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ABSTRACT
In multivariate time series (MTS), each time point constitutes multi-
ple time-dependent variables. Short-term and long-term correlation
of these variables is a significant characteristic of MTS, and is a key
challenge while modelling the same. While classical auto-regressive
models are heavily used to model MTS, neural models are more flex-
ible and efficient. However, neural models rely on a large amount
of labelled data for training. Availability of labelled time series
data could be a bottleneck in real-world scenarios. This scarcity
of labelled data can be mitigated by data augmentation. In MTS,
augmentation techniques need to realize short-term correlations
and long-term temporal dynamics. In this work, we introduce a
novel meta-algorithm for time-series data augmentation to address
the data scarcity problem. Due to the intrinsic ordering of samples
in time series, we argue that one cannot simply add synthetic sam-
ples to the real samples for augmentation. To this end, we generate
synthetic MTS data preserving temporal dynamics using an off-
the-shelf generative algorithm and frame augmentation in MTS as
a transfer learning problem. In addition, we point out the draw-
backs of generative model in MTS augmentation. We show the
effectiveness of our method on publicly available MTS datasets in
forecasting. We also perform qualitative and quantitative analysis
of synthetic MTS data and its applicability in long-term forecasting.
To the best of our knowledge, this is the first study on generative
data augmentation for MTS forecasting.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies → Neural networks; • Mathematics of computing →
Time series analysis.
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1 INTRODUCTION
Amultivariate time series(MTS) is a sequence of events measured at
regular time intervals. Multivariate time series analysis is quintes-
sential in forecasting, anomaly detection, and classification [4, 6, 12].
Everyday examples of MTS are the household electricity consump-
tion, the solar-energy plant output, the currency exchange rates, the
stock market prices, etc. In MTS, each time point constitutes mul-
tiple time-dependent variables. Real-world MTS exhibit complex
temporal dynamics at each time point as well as in the short-term
and long-term.

Auto-regressive models have been widely used to model MTS.
But deep learning models are much more efficient and flexible, and
can capture the complex characteristics of real world MTS data.
Deep learning models have shown their capability in learning a
function to accurately map inputs to outputs using a large amount
of labelled data. Availability of labelled data is limited in many
applications and hence, researchers proposed many data augmen-
tation methods [18] to resolve data scarcity issues by increasing
training data size and quality.

A few of the proposed data augmentation techniques attend to
MTS temporal dynamics, which include generative methods such
as [11, 19]. A good MTS generative framework should possess the
following two properties: (a) it should model the distribution of
each time point, and (b) as time evolves, it should capture tempo-
ral correlation of features [19]. Some augmentation methods like
cropping, flipping, and warping may distort long-term temporal
dynamics in task-dependent time series problems like classifica-
tion, forecasting, and anomaly detection. Synthetic series based on
such augmentations may not respect the original feature relation-
ship across time, making it less similar and predictable concerning
original MTS [18]. Time series data follows intrinsic time ordering.
Thus, text and image-based augmentation methods may not work
in the context of MTS. In order to alleviate the time ordering issue,
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transfer learning or fine-tuning is utilized for time-order preserving
data augmentation [14].

In this work, we explore challenges associated with temporal
dynamics-preserving augmentation in MTS forecasting using trans-
fer learning. In line with the transfer learning procedure, we first
train the forecasting model on real MTS (source domain) and use
this pre-trained model as a starting point for synthetic MTS (tar-
get domain). Here, we use LSTNet [8] as a forecasting model ,
and TimeGAN [19] as a temporal dynamics-preserving generative
framework (refer Figure 1). To summarize, we aim to improve the
generalizability of the forecasting model using synthetic data. To
this end, we present a novel and data-efficient meta-algorithm for
augmentation to aid MTS forecasting. Also, we point out draw-
backs of MTS augmentation in generative settings. Additionally,
we perform qualitative and quantitative analysis of synthetic MTS
data and its applicability in long-term forecasting. We believe, this
is the first attempt to explore generative data augmentation in MTS
forecasting.

