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ABSTRACT
With the proliferation of Electric Vehicles (EVs), the range anxiety
issue, the fear of losing power on the road, has become a concern-
ing problem. To address this issue, we aim to provide an accurate
prediction of the State of Charge (SoC) consumption on the road
and interpretable tips for drivers. However, existing methods have
not considered personal driving styles and environmental factors in
modeling EV dynamics. They are based only on conventional state
estimation or simple regression methods, suffering from low predic-
tion accuracy and limited interpretability. Furthermore, nowork has
tested its models on noisy real-world, large-scale datasets. In this pa-
per, we present a data-driven study of the battery power prediction
problem with both synthetic data generated from a real physical
model and real-world data collected from a transportation company.
First, we design a novel state-space model, Extended Kalman Filter
Network (EKFN), integrating driving behaviors and environmental
factors. EKFN enjoys inference efficiency and timestep-wise inter-
pretability from extended Kalman filter as well as the representation
power from neural networks. Second, we establish an Estimation
Maximization algorithm for learning the EKFN. Experimental re-
sults on the two datasets demonstrate that our model reduces the
mean square error by at least 5% compared to baseline models for
predicting the remaining battery power. Moreover, the local linear
approximation of EKFN provides a way to interpret the significant
factors that affect SoC consumption on the road.
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1 INTRODUCTION
The growth of Electric Vehicles (EVs) starts to change the way that
people transit [6, 19]. The EVs enjoy many advantages over vehicles
powered by internal combustion engines, such as better energy
efficiency, zero-emission, and lower operating cost. However, due
to its limited EV driving range, long charging time, and limited
charging stations, the range anxiety appears, which refers to the
fear of losing power and seeing EVs shut down in the middle of a
long-distance drive. It remains one of the major issues preventing
the widespread adoption of EVs.

A straightforward way to alleviate range anxiety is by accurate
and interpretable prediction of State of Charge (SoC) consumption
on the road, which requires modeling the dynamics of EV battery
status under real-world working conditions. The current emergence
of connected vehicle networks enables the collecting of vast vol-
umes of EV operating data, including battery status, driver profiles,
and environment information. It offers a chance for in-depth anal-
ysis of EV dynamics to assist the driving. For example, given the
current status, a driver could know the total energy consumption
to the desired destination, the energy usage distribution along the
trip, and the factors affecting the battery status.

However, mining real-world, large-scale EV operating data for
accurate and interpretable EV battery dynamics modeling presents
several challenges. First, the real operating status of EVs is gov-
erned by a complicated dynamic system. Most of the existing works
only consider current battery status [4, 5, 7, 21]. However, besides
the EV battery design, the driving style (e.g., drivers’ aggressiveness
and experience) and environmental attributes (e.g., wind, precipita-
tion, and road angle) also matter. Moreover, how these factors con-
tribute to energy consumption is hard to be elucidated by primitive
intuitions or idealized physical models. Second, there is an accu-
racy v.s. interpretability trade-off. Classical state-space models, e.g.,
Kalman Filter (KF) and its extensions [24], are based on a two-stage
prediction-correction approach. Although enjoying fine efficiency
and interpretability, these models cannot handle highly non-linear
dynamics between EV battery status and heterogeneous attributes.
On the other hand, neural networks have excellent representation
power to handle the non-linear mappings of heterogeneous data.
However, the black-box nature limits their interpretability and
hinders their application to battery status prediction. Third, the
ground truth is unavailable for learning a prediction model since
battery status data collection is a noisy measurement process. This
raises the problem of simultaneously identifying the actual system
state and learning the prediction model from noisy observations.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


MileTS ’21, August 14th, 2021, Singapore Dongyue Li, Guangyu Li, Bo Jiang, Zhengping Che, Yan Liu

To overcome these challenges, in this work, we 1) establish a
data-driven model to capture the complicated dynamics of EV bat-
teries under real working conditions and 2) provide an accurate
and interpretable prediction of the SoC consumption considering
both the behavioral and environmental factors. We summarize our
contributions as follows.
• We present a Neural Network (NN)-based Extended Kalman Fil-
ter (EKF) system, Extended Kalman Filter Network (EKFN),
for modeling. EKFN leverages the design principle of EKF and
integrates a NN prediction model into the dynamic system. This
model enjoys both the inference efficiency and interpretability
from EKF and non-linear representation power from NN.
• We design an Expectation Maximization (EM) learning algorithm
that iteratively updates the model parameters and infers actual
states fromnoisy observations.We identify the E-step as extended
Kalman smoothing and the M-step as maximizing the observa-
tion likelihood through stochastic backpropagation. Besides, we
interpret the predictions by taking the linear approximation of
the prediction process to identify affecting factors.
• We evaluate EKFN on battery energy prediction tasks and com-
pare its performance with several competitive baselines. The
experimental results show that EKFN outperforms the baselines
by at least 5% in terms of SoC prediction accuracy on a synthetic
and a real-world dataset. Besides, we provide representative case
studies of the significant factors that affect the SoC consumption
based on the linear approximation interpretation.

