Overall,

we processed 46,057 permit records for Fairfax and 41,580 permit

records for Washington, DC. Construction permits data is semi-

structured and contains spatial e.g., latitudes, longitudes, and tem-

poral information e.g., start and end dates of construction permits,

and themetadata e.g., construction type, permittee name, contractor

name, applicant name, permit type, in addition to natural language

description of the construction work. The example of construction

permit descriptions for DC (top) and Fairfax (bottom) are shown

below. Figure 3 presents construction permit signal density around

radiological sensors in DC and Fairfax.

DC: Installation of a Class B telecom facility on a replacement
DDOT owned streetlight pole.

FF: Office exact replacement 100,000 BTU gas furnace and 5 ton air
conditioner. Installing sump pump. 3-lights, 7 plugs, 2 switches,
1-120 volt circuit 2 GFI outlets.

We associate construction permit data with sensors from Sensor
Data B based on spatial and temporal characteristics. For exam-

ple, for each day we collect active permits within 0.25 mile radius

around three sensors 18346013, 18261333, and 17178701, a 0.5 mile

radius for sensor 17178686, and a 1 mile radius for sensors 17178694

and 17178702. We tune the radius parameter to ensure variability

in the number of active construction permits around each sensor.

To gain more insights about the topics covered by construction

permits, specifically topic coverage and topic diversity, we visualize

topics extracted from construction permit documents using the

topic model from [1] in Figure 4. As we can see from the UMAP

projection [19] of topic vectors, construction topics extracted from

permits in DC include street work and telecommunications work;

whereas topics extracted from Fairfax permits include interior re-

pairs, electric work, installation, renovation, replacement type of

work, excavation, paving etc.

3 METHODOLOGY
We develop and validate novel predictive models capable of an-

ticipating isotope signatures from historical and contextual data

across locations and sensors. For that, we designed three types of

classification experiments (two multi-class and one binary) to per-

form (a) location-specific, (b) sensor-specific and (c) isotope-specific

predictions. Our detailed experimental setup is presented in Table 1.

Table 1: Detailed experimental setup for next day medical
and industrial isotope prediction.

Experiment Inputs Outputs History (PoL)
Location-specific

PoL

Tc-99m, I-131 Ensemble, day,

Sensor-specific 511, Cs-137 (4-way) week, month

Isotope-specific

PoL, OSD

Cs-137 (2-way) Day

PoL + OSD

We rely on the SOTA machine learning models – Support Vector

Machines (SVM), Random Forest (RF), Logistic Regression (LR) and

AdaBoost (only for isotope-specific experiments) to predict next

2
https://opendata.dc.gov/

3
https://ldip.fairfaxcounty.gov/page/search

https://opendata.dc.gov/
https://ldip.fairfaxcounty.gov/page/search
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Figure 4: Topic modeling results on construction permits
from Fairfax and DC. Permits are aggregated on daily basis
before fitting the topic model e.g., if there are three permits
active on a day, all are aggregated into a single document
(one data point on the plot). Topics are numbered from 1 to
10; top representative tokens per topics are reported.

day isotope presence in each location and each sensor. Unlike deep

learning (DL) approaches, that are black-box models, ML-driven

analytics powered by our model are interpretable, faster, and more

secure to deploy. We frame our experiments as classification tasks

which make traditional time series model e.g., ARIMA unsuitable.

We learn location-specific and sensor-specific models from histor-

ical pattern of life data (PoL) by considering an 𝑛-size historical

window in the past. In these experiments, we vary the window

size of historical data for training between one day, one week, and

one month. In addition, we also experiment with the ensemble

models of the three windows. In our isotope-specific experiments,

where we focus on anticipating the presence an industrial Cs-137

isotope, we consider a historical window size of one day in addition

to different contextual data representations. For every model, we

perform a grid search of the hyperparameter space
4
. We compare

our models to a weighted classifier where predictions are sampled

from the training distribution weighted by the class prevalence.

Our experiments aim to answer four research questions:

RQ1 How much historical PoL signal is required to train best-

performing models i.e., a day, a week, or a month?

RQ2 How predictive performance vary among isotopes i.e., are
some isotopes easier to predict than others? What are the

most predictive models, and what are their limitations ?

RQ3 How does predictive performance vary with the type and

the amount of training data i.e., are models more accurate

with sensor-specific or location-specific data?