2 RELATEDWORK
As real-world multivariate time series evolve across time, they man-
ifest complex mechanisms over the short-term and long-term. The
intrinsic temporal dependency allows time-series transformation
into frequency and time-frequency domains. Deep learning-based
models are flexible and efficient in multiple time series tasks [18].
Due to multivariate and time evolution nature, augmentations from
image, text, and speech modalities may yield poor results on dif-
ferent tasks in time series. Therefore, it is crucial to develop deep
learning-based augmentation methods to strengthen training data
size and quality. [7, 18] systematically review multiple task-specific
time series augmentation methods. Specifically, [18] proposed a
taxonomy of augmentation techniques ranging from simple to ad-
vanced approaches. Simple approaches involve time, frequency,
and time-frequency domain augmentation techniques like crop-
ping, warping, flipping, etc. On the other side, advanced methods
include decompositional methods, generative, and learning-based
techniques.

In MTS modelling, three things are crucial: (a) correlation be-
tween multiple variables at a given time step, (b) short-term corre-
lation, and (c) long-term correlation. [5] explored encoder-decoder-
based frameworks along with recurrent and convolutional modules.
[9] demonstrates autoregressive methods for forecasting. LSTNet
[8] proposed a hybrid model consisting of an autoregressive path,
convolutional, and skip-connected recurrent layers. It focused on
the periodic and non-periodic nature of real-world MTS datasets.
TimeGAN [19] is a generative framework, which captures tem-
poral dynamics of data across time. It involves joint training of
supervised and unsupervised objectives via a learned embedding
space. TimeGAN compares its approach with RCGAN [3] and C-
RNN-GAN [13]. Other aspects of time series like data dependence,
temporal modelling, and attention mechanisms are explored by
[10, 15–17]. Although multiple augmentation methods are pro-
posed in the literature, very few of them [1, 19] generate temporal
dynamic-preserving synthetic data.

C. Transfer Learning Phase
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Figure 1: An overview of the proposed framework; based on
TimeGAN [19] and LSTNet [8]. Input S is multivariate time
series where 𝑥0, 𝑥1, 𝑥3 and 𝑥4 are time series instances each
having features 𝑓1, 𝑓2 and 𝑓3. (A)We train an LSTNet model
using source data. (B)TimeGAN is trained using source data
to generate synthetic MTS (target domain). (C) In the trans-
fer learning phase, we use pre-trained LSTNet as an initial
model and fine-tune on target data. (Zoom-in for best view)

3 DATASETS
We used four public benchmark datasets1. Table 1 summarizes the
dataset statistics. Stocks 2: It contains daily historical Google stocks
data from 2004 to 2019. Solar-Energy1: The solar power production
records in the year of 2006 in Alabama State. Electricity1: The
electricity consumption in kWh recorded every 15 minutes from
2012 to 2014, for N = 321 clients. Exchange-Rate1: The collection of
the daily exchange rates of eight countries ranging from 1990 to
2016.

Datasets 𝑁 𝐿

Electricity 321 26,304
Exchange Rate 8 7,588

Stocks 6 3,685
Solar-Energy 137 52,560

Table 1: Dataset Statistics, where 𝑁 is the number of vari-
ables, 𝐿 is the length of the time series

We split all datasets into a training set (60%), validation set (20%)
and test set (20%) in chronological order. Financial datasets such as
Exchange Rate and Stocks are inherently aperiodic and have high
temporal correlations across dimensions, as shown in Figure 4. On
the other hand, Electricity and Solar are more periodic and contain
seasonalities.

4 PROPOSED METHODOLOGY
Figure 1 shows the complete end-to-end pipeline of the proposed
framework. The entire pipeline can be divided into three parts:

• Training LSTNet on original data
• Training TimeGAN to generate synthetic data
• Transfer learning on pretrained LSTNet model using syn-
thetic data

1https://github.com/laiguokun/multivariate-time-series-data
2https://finance.yahoo.com/quote/GOOG/history?p=GOOG