2 MODEL DESCRIPTION
In this section, we describe our proposed model and the correspond-
ing tasks. We treat an EV as a discrete-time non-linear dynamical
system, specified by the tuple {X,U, S,Z, f, h}. For a journey with
time horizon T, we describe the notations as follow:
• Vehicle state variable X = {x1, x2, . . . xT} represents the hidden
full information of the EV battery, indicating the true EV status at
each time step, which can hardly be measured exactly in practice.
• Environmental variable U = {u1, u2, . . . , uT−1} represents traf-
fic and trip information during the journeys, e.g., wind speed,
weather, and temperature.
• Driver-specific variable S = {s1, s2, . . . , sT−1} describes driver’s
age, gender, year of driving, and other information related to
his/her driving style.
• Observation variable Z = {z1, z2, . . . , zT} stands for the noisy
observation of the EV battery status at each time step, e.g., noisy
corrupted motor voltage, current, and revolutions per minute.

Model. We model the dynamical system by the proposed Ex-
tended Kalman Filter Network (EKFN), built upon the extended
Kalman filter model and empowered by the neural networks. Fig-
ure 1 illustrates our model. EKFN aims to approximate and recover
the actual dynamical process of an EV motor battery. In EKFN, at
every time step 𝑡 , there is a hidden state x𝑡 representing all the
information of the physical battery system itself. In the dynamical
process of this model, a new hidden state x𝑡+1 is generated from
the last hidden state x𝑡 and modulated by the driving behavior st
and environmental factor u𝑡 . The observation vector z𝑡+1 could
be generated from the new hidden state x𝑡+1 and represent what
we could observe from the battery. These generation processes are

Figure 1: The dynamical process of our proposed model.

denoted as the prediction and the observation process, respec-
tively. These processes could be disturbed by random noises, such
as noises in sensor circuits while observing the batteries’ indicators.

The dynamical process of prediction and observation is governed
by a prediction function f (·) and an observation function h(·) as
follows:

x𝑡+1 = f (x𝑡 , u𝑡 , s𝑡 ) + 𝝎𝑡 (1)
z𝑡 = h(x𝑡 ) + v𝑡 (2)

where x𝑡 , u𝑡 , s𝑡 , z𝑡 are the hidden state vector, the environmental
variables, the driver-specific variables, and the observation at time
𝑡 , repectively. 𝝎𝑡 , v𝑡 are independent zero-mean Gaussian noises
with covariance matrix Q and R, respectively. The driver-specific
variables s𝑡 and environmental variables u𝑡 are addressed as action
data in the following sections. f (·) and h(·) are two non-linear
functions, modeling the prediction and observation processes. In
EKFN, both functions are parameterized by neural networks, e.g.,
multilayer perceptron (MLP).

Tasks. The central task in modeling the EV system is the system
identification task, i.e., understanding how vehicle states evolve in
a journey. Formally, the goal of this task is to learn prediction func-
tion f (·) and observation function h(·) from 𝑛 journeys, in which
each journey contains a set of noisy observation Z, environmental
information U and driver-specific information S.

On the application side, we are interested in predicting the bat-
tery states of an EV. In this paper, we focus on providing an accu-
rate prediction of SoC consumption on the road and interpretable
results for drivers. With that said, once the system is identified,
the system will be applied to the vehicle status prediction task, i.e,
given the initial noisy observation of the vehicle z1 with a planned
journey environments U = {u1, u2, . . . , uT−1} and potential be-
haviors S = {s1, s2, . . . , sT−1}, the model predicts vehicle status
X = {x1, x2, . . . x𝑇 } at each time step along the journey.

3 PARAMETER LEARNING
Before the vehicle status prediction, we need to determine parame-
ters of the functions f (·) and h(·) that control the system dynamics,
i.e., the system identification task. In the task, no ground truth of
vehicle states X is available to learn the functions f (·) and h(·)
parameterized by 𝜃 . To determine the parameters, we aim to learn
model parameters from noisy observation data z1:T and action data
u1:T−1 and s1:T−1. In order to learn the framework, the ultimate
goal of system identification is to maximize the log-likelihood of all
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observations, which is summed along all journeys:

𝜃∗ = argmax
𝜃

∑
J
𝐿 𝑗 (𝜃 ) = argmax

𝜃

∑
J
log 𝑝𝜃 (z

𝑗

1:T) (3)

where 𝑝𝜃 (z
𝑗

1:T) = 𝑝 (z𝑗1:T |x0,U
𝑗 , S𝑗 , 𝜃 ) is the marginal log likelihood

of the observations along one journey 𝑗 , 𝜃 = {f, h,Q,R} and x0
indicates prior distribution of model initial status. In the following
derivation, we leave out journey indexes 𝑗 for brevity. The marginal
log-likelihood distribution 𝑝𝜃 (z1:T) can be obtained by integrating
along all the hidden state x1:T. However, the integration cannot be
analytically solved. Therefore, we aim to maximize the evidence
lower bound (ELBO) 𝐹 (𝑞, 𝜃 ) ≤ 𝐿(𝜃 ) with respect to both 𝑞 and 𝜃 .
Note that here 𝑞 is a hidden distribution of x1:T, and 𝜃 is the original
model parameter set.