4
SVM hyperparameters include the kernel (linear, poly, rbf, sigmoid) and the regu-

larization term (0.01, 0.1, 1.0), RF hyperparameters include the number of estimators

(100, 200, 500), max depth (10, 50), and criterion function (gini, entropy). LR hyperpa-

rameters include the penalty term (L1 and L2), tolerance (0.0001, 0.001, 0.00001), and

regularization term (0.01, 0.1, 1.0).

RQ4 How much can model performance be improved when the

historical signals are replaced or augmented with contextual

open-source information?

3.1 Location-Specific Models
In our location-specific experiments, we classify next-day alerts of

four isotopes from signals aggregated over all Fairfax sensor data

(three sensors) and all DC sensor data (four sensors). We reserve

the last 40% of our data for testing. From Fairfax data, the start

date of the test set is 07-16-2019. In DC, the test set start date is

02-26-2020. This splitting scheme does not create a 60/40 division

of days, but rather a 60/40 division of alerts. Thus, the test set may

cover more than 40% of the time period. In total, we train 12 (3 ML

models x 4 time windows) models for each location.

3.2 Sensor-Specific Models
In our sensor-specific experiments, we classify next-day alerts of

four isotopes from sensors in Sensor Data A. However, we do not
aggregate isotope signals across sensors as in our location-specific

experiments. Instead, each sensor is treated as a distinct dataset

on which separate models are trained to classify next-day isotope

signatures. To evaluate the effect on the type and the size of the

training data and to get insights about the specificity vs. generaliz-

ability of each model, we use three settings:

• My Sensor Data: We only learn from sensor-specific historical

data (e.g., correspond to high specificity).

• My Location Sensor Data: We learn from historical data col-

lected from all sensors in a specific location.

• All Sensor Data: We learn from historical data collected from

all sensors across two locations (e.g., correspond to high

generalizability).

Similarly to location-specific experiments, we use a 60/40 train/test

splits. However, our total number of models for this experimental

setup has increased from 24 (12 x 2 locations) to 12 models per sen-

sor yielding 84 models for each setup (in total 232 sensor-specific

models).

3.3 Isotope-Specific Models
In addition to learning from historical PoL data, we experiment

with isotope-specific models to predict next-day industrial isotope

presence (Cs-137) from five types of representations learned from

construction permits as described below.

• Metadata: 67-dim vectors that encode construction com-

pany names and construction types e.g., Verizon, Wash Gas

& Light Co., excavation, fixture, paving etc.

• Embeddings: 10-dim embedding vectors (reduced from the

original 512 dimensions using UMAP) learned using the

model from [5].

• Topics: 10-dim topic vectors encoded using themodel from [1].

• Part-of-speech-tags (PoS): 50-dim token vectors that in-

clude nouns and verbs extracted from construction permits

using the AllenNLP model from [8] (reduced from original

515 dimensions).

• TFIDF: 48-dim token vectors filtered based on frequency.
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(a) Washington, DC

(b) Fairfax, VA

Figure 5: Location-specific model performance with signals aggregated over multiple sensors per location for 4-way isotope
classification task. Top figures demonstrate how model performance depends on the size of the historical window (day, week,
month, ensemble). Bottom plots report model performance with confidence ranges for each isotope (511, Cs-137, I-131, Tc-
99m). The shaded regions represent the baseline model. Model confidence ranges reported as percentages.

Table 2: Isotope-specific experimental setup: train and test
time periods per sensor. Total training samples across all
sensors is 294 and testing samples is 131. Detectors that start
with 18 represent two DC detectors and those that start with
17 represent four Fairfax detectors.

Detector Train Period Test Period
18261333 2019/10/03, 2020/09/27 2020/10/10, 2020/12/25

18346013 2019/10/17, 2020/05/10 2020/05/11 2020/06/28

17178686 2019/03/02, 2019/07/09 2019/07/10, 2019/09/28

17178694 2019/03/04, 2019/06/21 2019/06/22, 2019/08/02

17178701 2019/03/07, 2019/06/27 2019/07/12, 2019/09/12

17178702 2019/03/07, 2019/07/31 2019/08/01, 2019/09/27

For each sensor, we aggregate construction permits for every

day of the sensor’s lifespan and indicate if there was a Cs-137 alert

or not. We train binary models for two locations, experiment with

three type of ML models (RF, SVM and AdaBoost) and train models

using contextual data only vs. contextual data plus the PoL. We

report the details about the number of data samples and the train

and test periods for each sensor across locations in Table 2.