https://github.com/laiguokun/multivariate-time-series-data
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In the first part, we train LSTNet on original data and create
a baseline model for fine-tuning. In line with [8], architecture of
LSTNet is shown in Figure 1A. The LSTNet has two main hyperpa-
rameters, commonly seen in any deep forecasting model, window
size𝑤 and horizon lengthℎ. These two are crucial and need to be set
properly to work in coherence with data augmentation used here
i.e. TimeGAN. The other network parameters are chosen as sug-
gested by the authors. The second part involves training TimeGAN
to generate synthetic samples for the data augmentation process.
We refer [19] for TimeGAN architecture and as shown in Figure
1B. TimeGAN generates synthetic data using subsequences. It uses
the same subsequence for sampling. The most critical parameter
of TimeGAN is the sequence length 𝑠 . The choice of this sequence
length, in this method, depends on the𝑤 and ℎ of LSTNet. Diver-
sity, fidelity and predictive utility are important factors to assess
the quality of synthetic data. In line with [19], we perform this as-
sessment based on two scores; predictive score and discriminative
score, in addition to statistical measures described in Section 6.2.
The training of TimeGAN is done on the same original dataset used
for the creation of the base model.

The final step involves the feeding of the generated samples from
TimeGAN to be utilized by LSTNet. Figure 1C provides details of the
transfer learning procedure. Time series data follows intrinsic time
ordering. Thus, text and image-based augmentation methods may
not work in the context of time series. We employ transfer learning
procedures to alleviate the time ordering issue. A forecasting model
trained on original time series can improve its generalizability once
fine-tuned on synthetic data [14].

5 EXPERIMENTAL SETUP
In this section, we describe the experimental setup for our proposed
methodology in detail. At the end, we present a comprehensive
evaluation and analysis of the proposedmethod. The supplementary
code for the base experiments of LSTNet3[8] and TimeGAN4[19]
provided by the authors are used in this work. Training is performed
using a 60-20-20 train-validation-test split, where the 20% test or
held out set is unseen by both LSTNet and TimeGAN, to ensure
that there is no data leakage.

5.1 Implementation Details
5.1.1 Problem Formulation. The task of multivariate time series
forecasting is carried out in this work. A given time series, repre-
sented by 𝑋 = {𝑥1, 𝑥2, ...., 𝑥𝑇 }, where 𝑥𝑡 ∈ R𝑛 , 𝑇 is the length of
the time series, 𝑛 is the number of time series or dimensions. Fore-
casting is done in a rolling window style, where task is to predict
𝑦 = 𝑥𝑇+ℎ , where ℎ is the desired horizon for the forecast ahead of
the given timestamp, given that {𝑥1, 𝑥2, ...., 𝑥𝑇 } is available, i.e. the
input-output pair is given (𝑋𝑇 , 𝑦) ≡ {(𝑥1, 𝑥2, ...., 𝑥𝑇 ), 𝑥𝑇+ℎ}, where
𝑋𝑇 ∈ R𝑛×𝑇 , is the input matrix and output 𝑦 ∈ R𝑛 .

5.1.2 Preprocessing. Data preprocessing is a crucial step involved
inmodelling time series data. The general practices involve different
normalizations and scaling of the data which are both data and
model-dependent. Since datasets have different variances for each

3https://github.com/fbadine/LSTNet
4https://github.com/jsyoon0823/TimeGAN

column, we chose to normalize the data for each time series in a
dataset. The normalization procedures adopted in LSTNet [8] and
TimeGAN [19] are used and given by Eqn. (1) and (2) respectively:

𝑋𝑖,𝑗 =
𝑋𝑖,𝑗

𝑚𝑎𝑥 (𝑋 𝑗 )
(1)

𝑋𝑖,𝑗 =
𝑋𝑖,𝑗 −𝑚𝑖𝑛 (𝑋 𝑗 )

𝑚𝑎𝑥 (𝑋 𝑗 ) −𝑚𝑖𝑛 (𝑋 𝑗 )
(2)

where 𝑖 is the time step and 𝑗 is a feature index.

5.1.3 Base Model Creation. The LSTNet is a deep learning archi-
tecture designed for the task of multivariate time series forecasting.
The first task in this framework is to create base models on each
dataset, which will act as the baseline for improvement. We train
these base models using a similar procedure described in LSTNet. It
includes normalization given by Eqn. 1. Training hyperparameters
are shown in Table 5, and forecasting parameters are stated in Ta-
ble 6. Early stopping is employed to obtain the best model, which
will serve as a base model for fine-tuning. Base model results are
discussed in results (Section 6).