We establish an Expectation Maximization (EM) algorithm to
optimize the above object, which is capable of both parameter
learning and state inference. The EM algorithm alternates between
maximizing 𝐹 with respect to distribution 𝑞 (state inference and
denoising) and the parameter 𝜃 (parameter learning).

3.1 E-Step Optimization
Starting from some initial parameters, 𝜃0 and 𝑞0, we alternatively
apply the E-step and the M-step. For the E-step, the optimization
problem aims to maximize the ELBO 𝐹 with respect to the distribu-
tion 𝑞 over hidden states x1:T:

𝑞𝑘+1 ← argmax
𝑞

𝐹 (𝑞, 𝜃𝑘 ) (4)

where the maximum is achieved when 𝑞 is exactly the conditional
distribution by Jensen’s Inequality:

𝑞∗
𝑘+1 (x1:T) = 𝑝 (x1:T |x0, z1:T,U, S,𝜃𝑘 ) (5)

when the lower bound becomes an equality 𝐹 (𝑞∗
𝑘+1, 𝜃𝑘 ) = 𝐿(𝜃𝑘 ).

In our proposed model, the E-step corresponds exactly to solving
the smoothing problem, which estimates the hidden state trajectory
given both the observations inputs and the parameter values. The
method to solve the smoothing problem is identified as Extended
Kalman Smoothing (EKS) [8]. We apply a square root filtering
algorithm [11] to avoid getting the non-positive-definite covariance
matrix in the filtering process. The derivation of EKS and square
root filtering is described in the supplementary material.

3.2 M-Step Optimization
For the M-step, the optimization problem aims to maximize 𝐹 w.r.t.
the parameter set 𝜃 under the fixed hidden distribution 𝑞𝑘+1:

𝜃𝑘+1 ← argmax
𝜃

𝐹 (𝑞𝑘+1, 𝜃 ) (6)

We show that the maximum of the M-step is obtained by maximiz-
ing the expectation of the observation likelihood under the hidden
distribution of the states:

𝜃𝑘+1 = argmax
𝜃
𝐸𝑞∗

𝑘+1
[log𝑝 (z1:T, x1:T |x0,U, S, 𝜃 ) ] (7)

where 𝑞∗
𝑘+1 (x1:T) = 𝑝 (x1:T |x0, z1:T,U, S, 𝜃𝑘 ).

We apply the stochastic backpropagation [22] and ancestral sam-
pling for estimating all these gradients and train the model by Sto-
chastic Gradient Descent (SGD) algorithm. We describe the overall
procedures of the algorithm in Algorithm 1.

Algorithm 1 Learning EKFN with the EM Algorithm
Input: the observation variable z1:T, environmental variable U,

and driver-specific variable S during all the journeys.
1: Initialize model parameters 𝜃 as 𝜃0 and hidden distribution 𝑞

as 𝑞0.
2: while not converged do
3: Obtain 𝑞𝑘+1 (x1:T) through the EKS by Equation (5).
4: Estimate the gradients of the joint likelihood log𝑝 (z1:T, x1:T)

under the hidden distribution 𝑞𝑘+1 in Equation (7).
5: Update 𝜃𝑘+1 by SGD.
6: end while

4 PREDICTION INTERPRETATION
Following the idea of the extended Kalman filtering process, we
interpret the prediction results by linearly approximating the pre-
diction function and emission function in the dynamic process. We
first calculate the Jacobian matrix of prediction and emission func-
tion for the input state x𝑘 at step 𝑘 and multiply them together to
form a linear function of observation z𝑘+1 about action data u𝑘 , s𝑘 .
We then use the weight matrix in the linear function as the local
changing rate for the dynamic process:

𝐹𝑘+1,𝑘 =
𝜕𝑓 (x, u, s)

𝜕x
|x=x𝑘 (8)

𝐻𝑘+1 =
𝜕ℎ(x)
𝜕x
|x=x𝑘+1 (9)

where x𝑘+1 = f (x𝑘 , u𝑘 , s𝑘 ). Thus, we can represent the observation
vector as a linear function of the input action data:

z𝑘 =
𝜕ℎ(x𝑡 )

𝜕𝑓 (x, u, s)
𝜕𝑓 (x, u, s)

𝜕x
[x, u, s] (10)

= 𝐻𝑘+1𝐹𝑘+1,𝑘 [x, u, s] =𝑊𝑘 [x, u, s] (11)

where𝑊𝑘 = 𝐻𝑘+1𝐹𝑘+1,𝑘 and [·] denotes concatenation. If the SoC
variable is the 𝑖−th variable in the observation vector, then the
changing rate of SoC w.r.t. the environmental variable u and driver-
specific variable s is the 𝑖-th row of weight matrix𝑊𝑘 . The factor
corresponding to the largest weight in the 𝑖-th row is the most
significant factor affecting the SoC consumption at time step 𝑘 .