4 EXPERIMENTAL RESULTS
This section presents key findings from three types of analytics pro-

posed in this work – location-specific, sensor-specific, and isotope-

specific to predict next day isotope prevalence for medical and

industrial isotopes in DC and Fairfax. Our results provide quantita-

tive estimates on (1) how historical sensor data can be leveraged to

predict next-day isotope signatures, and (2) how much the incorpo-

ration of real-world contextual data e.g., language extracted from

construction permits informs and explains sensor signatures.

4.1 Location-Specific Results
In Figure 5, we present the performance of our ML models i.e.,
model confidence ranges and F1 scores over the 4-way isotope

classification task from aggregated sensor signals for DC (5a) and

Fairfax (5b). In DC, all day and week models perform considerably

worse than their Fairfax equivalents. The best model trained with

DC sensors is the Random Forest ensemble with an F1 score of

0.72. We see from the confusion matrix that isotope 511 has the

highest rate of classification (90.5%) followed by both Tc-99m and

Cs-137 (79.8% and 79.3%). The I-131 class has the most misclassi-

fications with a success rate of 44.2%. Across both locations, any

model trained with a month of history or an ensemble of all time

granularities significantly outperforms the baseline. In particular,

the Fairfax monthly Random Forest model has the highest F1 score

of 0.85. From the confusion matrix we infer that the Fairfax model

correctly classifies Tc-99m 100% of the times, has a 75% correct

prediction rate for I-131 isotope, a 52% correct prediction rate for

511, and an 87.5% rate for Cs-137. Interestingly, Cs-137 is frequently

over-predicted, most often mistaking 511 alerts and I-131 alerts. We

also note that the predictions from Fairfax models are generally

more confident (approximately 10% greater) than the DC models.

Model confidence allows us to measure how close a prediction is to

the decision boundary. A more confident model lends greater trust

to the user when encountering unseen data.

Next, we analyze how predictions from these models vary among

the class labels (isotopes) in Figures 5a and 5b. Almost unanimously,

Tc-99m is the easiest isotope to classify from sensor signals in both

DC and Fairfax. The single exception comes from the DC weekly

models where the random baseline outperforms the trained models.

In Figure 5a, isotopes Cs-137 and I-131 are the most difficult to

predict especially for the daily models. We see vast improvement
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Figure 6: Model performances for the 4-way isotope classification task. Each point indicates the mean F1 score (averaged over
threemodels - SVM,RF and LR) and 95% confidence interval. Rows indicate isotopes; columns indicate the type and the amount
of training data used. In the leftmost column (My Sensor), models are trained only on individual sensor data. In the middle
column (My Location), the training data includes alerts from all sensors in a given city. In the rightmost column (All Sensors),
models are trained on data from both cities. In each experimental set up, models are tested on only individual sensor data.
Sensors 18346014, 18346015, and 18346019 have no Cs-137 alerts. Additionally, 18346015 and 18346019 have no I-131 alerts.

in these classes from the Fairfax models with a trade-off in 511

class performance. Figure 5b illustrates this trade-off showing that

Cs-137 and I-131 have higher individual F1 scores frommost models

than 511. We conclude that a larger PoL window e.g., a month or an
ensemble leads to more accurate models (RQ1) and that Tc-99m is the
easiest isotope to classify while others are location-dependent (RQ2).

4.2 Sensor-Specific Results
Figure 6 shows how predictive performance varies by sensor by

reporting mean F1 scores from the three model types per sensor

under three training conditions:My Sensor Data, My Location Sensor
Data, and All Sensor Data.

Predictive performance variability across sensors and iso-
topes We observe that signal from the Fairfax sensor, 17178701,

yields models with the highest performance with a mean F1 score

of 0.51 across isotopes and training conditions. Models trained on

the PoL data from this sensor have higher performance in the My
Sensor Data setting (when only trained on this sensor’s data).