Dataset Discriminative Score Predictive Score
Exchange Rate 0.2377 0.081

Stocks 0.1834 0.0406
Electricity 0.4999 0.0347

Solar-Energy 0.4626 0.0412
Table 2: Evaluation metrics and results for generated data
fromTimeGAN. Lower Discriminative and Predictive scores
indicate better quality of synthetic data.

5.1.4 Preserving Temporal-dynamics. Temporal dynamics in the
context of MTS is the property of such data having complex interac-
tions across variables and time. It captures short-term and long-term
patterns of the data. Preserving temporal dynamics is critical while
generating synthetic MTS data for augmentation [11, 19]. Genera-
tive models such as TimeGAN [19] ensure that such characteristics
of MTS are preserved. In this work, we generate synthetic MTS
data through TimeGAN and evaluate the temporal dynamics of
synthetic data through various metrics described in Section 6.2.

5.1.5 Generating Synthetic Samples. In this work, data augmen-
tation is incorporated through a generative model TimeGAN [19].
TimeGAN takes in the original sequence and breaks it down to
windows of sequences, similar to LSTNet and randomly permute
them, assuming each window of length 𝑠 is iid. After training, the
outputs are synthetic sequences corresponding to the input window
sequences. The number of sequences in both real and synthetic data
is the same. The quantitative evaluation of the synthetic samples is
done using two metrics, Discriminative score and Predictive score,
as defined by [19]. Synthetic sequences for data augmentation is ob-
tained by training TimGAN on each dataset with sequence lengths
as 𝑤 + ℎ according to Table 6. The rest of the hyperparameters
during training are stated in Table 7. These hyperparameters are
not changed for any dataset and have been used throughout. The
metrics obtained for each dataset upon training are shown in Table
2. We will revisit the impact of these metrics in our final discussion.
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5.1.6 Knowledge Transfer. In this work, we propose to use transfer
learning using generative (model-based) data augmentation using
TimeGAN experimented on LSTNet, but can easily be extended to
any deep forecasting models. The main challenge in this task is to
connect the output of TimeGAN to LSTNet in a transfer learning
framework. We propose the following 2-step approach; Match-
ing Hyperparameters : The synthetic sequences generated from
TimeGAN are sequences corresponding to slidedwindow sequences
of the original time series. Whereas, the inputs to the LSTNet are
slided window sequences extracted from the original time series.
Therefore, to feed TimeGAN generated output to LSTNet, the se-
quence length 𝑠 of TimeGAN must be equal to𝑤 + ℎ of LSTNet so
that, LSTNet can have the input-output pair covered by the syn-
thetic sequence. Fine-Tuning : The base LSTNet model trained on
the original time series contains learnt parameters. When LSTNet is
to be trained using synthetic sequences generated from TimeGAN,
the model is initialized by weights of the base model. Additionally,
freezing the initial convolutional and recurrent layers ensure that
the higher-order information of the time series can be transferred
during augmentation. In this work, we present an extensive ablation
study on how fine-tuning each layer impacts the end performance.
While fine-tuning, there is a huge possibility of overfitting and non-
convergence. Since the dataset size for the base model as well as
the augmented one is the same, hence overfitting on a small dataset
can be safely ruled out. However, the loss can easily overshoot if
proper hyperparameter tuning is not done. Therefore, the obvious
steps include, using an annealing and low learning rate, increasing
regularization by increasing dropout probabilities. The common
modified hyperparameters in this part of the experiment are listed
in Table 8.

6 RESULTS & DISCUSSION
In this section, we present a summary of results obtained by data
augmentation and justify them. We discuss the importance of the
quality of synthetic data and point out the relevant gap in the
literature and possible research direction. We also introduce the
concept of selective data augmentation in the context of MTS data
augmentation.

6.1 Analysis of Data Augmentation
This section discusses the quantitative results obtained and the
evaluation of the proposed methodology. It includes evaluation
metrics like Root Relative Squared Error(RSE), Relative Absolute
Error(RAE), and Empirical Correlation Coefficient(CORR). Table 3
summarizes the results on each dataset under different settings. It
contains results on the base model and the impact of different layers
unfreezing. Data augmentation using our method provides a signif-
icant performance boost of 25.36% on the RSE for Stocks dataset
and 0.05% on the Exchange Rate dataset, evident by the decrease
in RSE and RAE scores. Thus, it indicates that transfer-learning
on synthetic data is helping increase model generalizability. As
the quality of synthetic data generated by TimeGAN for Stocks
and Exchange Rate is good, forecasting accuracy is also improved.
Contrary, performance tends to degrade in the case of Electricity
and Solar-Energy datasets. These datasets have prominent peri-
odic patterns and a large cardinality (refer Figure 4 and Table 4).