5 EXPERIMENTS
5.1 Experiment Design

Datasets. We evaluate model performance on two datasets, a
Real-World Human Driving Records dataset (RWHDR) and a Vehicle
Energy Synthetic Dataset (VESD). The RWHDR dataset is extensive
EV operating data collected from over 30,000 drivers and 100,000
trips in 50 different cities from a transportation company.1 This
dataset records more than 100 features regarding EV design, driver
profile, and environment information. To the best of our knowledge,
it is the largest dataset in the electric vehicle domain. To test in
various time lengths, we generate three different sets of driving
track data of three different sampling rates: 50s, 100s, and 200s.
Corresponding time lengths of datapoints in each track data are
𝑇 = 20, 15, and 10 (lasting 1000s, 1500s, and 2000s), respectively. We

1All data are anonymized, desensitized, and aggregated.
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Table 1: Test RMSE (lower is better) of prediction results on
the VESD dataset. Full battery is at 100 SoC level.

Models RF MLP LSTM PLSTM

RMSE 1.334 1.201 1.206 1.203

Models VAR KF DMM EKFN

RMSE 1.245 1.679 1.155 1.107

Table 2: Test RMSE (lower is better) of prediction results on
the three generated datasets of the RWHDR dataset.

T-20-Rate-5 T-15-Rate-10 T-10-Rate-20

RF 0.703 1.343 1.907
MLP 0.672 1.255 1.743
LSTM 0.689 1.611 1.784
PLSTM 0.684 1.274 1.750
VAR 0.667 1.244 1.723
KF 1.005 1.349 2.320

DMM 0.684 1.315 1.855

EKFN-I 0.648 1.182 1.810
EKFN-M 0.628 1.231 1.636

denote these three datasets as T-20-Rate-5, T-15-Rate-10, and T-10-
Rate-20 where the first number indicates the number of time steps in
one track datapoint and the second number indicates the sampling
rates. The VESD dataset is a synthetic EV operating dataset based
on a real physical model [27]. We generate 100 battery profiles
with different battery initialization states and collect 3000 data
points of length 𝑇 = 10. A more detailed data description is in the
supplementary material.

Settings. We apply the proposed model to a prediction task. This
task is to predict the delta SoC of each time step. It requires using
initial vehicle state observation data and action data of the whole
track. For example, if using the T-20-Rate-5 data, which means
tracks are of track length 1000s and of sampling rate 50s, the task
is to use state data of first 50s and action data of the whole 1000s to
predict the delta SoC for the rest 19 samples that are records of 950s.
We implement two kinds of EKFN in our experiments: one with
emission function parameterized by an MLP model (EKFN-M) and
one with identical emission (EKFN-I). More detailed experimental
settings are described in the supplement material.

Baselines. We compare our model with Random Forest (RF), Mul-
tilayer Perceptron (MLP), Long-Short Term Memory (LSTM) [9],
Phased LSTM (PLSTM) [20], Vector AutoRegression (VAR), Kalman
Filter (KF), and Deep Markov Models (DMM) [15]. To ensure a fair
comparison, we use roughly the same amount of parameters for all
models. Meanwhile, train/valid/test sets were split as 60/10/30, we
chose the best models based on the performance on the validation
set, and we reported the average Root Mean Squared Error (RMSE)
on the held-out test dataset of three random seeds.

1
23

4

5
6

7

8

9

A

B

C

Wind direction5

Wind speed6

Wind speed9

Wind speed8

Wind speed7

Temperature 1

Cloud rate2

wind_directionCloud rate4

Cloud rate3

Wind directionC

Cloud rateB

Wind speedA

Wind direction5

Temperature 6

PM 2.59

Wind direction8

Wind direction7

Wind direction1

Cloud rate2

wind_directionWind speed4

Wind speed3

Cloud rateB

Wind directionA

1

2

3

4

5

6

7

8

9

A

B

Figure 2: Two sampled driving trajectories. Driving trajec-
tories in various colors indicate the expected SoC drop in a
fixed time length. Dark red indicates a severe SoC drop and
light green indicates a moderate SoC drop. Environmental
factors affecting SoC changemost significantly at every time
step are labeled to the corresponding trajectory.

5.2 Quantitative Results
Table 1 shows the RMSE results on the VESD dataset. Table 2 shows
prediction results on generated T-20-Rate-5, T-15-Rate-10, and T-
10-Rate-20 datasets. Our model beats baseline models by at least
5% on all four datasets with all features. Comparing two different
implementations, EKFN-I performs better than EKFN-M on the
dataset of sampling rate 10s. EFKN-M outperforms EKFN-I on the
dataset of sampling rates 5s and 20s. In all our experiments, both
implementations of our proposed model outperform other models
by a significant margin. The denoising ability of the generative
model on the EV driving dataset, especially our proposed EKFN,
helps improves upon regression models. Moreover, the implemen-
tation of neural network emission of our proposed model, EKFN-M,
captures data distribution of longer time better than EKFN-I which
is with identical emission.