As more data is included in train, we see large decreases in

model performance. For example, in classifying 511, the 17178701

models always achieve an F1 score ≥ 0.6 (see the top leftmost plot

in Figure 6). However, in theMy Location Sensor Data and All Sensor
Data settings, 0.6 is the upper bound on model performance (see

top row plot in Figure 6). Similar observations can be made of

the other isotopes classified by the 1718701 models. On average,

the lowest performing models receive data from sensor, 18346013,

originating from DC and has a mean F1 score of 0.31. However, the

overall worst model (F1=0.0) is the SVM weekly model from sensor

18346015 trained with All Sensor Data. In Fairfax, the worst model

(F1=0.08) is the Logistic Regression model from sensor 17178702

trained with My Location Data.
For all three Fairfax sensors, the best model is an SVM with a

historical window size of oneweek or ensemble under theMy Sensor
Data conditions e.g., F1=0.89 from SVM ensemble. These models are

proficient at detecting Tc-99m and Cs-137 alerts with classification

rates between 80% and 100%. Similarly to location-specific models,

isotopes I-131 and 511 are more challenging to predict and have a
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Figure 7: Isotope-specific model accuracy for next-day industrial Cs-137 isotope prediction in Washington DC. We report
results for three ML models - RF, SVM and AdaBoost and five types of representations that encode construction permits
language – metadata, TFIDF, topics, embeddings and part-of-speech tags. ML models trained on construction permits data
only are shown on the left. ML models that combine contextual data with the PoL data are shown on the right. Mean and std.
dev. of ML model confidences are reported below accuracy value for each model-data representation combination.

Figure 8: Isotope-specific model accuracy for next-day Cs-137 isotope prediction in Fairfax, VA for different model-data rep-
resentation combinations.

wider range of classification rates; as low as 13% for I-131 and 45%

for 511. Across the DC sensors, the best models are the Logistic

Regression classifiers with a window size of one month or ensemble

under the My Sensor Data conditions e.g., F1=0.95 from the Logistic

Regression monthly model. Likewise, Tc-99m and Cs-137 alerts are

the easiest to classify. It should be noted, however, that only one DC

sensor detects Cs-137. Furthermore, the classification rates for I-131

and 511 vary greatly from sensor to sensor e.g., no errors (100%

correct) to only errors (0% correct). To investigate how predictive
performance varies with the inclusion of additional training data, we
rank the three experimental setups by average F1 score as follows:

My Sensor Data (mean F1=0.65); All Sensor Data (mean F1=0.33);

My Location Sensor Data (mean F1=0.25).

We find this ranking interesting since our intuition would place

All Sensor Data at the bottom of the list i.e., training data from the

most diverse sources. One explanation for the poor performance

from the My Location Sensor Data models is that the majority of

the test time period covers the beginning months of the COVID-19

pandemic where urban activity vastly changed and so might the

patterns of life of isotope alerts.

We discover that models trained with exclusively Fairfax data

outperform models trained on DC data in both the My Sensor Data
(FF F1=0.67 > DC F1=0.63) andMy Location Sensor Data (FF F1=0.27
> DC F1=0.22) cases. In summary, we confirmed that sensor-specific
models achieve higher F1 scores than models trained on additional
sensor data (RQ3). These findings confirm that individual detectors
have isotope-specific signatures that are not easily generalizable to
other detectors.

Predictive performance variability by temporal granularity Con-
sidering all sensors, isotopes, and training configurations, the daily

models have the largest mean F1 (0.44 ± 0.16). The ensemble models

are almost equivalent, but have a higher standard deviation (0.43

± 0.27). And lastly, the weekly model has the lowest mean F1 and

highest deviation (0.38 ± 0.28). When we only consider My Sensor
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Figure 9: Isotope-specific model performance differences trained with and without the PoL data. F1 scores are averaged across
model types and reported for each individual sensor-text representation combinations in DC (orange) and Fairfax (blue).

Data models, i.e., the best performing overall sensors, the largest

mean F1 (0.65 ± 0.17) is produced by the ensemble models. The

monthly models have a mean F1 of 0.60 and a standard deviation of

0.18. This is consistent with our previous findings from the location-

specific results (RQ1). One hypothesis for this agreement is that in

both the My Sensor Data and original location-specific set ups the

training distribution matches the test distribution more closely than

in theMy Location Sensor Data or All Sensor Data. For completeness,

the time window with the highest mean F1 for My Location Sensor
Data and All Sensor Data is one day with 0.35 and 0.37 mean F1.