TimeGAN is sensitive to periodicity and cardinality. Therefore, as
shown in Table 2, the quality of synthetic data generated for Elec-
tricity and Solar-Energy is not good. We discuss in detail the impact
of the quality of synthetic data in the next section. Another obser-
vation from the results is the contribution of unfreezing more and
more layers has an overall positive impact, as far as the transfer-
learning approach is concerned. It shows that unfreezing all the
layers, except the convolutional layer, helps the model adapt to the
augmented data better. It leads to better generalizability depending
on the quality of synthetic data.

6.2 Synthetic Data Evaluation
In this section, we attempt to analyze the performance from a
synthetic data quality standpoint. We evaluate the synthetic data
generated by TimeGAN through different metrics and point out rele-
vant gaps. Also, we propose a method of selective augmentation for
mitigating quality issues impacting model generalizability. For eval-
uating the quality of synthetic data, we perform an exploratory data
analysis and comparison of real and generated data through various
statistical measures. TimeGAN[19] performs better where datasets
have high temporal correlations and less periodicity. Whereas in
datasets such as Electricity and Solar, TimeGAN seems to struggle
in terms of capturing very long and very short periodic patterns
shown by Figure 5. We perform extensive statistical analysis of
the synthetic data through metrics like KL Divergence, Pairwise
Correlation Difference, Discriminative and Predictive Scores[19].
Figure 6 and 7 show the PCA and t-SNE plots of the real and syn-
thetic data generated by TimeGAN, which qualitatively indicates
that the quality of Stocks and Exchange Rate synthetic data is good,
whereas poor quality is obtained in Solar and Electricity. Table 4
summarizes different metrics computed across all datasets. Also for
further analysis, the probability density functions of generated and
real data are compared in Figure 2. This analysis shows that feature
correlations are difficult to model with increasing dimensionality.
Also, TimeGAN may be suffering from possible mode collapse (Fig-
ure 2). Fig 5 points out that both short and long term patterns are
modeled incorrectly. And as the length of time series increases,
capturing long term correlations gets even more challenging for
TimeGAN. This can be a potential research direction in developing
better generative models that are agnostic to mode-collapse, model
long and short term patterns and correlations, as well as scalable
in terms of cardinality. Some work has been done to address these
issues [11], but the fidelity of such models is yet to be explored in
cases of data augmentation.

6.2.1 Selective Data Augmentation. In this section, we propose a
mitigating strategy to tackle poor quality generated data motivated
by [2].We show the effects of selective augmentation and compare it
against complete augmentation and its effects on the performance
of the model. We deploy a random sampling strategy, where a
fraction of total sequences is used to augment and end performance
is evaluated. Figure 3 shows that if the quality of generated data is
poor, increasing augmentation size degrades the performance. This
implies that imputing poor quality data to the model corrupts its
knowledge base. Hence sampling can become an effective way in
such cases. But, in our case, sampling was random. An informed or
strategic sampling may even provide a boost to the model.



Exploring Generative Data Augmentation in MTS Forecasting : Opportunities and Challenges MileTS ’21, August 14th, 2021, Singapore

Dataset Metrics Strategies
Base Model With FC Layer unfreezed FC+Highway FC+Highway+Skip-GRU Only CNN layer retained

RSE 0.0353 0.0353 0.0351 0.0351 0.0351
Exchange Rate RAE 0.0296 0.0292 0.0290 0.0291 0.0290

CORR 0.9539 0.9538 0.9535 0.9536. 0.9537
RSE 0.7055 0.6601 0.4792 0.457 0.4519

Stocks RAE 0.3177 0.3536 0.2331 0.2112 0.2008
CORR 0.7838 0.8026 0.7917 0.7918 0.7897
RSE 0.1032 0.2157 0.3900 0.1626 0.1107

Electricity RAE 0.0563 0.1301 0.1970 0.0902 0.0611
CORR 0.8985 0.7400 0.6041 0.8684 0.8956
RSE 0.3966 0.5951 0.4257 0.5158 0.5566

Solar-Energy RAE 0.2287 0.4929 0.2783 0.3946 0.4251
CORR 0.9191 0.8829 0.9158 0.917 0.9095

Table 3: Results summary (in RSE, RAE and CORR) of all strategies on four datasets: 1) each row has the results of a specific
dataset in a particular metric across different strategies; 2) each column compares the results of all strategies on a particular
dataset; 3) bold face indicates the best result of each row in a particular metric. Lower RSE and RAE scores correspond to better
performance, whereas higher CORR score corresponds to better performance.