5.3 Interpretation Cases
To illustrate the interpretability of our proposed model, we conduct
case studies on samples from the RWHDR dataset and identify the
primary factor that affects SoC to drop with the interpretation
method in Section 4. By taking the local linear approximation of
the prediction function, we can obtain a linear model for delta
SoC at every time step. Since all the data are normalized to the
same scale, the linear model shows which factors influence current
SoC consumption to the most significant extend. First, as expected,
speed is the most crucial factor influencing the SoC drop most of the
time. This finding aligns with the common knowledge that driving
fast can lead to more energy costs. Besides, we also demonstrate
the environmental factor affecting the SoC change in real driving
trajectories in Figure 2. We show the delta SoC at each time step
on the track by colors. Darker red indicates the SoC drop is severe,
and green indicates the driving is energy-efficient. Besides, we
label each track with its most significant environmental factor
causing SoC consumption. Given this information, drivers can know
what affects their SoC consumption and make the corresponding
route or driving action changes to control their SoC drop. More
interpretation cases are shown in the supplementary material.
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6 CONCLUSIONS AND FUTUREWORK
We propose EKFN, a novel state-space model that parametrizes
the extended Kalman filter model with neural networks for EV
SoC prediction. Extensive experiments show that this model beat
other baselines by at least 5%. Local linear representation of the pro-
posed model provides an interpretable way to explain predictions
at each time step. We visualize the significant factors affecting SoC
consumption based on this interpretation on maps. Future work
will focus on predicting attainable destinations and illustrating the
predicted range with real-time traffic data.
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A RELATEDWORK
The battery prediction problem arises from the growth of EVs. on
one side of existing works, previous works [1, 14, 25] aim to solve
the prediction problem through vehicle state and parameter esti-
mation. Conventional methods start from analyzing and designing
physical models of battery [10, 17, 26]. Most works in state es-
timation build dynamics systems trough Kalman Filter (KF) and
Extended Kalman Filter (EKF) [25], Gaussian Process (GP) [14],
First-order Markov model [1], GP-Bayes Filters [13], and Particle
Filters [16]. Among them, KF is the most frequently favored by
researchers, and non-linear modeling of the state prediction and
the observation emission is crucial for estimating vehicle state.
However, the applications of these methods to battery prediction
problem mostly only consider battery or vehicle model. They do
not take driver behavior or road environmental conditions into con-
sideration. Furthermore, their non-linear functions always depend
on hand-designed functions and cannot handle complex relation-
ships among real data features. Remedies for both issues have been
elaborated by our method.

Neural network (NN)-based models emerge as a powerful tool
to learn the non-linear dynamics among features and has shown
their representation ability in various tasks, such as image classifi-
cation, function approximation, and data processing. Another line
of existing works treats the battery prediction problem through
data mining approaches [18]. They mostly directly apply existing
prediction models and address the prediction task as a simple re-
gression problem [4, 5, 7, 21]. Nevertheless, they have not provided
unique designs for EV battery systems. Their results are hard to be
interpreted due to the black-box nature of these models. Moreover,
none of the existing works has been tested in a large dataset to our
best knowledge. Therefore, in this work, our method contributes
by taking advantage of neural networks and extended Kalman filter
and building a personalized and environmental-aware system for
the EV battery system.

B ALGORITHM DERIVATION
B.1 The Evidence Lower Bound
The derivation of the evidence lower bound (ELBO) is shown as
follows.

𝐿 (𝜃 ) = log𝑝 (z1:𝑇 |x0, u1:𝑇−1, 𝜃 )

= log
∫
x1:𝑇

𝑝 (z1:𝑇 , x1:𝑇 |x0, u1:𝑇−1, 𝜃 )𝑑x1:𝑇

= log
∫
x1:𝑇

𝑞 (x1:𝑇 )
𝑝 (z1:𝑇 , x1:𝑇 |x0, u1:𝑇−1, 𝜃 )

𝑞 (x1:𝑇 )
𝑑x1:𝑇

≥
∫
x1:𝑇

𝑞 (x1:𝑇 ) log
𝑝 (z1:𝑇 , x1:𝑇 |x0, u1:𝑇−1, 𝜃 )

𝑞 (x1:𝑇 )
𝑑x1:𝑇

=

∫
x1:𝑇

𝑞 (x1:𝑇 ) log𝑝 (z1:𝑇 , x1:𝑇 |x0, u1:𝑇−1, 𝜃 )𝑑x1:𝑇

−
∫
x1:𝑇

𝑞 (x1:𝑇 ) log𝑞 (x1:𝑇 )𝑑x1:𝑇

= 𝐹 (𝑞, 𝜃 )