4.3 Isotope-Specific Results
Figures 7 and 8 present model accuracy results when trained on text

features extracted from construction permits with and without the

inclusion of the historical PoL data. Across all feature combinations,

model performances for DC are always better than for Fairfax. For

example, model accuracy for DC are in the range between 0.53

and 0.7; whereas model accuracy for Fairfax range between 0.37

and 0.59. We find that all models (except RF and SVM when PoL
data is combined with metadata, TFIDF and topic representations)

outperform the baseline model that always predicts no alerts (the

majority class) - DC accuracy=0.2 and Fairfax accuracy=0.44 (RQ4).

For all text representations, SVMmodels outperform Random Forest

and AdaBoost classifiers.

The most predictive text representations for DC models are meta-

data, TFIDF, topic and embedding vectors that yield the best results,

0.73 and 0.71 F1 scores, respectively. For Fairfax, the top performing

data representations are topic and embedding vectors, that yield F1

score of 0.59. We observe that model confidences for Random Forest

are significantly higher (about 20%) than SVM and AdaBoost, even

though Random Forest is not the best performing model across

both locations. Model confidences for Fairfax are generally higher

than model confidences for Washington, DC.

Figure 10: Linguistic feature importances shown for un-
igrams shared across isotope-specific models trained on
TFIDF representations.

Most DC models trained exclusively on permits data perform

as good as or better than models trained exclusively on historical

data only except Random Forest with the PoS and metadata rep-

resentations. Unlike DC, Fairfax models trained on the PoL data

mostly outperform models that are trained on contextual data only.

Figure 9 presents a more detailed analysis of model performance

differences with and without the PoL. We find that combining open

source and the PoL data is only beneficial for Fairfax but not for DC
models. In DC, contextual data is more predictive than historical

data with best F1=0.73 (SVM model) vs. F1=0.64 (RF model).

To interpret isotope-specific model predictions, we present text

feature importances across ML models Figure 10. We observe that
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multiple models rely on terms like ’existing’, ’new’, ’gas’, ’street’,

’build’, etc. when predicting industrial Cs-137 alerts. In addition to

feature importances, we perform a correlation analysis between the

metadata features and Cs-137 signatures. We identify correlations

between linguistic terms and alerts for company names: Wash Gas

and Light, AT&T in DC; demolition electrical and residential terms,

and people names in Fairfax; and construction terms and types of

work in both locations.

5 CONCLUSIONS AND FUTUREWORK
This work presents a novel capability that could transform national

security mission by advancing traditional approaches for real-time

nuclear proliferation detection in urban environments. First, it will

add a non-existing predictive component that would allow nuclear

analysts to move from a reactive to a more proactive posture. Sec-

ond, it will empower nuclear analysts with the ability to mitigate

the operational burden posed by nuisance alarms during the de-

ployment of unattended radiological sensors in urban settings.

Our novel ML-driven predictive analytics demonstrates the abil-

ity to anticipate radiological isotope signatures across multiple

locations, sensors and isotopes by taking advantage of both his-

torical and open-source data. Our quantitative results show that

location specific models are as accurate as 80% with predictions

across isotopes ranging between 60% and 80% with Tc-99m isotope

being the easiest to anticipate followed by I-313 and 511 isotopes.

Sensor-specific model performances vary across sensors with DC

sensors being more difficult to predict than Fairfax sensors on aver-

age, with best Fairfax model F1=89% and best DC model F1=95%.

Finally, in the absence of historical data, we demonstrated how

open data sources can be leveraged to predict next-day industrial

Cs-137 isotope signatures. The best predictive models rely solely

on embedding and topic representations learned from construction

permits yield accuracy of 71% for DC and 59% for Fairfax.

To extend our predictive analytics, we will move from classi-

fication to regression tasks to anticipate the number of alerts (in

addition to predicting whether there will be an alert of a specific

type or not) from each isotope at a specific hour (rather than a day)

across locations up to 24 hours in advance. Given our success using

construction permit data, we plan to investigate additional open

data sources e.g., (a) traffic data between hospitals, construction

sites and sensors, (b) precipitation, temperature and pressure sen-

sor signals, (c) lidar data, and (d) video to incorporate them into

ML models. Finally, we will build visual analytics to allow nuclear

analysts interact with model prediction in real time across locations

and sensors.
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