Details Electricity Stocks Exchange
Rate

Solar

Size 26,304 3,685 7,588 52,560
Cardinality 321 6 8 137
Rel. perf. (↑) -1.00% 25.36% 0.05% -10.03%
Disc. score (↓) 0.4999 0.1834 0.2377 0.4626
Pred. score (↓) 0.0347 0.0406 0.0981 0.0412
KLD (↓) 64992.33 6847.39 8256.62 32319.53
PCD (↓) 48.44 1.073 1.397 10.587

Table 4: Different metrics computed across all the datasets
which include Relative performance (Rel. perf), Discrimi-
native Score (Disc. score), Predictive Score(Pred. score), KL
Divergence(KLD), Pairwise correlation differnce(PCD). (↑)
means higher, the better. (↓) means lower, the better.

(a) Electricity (b) Solar

(c) Exchange Rate (d) Stock

Figure 2: Probability density functions of synthetic and real
data (zoom-in for best view)

Figure 3: Comparison of varying augmentation size and per-
formance at each layer for Electricity dataset. Increasing
augmentation size in case of poor quality synthetic data
leads to degradation in performance (zoom-in for visibility).

7 CONCLUSION
This paper presents a novel and data-efficient meta-algorithm for
augmentation to aid MTS forecasting. In this, we explore challenges
associated with temporal dynamics-preserving augmentation. Also,
we perform quantitative and qualitative analysis on synthetic MTS
data and its usability in long-term forecasting. To the best of our
knowledge, this is the first attempt to explore and examine augmen-
tation using GAN generated time-series. The proposed approach
shows improvements on datasets that are aperiodic and have high
temporal correlations. Also, it highlights the shortcomings of gen-
erative modelling of MTS data. Empirically, it is shown that aug-
mentation heavily relies on quality of synthetic data. Consistent
with literature, the utility of synthetic data in long-term forecasting
depends on the ability of such generative models to capture short
and long-term correlations in the time series and across variables.
This can be a potential research direction in developing better gen-
erative models that are agnostic to mode-collapse, model long and
short term patterns and correlations, as well as scalable in terms of
cardinality. Though current work is focused on forecasting task, it
would be interesting to see an extension of the above work to other
time-series tasks such as classification and anomaly detection.
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A HYPERPARAMETERS
The different sets of hyperparameters used in the experimental
setup are shown below. These are very specific to the datasets used
in this paper and need to be tuned according to the dataset under
consideration.

B DATA ANALYSIS
In this, we compare the real and generated data on various parame-
ters. Autocorrelation plots of the real datasets are shown in Figure
4. Figure 5 compares the real and generated data with the help of
autocorrelation plots with lags 1000 and 5000, for both Electricity
and Solar datasets. This figure shows how much of the short and

Hyperparameter Value
Epochs 100

Batch Size 128
Optimizer Adam

Learning Rate 0.001
Table 5: Hyperparameters for Base Model

Dataset 𝑤 ℎ

Electricity 168 24
Exchange Rate 168 12

Stocks 168 12
Solar-Energy 168 12

Table 6: Forecasting parameters for each dataset

Hyperparameter Value
Module GRU

Batch Size 128
Iterations 10000

Hidden Dimensions 24
Number of Layers 3

Table 7: Hyperparameters for training TimeGAN

Hyperparameter Value
Epochs 20

Batch Size 128
Optimizer Adam

LR Scheduler StepLR
Learning Rate 10−5

Table 8: Hyperparameters for Fine-Tuning LSTNet with
TimeGAN generated data

long-term patterns in the data have been modeled by TimeGAN.
Figure 6 and 7 show the PCA and t-SNE plots of real and generated
data and qualitatively indicate how TimeGAN performs across all
datasets.