B.2 Implementation of Extended Kalman
Smoothing

We apply a square root filtering algorithm [11] to overcome the
issue of non-positive definite of the covariance matrix. In the square
root filter, the key idea is to represent every positive semi-definite
symmetric matrix by the product of a lower triangular matrix and
its transpose. Here we define:

P𝑘 = S𝑘S
𝑇
𝑘

(12)

P−
𝑘
= S−

𝑘
S−𝑇𝐾 (13)

Q = UU𝑇 (14)
R = VV𝑇 (15)

where Q and R indicate covariance matrices of Gaussian noise
in transition and emission process. P𝑘 and P−

𝑘
denote covariance

matrices of posterior state estimation and prior state estimation at
time 𝑘 . For the Extended Kalman Filter model, we take the local
linear for filtering:

F𝑘+1,𝑘 =
𝜕𝑓 (x,u,s)

𝜕x |x=x𝑘 (16)

H𝑘 =
𝜕ℎ (x𝑡 )
𝜕x |x=x−𝑘 (17)

where x𝑘 denotes the posterior estimation of x at time 𝑘 , and x−
𝑘

indicate prior estimation. Based on the local linear approximation,
we can also interpret time-step change through the linear surrogate
model. The square root filtering algorithm is to update the following
steps from time 𝑡 = 1 to 𝑡 = T:

(1) Time Update

x−
𝑘
= 𝑓 (x𝑘−1, u𝑘−1, s) (18)

P−
𝑘
= F𝑘,𝑘−1P𝑘−1F𝑇𝑘,𝐾−1 + Q (19)

S−
𝑘
= P

1
2
𝑘

(20)

(2) Measurement Update

B𝑘 = S−𝑇
𝑘

H𝑇
𝑘

(21)

G𝑘 = [R + B𝑇
𝑘
B𝑘 ]

1
2 (22)

S𝑘 = S−
𝑘
− S−

𝑘
B𝐾G−𝑇𝑘 (G𝑘 + V)

−1B𝑇
𝑘

(23)

x𝑘 = x−
𝑘
+ S−

𝑘
B𝑘G−𝑇𝑘 G−1

𝑘
(z𝑘 − ℎ(x−𝑘 )) (24)

where 𝐴
1
2 indicates Cholesky decomposition where 𝐴 is a positive

semi-definite matrix.

B.3 M-Step Expectation Estimation
In practice, we optimize the single sample Monte Carlo estimate of
this expectation:

log𝑝 (z1:𝑇 , x1:𝑇 |x0, u1:𝑇−1, 𝜃 ) (25)
= log𝑝 (z1:𝑇 |x1:𝑇 , 𝜃 )𝑝 (x1:𝑇 |x0, u1:𝑇−1, 𝜃 ) (26)

= log
𝑇∏
𝑡=1

𝑝 (z𝑡 |x𝑡 , 𝜃 )
𝑇∏
𝑡=1

𝑝 (x𝑡 |x𝑡−1, u𝑡−1, 𝜃 ) (27)

=

𝑇∑
𝑡=1

log𝑝 (z𝑡 |x𝑡 , 𝜃 ) +
𝑇∑
𝑡=1

𝑝 (x𝑡 |x𝑡−1, u𝑡−1, 𝜃 ) (28)
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C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Ablation Studies

Table 3: Test RMSE (lower is better) of prediction results
with four ablation settings onT-20-Rate-5,T-15-Rate-10, and
T-10-Rate-20.

T-20-Rate-5 MLP EKFN-M EKFN-I

w.-env-w.-bev 0.672 0.629 0.648
w.-env-w.o.-bev 0.682 0.637 0.671
w.o.-env-w.-bev 0.688 0.633 0.637
w.o.-env-w.o.-bev 0.711 0.636 0.680

T-15-Rate-10 MLP EKFN-M EKFN-I

w.-env-w.-bev 1.255 1.231 1.182
w.-env-w.o.-bev 1.268 1.247 1.218
w.o.-env-w.-bev 1.258 1.235 1.194
w.o.-env-w.o.-bev 1.274 1.255 1.231

T-10-Rate-20 MLP EKFN-M EKFN-I

w.-env-w.-bev 1.743 1.636 1.810
w.-env-w.o.-bev 1.800 1.711 1.882
w.o.-env-w.-bev 1.754 1.667 1.830
w.o.-env-w.o.-bev 1.802 1.709 1.879

We further conduct ablation studies to discover the effects of
environmental factors and driver behavior factors in the prediction
tasks.We compare the performance of our model given four types of
data: with or without environmental information and with or with-
out driver behavior information. We denote these four settings as
w.-env-w.-bev, w.-env-w.o.-bev, w.o.-env-w.-bev, and w.o.-env-w.o.-bev
where env, bev, w. w.o. are short for environment, driver behavior,
with, and without, respectively. Note that the observation data from
the battery itself remains the same in these settings.

Table 3 shows prediction results with the four settings on the
generated T-20-Rate-5, T-15-Rate-10, and T-10-Rate-20 dataset from
the RWHDR dataset. We compare with the MLP model as a base-
line, which shows our model still outperforms it on all settings.
Comparing four data settings in one dataset, models perform the
best on the dataset in w.-env-w.-bev setting, which shows that both
environmental and behavioral types of data have contributed to the
prediction task. Moreover, models performs better in w.o.-env-w.-
bev setting than w.-env-w.o.-bev setting. Models have the highest
error on the dataset with no action data. Error decreases more by
adding driver behavior data than adding environment behavior data.
Driver behavior information offers more important information for
SoC consumption than environmental information.

C.2 More Inpterpretation Cases
We show more selected intepretation cases in Figure 3.

D EXPERIMENT DETAILS
D.1 Detailed Description of The Datasets

Vehicle Energy Synthetic Data (VESD). The VESD dataset is a
synthetic EV operating dataset based on a real physical model [27],
containing the records of battery parameters including battery

voltages, internal resistance, and capacity. We consider the effects
of environmental and behavioral factors on the road in data syn-
thesizing [21], e.g., road friction factor, aerodynamic factor, and
acceleration rate. We generate 100 battery profiles with different
battery initialization states and collect 3000 data points of length
𝑇 = 10.

We generate a set of EV operating data based on a real physical
model from [27], containing the records of battery parameters,
including battery voltages, internal resistance, and capacity. The
model of the battery is described by the relationships between
currents and voltages measured inside the battery. This model can
be described as follows:
• The circuit battery voltage 𝑉𝑡 which is composed of an aver-
age equilibrium potential 𝑉𝑒 , a hysteresis voltage 𝑉ℎ , and other
voltages on resistances and capacitances;
• Internal resistance 𝑅𝑖 consisting of the Ohmic resistance 𝑅0 and
the polarization resistances, 𝑅𝑝𝑎 and 𝑅𝑝𝑐 . 𝑅𝑝𝑎 represents effec-
tive resistance characterizing activation polarization and 𝑅𝑝𝑐
represents the effective resistance characterizing concentration
polarization;
• effective capacitances 𝐶𝑝𝑎 and 𝐶𝑝𝑐 , which are used to describe
the activation polarization and concentration polarization, and
used to characterize the transient response of the battery.

The discrete system for the circuit model of a battery could be
expressed as follows. Timestamp subscripts are added to indicate
the time-dependent variables.

𝑉𝑘𝑝𝑎 = 𝑉𝑘−1𝑝𝑎 exp(−Δ𝑡/𝑅𝑝𝑎𝐶𝑝𝑎)
+𝐼𝑅𝑝𝑎 (1 − exp(−Δ/𝑅𝑝𝑎𝐶𝑝𝑎))

𝑉𝑘𝑝𝑐 = 𝑉𝑘−1𝑝𝑐 exp(−Δ𝑡/𝑅𝑝𝑐𝐶𝑝𝑐 )
+𝐼𝑅𝑝𝑐 (1 − exp(−Δ/𝑅𝑝𝑐𝐶𝑝𝑐 ))

𝑉𝑘
ℎ

= 𝑉𝑘−1
ℎ

exp(−𝛼Δ𝑡) − (1 − exp(−𝛼Δ𝑡))𝑉ℎ,max

𝑉𝑘𝑡 = 𝑉𝑒 (𝑠𝑘 ) − 𝐼𝑅0 −𝑉𝑘𝑝𝑎 −𝑉𝑘𝑝𝑐 +𝑉𝑘ℎ
𝑠𝑘 = 𝑠𝑘−1 − 𝜂𝑖 (𝐼 )Δ𝑡/𝐶𝑁

where 𝑠𝑘 represents the SoC value, 𝐼 denotes the current through
the battery, 𝑉ℎ,max represents the maximum hysteresis voltage of
the battery, 𝛼 is the hysteresis coefficient, and𝜂𝑖 stands for columbic
efficiency. Note that we fix the {𝑅𝑝𝑐 , 𝑅𝑝𝑎,𝐶𝑝𝑎,𝐶𝑝𝑐 } which describes
the characteristics of the battey as constants taken from the paper
and set current 𝐼 = 30𝐴. We generate these state variables in time
interval Δ𝑡 = 0.1𝑠 . the equilibrium potential𝑉𝑒 is a function of SOC
which is determined as 𝑉𝑒 = 5.2𝑠4 − 0.86𝑠3 − 12𝑠2 + 15𝑠 + 59.