C EVALUATION METRICS
The various evaluation metrics used in this work include Root
Relative Squared Error(RSE), Relative Absolute Error(RAE), Empir-
ical Correlation Coefficient(CORR), KL Divergence and Pairwise
Correlation Difference(PCD). These are defined as follows:

𝑅𝑆𝐸 =

√∑
(𝑖,𝑡 )∈Ω𝑡𝑒𝑠𝑡 (𝑌𝑖𝑡 − ˆ𝑌𝑖𝑡 )2√∑

(𝑖,𝑡 )∈Ω𝑡𝑒𝑠𝑡 (𝑌𝑖𝑡 −𝑚𝑒𝑎𝑛 (𝑌 ))2
(3)

𝑅𝐴𝐸 =

∑
(𝑖,𝑡 )∈Ω𝑡𝑒𝑠𝑡 (𝑌𝑖𝑡 − ˆ𝑌𝑖𝑡 )∑

(𝑖,𝑡 )∈Ω𝑡𝑒𝑠𝑡 (𝑌𝑖𝑡 −𝑚𝑒𝑎𝑛 (𝑌 )) (4)

𝐶𝑂𝑅𝑅 =
1
𝑛

𝑛∑
𝑖=1

∑
𝑡 (𝑌𝑖𝑡 −𝑚𝑒𝑎𝑛 (𝑌𝑖 )) (𝑌𝑖𝑡 −𝑚𝑒𝑎𝑛 (𝑌𝑖 ))√∑
𝑡 (𝑌𝑖𝑡 −𝑚𝑒𝑎𝑛 (𝑌𝑖 ))2 (𝑌𝑖𝑡 −𝑚𝑒𝑎𝑛 (𝑌𝑖 ))2

(5)

𝐷𝐾𝐿 (𝑃 | |𝑄) =
|𝑣 |∑
𝑖=1

𝑃𝑣 (𝑖)
𝑃𝑣 (𝑖)
𝑄𝑣 (𝑖)

(6)
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(a) Electricity (b) Solar

(c) Exchange Rate (d) Stock

Figure 4: Auto-correlation graphs of sampled variables
(zoom-in for visibility)

(a) Electricity short term (b) Electricity long term

(c) Solar short term (d) Solar long term

Figure 5: Auto-correlation graphs of real and synthetic data
for Electricity and Solar datasets. Figure 5(a) and 5(c) are au-
tocorrelations for lag = 1000, which show short term period-
icity. Figure 5(b) and 5(d) are autocorrelations for lag = 5000,
which show long term periodicity. (zoom-in for visibility)

𝑃𝐶𝐷 (𝑋𝑅 , 𝑋𝑆 ) = ∥𝐶𝑜𝑟𝑟 (𝑋𝑅 ) −𝐶𝑜𝑟𝑟 (𝑋𝑆 ) ∥𝐹 (7)

where, 𝑌,𝑌 ∈ R𝑛×𝑇 are the true and predicted samples respec-
tively. 𝑋𝑅, 𝑋𝑆 are real and synthetic data matrices respectively. 𝑃𝑣
is the pdf of variable 𝑣 of real data and𝑄𝑣 is the pdf of variable 𝑣 of
synthetic data.

RAE and RSE are the scaled version of Relative Absolute Error
and Root Mean Squared Error, used for better interpretation. For
RSE and RAE, a lower score is better, whereas a higher CORR score
is better. KL Divergence (KLD) measures similarity between two

(a) Electricity (b) Solar

(c) Exchange (d) Stock

Figure 6: PCA plots of real and synthetic data. (zoom-in for
visibility)

(a) Electricity (b) Solar

(c) Exchange (d) Stock

Figure 7: t-SNE plots of real and synthetic data. (zoom-in for
visibility)

pdf/pmf, but only computed for each variable independently. How-
ever, it doesn’t capture interactions(dependencies) among variables.
KLD is a variable level metric and lower the distance, closer the syn-
thetic data to the real data. Pairwise Correlation Difference (PCD)
measures correlation among variables. Lower the PCD, the closer
the synthetic data is to real data in terms of linear correlations. PCD
metric is defined at the dataset level.
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