We also consider the effects of environmental and behavioral
factors on the road in the data synthesizing processes, such as road
friction factor, aerodynamic factor, acceleration rate, and others [21].
In this paper, the energy cost of the EV is modeled by the power
demand:

𝑠𝑘 = 𝑠𝑘−1 − 𝑃𝑒𝑛𝑔Δ𝑡 (29)
𝑃𝑒𝑛𝑔 = 𝐹𝑒𝑛𝑔 ∗ 𝑣 (30)
𝐹𝑒𝑛𝑔 = 𝐹𝑎𝑐𝑐 + 𝐹𝑓 + 𝐹𝑎𝑖𝑟 + 𝐹𝑔 (31)

where The engine power demand, 𝑃𝑒𝑛𝑔 , is a function of veloc-
ity and acceleration, 𝐹𝑒𝑛𝑔 is the force produced by the engine re-
quired to overcome forces acting on the vehicle at a given speed 𝑣 .
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Figure 3: Four sampled driving trajectories. Driving trajectories in various colors indicate the expected SoC drop in a fixed time
length. Dark red indicates a severe SoC drop and light green indicates a moderate SoC drop. Environmental factors affecting
SoC change most significantly at every time step are labeled to the corresponding trajectory.

{𝐹𝑎𝑐𝑐 , 𝐹𝑓 , 𝐹𝑎𝑖𝑟 , 𝐹𝑔} are the forces decomposed into components due
to acceleration, friction, air resistance and gravitation. The forces
are determined by the environment and driver operations described
as follows:

𝐹𝑎𝑐𝑐 =𝑚𝑎 (32)
𝐹𝑓 = 𝑐𝑟𝑟𝑚𝑔 (33)

𝐹𝑎𝑖𝑟 =
1
2
𝑐𝑑𝐴𝑓 𝜌𝑣

2 (34)

𝐹𝑔 =𝑚𝑔 sin(𝜃 ) (35)

where {𝑚,𝑔,𝐴𝑓 , } represents vehicle mass, gravity coefficient, and
frontal area of the carwhich are considered as constant, {𝑣, 𝑎, 𝑐𝑟𝑟 , 𝑐𝑑 , 𝜌, 𝜃 }
denotes the velocity, the acceleration rate of the vehicle, rolling
friction coefficient, aerodynamic drag coefficient, air density and
the slope of the road, which are taken as environmental and driver-
specific factors in the EV dynamic process. These factors are sam-
pled from a reasonable normal distribution at each time step to
affect the SoC value.

The overall SoC is affected by the battery model and these factors
together: 𝑠𝑘 = 𝑠𝑘−1 − 𝜂𝑖 (𝐼 )Δ𝑡/𝐶𝑁 − −𝜆𝑃𝑒𝑛𝑔Δ𝑡 where 𝜆 is the ratio
of contribution of other factors outside the battery. We generate
100 times battery profiles with different battery initialization state
and collect 3000 datapoints of length 𝑇 = 10.

Real-World Human Driving Records (RWHDR) . The RWHDR
dataset is a real-world, large-scale human driving dataset of EVs
collected from a transportation company. This dataset contains
33311 EV driving records of different drivers in over 50 cities. Each
EV driving record is multidimensional time series data collected in
a frequency of 0.1Hz (sample once every 10 seconds) with recording
time length varying from 100 seconds to over 8000 seconds. We
choose 32940 records that are recorded for at least 1000 seconds. All
data are anonymized, desensitized, and aggregated. After attaching
correspondingweather information, vehicle information, and driver
information, each recording contains data of four major sources
including vehicle sensor data, driving control signals (such as speed),
driver information (such as driver age), and weather information
(such as temperature). Furthermore, All data is collected in the form
of GB/T-32960 international standard. To test model prediction
ability in various time lengths, we generate three different sets of
driving track data of different sampling rates. Three sets of training

data have sampling rates of 50s, 100s, and 200s. Corresponding
time lengths of datapoints in each track data are 𝑇 = 20, 15, and
10 (lasting 1000s, 1500s, and 2000s), respectively. We denote these
three generated datasets as T-20-Rate-5, T-15-Rate-10, and T-10-Rate-
20 where the first number indicates the number of time steps in one
track datapoint and the second number indicates the sampling rates
of samples. In these datasets, we notice that there are 68% sharp
changes of delta SoC from 0 to 1 at one time step in T-20-Rate-5,
50% sharp changes in T-15-Rate-10, and 22% in T-10-Rate-20. Delta
SoC variances is 0.7159 in T-20-Rate-5, 1.4001 in T-15-Rate-10, and
3.1331 in T-10-Rate-20.

We separate data into three parts for our model implementation:
(1) State Data: state data contains continuous feature data from
vehicle sensor and is used as observation in model implementa-
tion. Sensor data includes motor and motor controller temperature,
motor voltage, current, resistance, motor npm and rmp, etc. (2)
Action Data: action data contains continuous feature data from en-
vironment and driver behavior. Environment information involves
humidity, cloud rate, temperature, wind direction, wind speed, and
pm2.5. Driver behavior data includes driver control information
(speed, brake, and acceleration) and driver personal information
(driver age, license year, and driver gender). (3) Delta SoC: delta
SoC is SoC (State of Charge) change at each time step.

D.2 Implementation Details
We implement two kinds of models for our proposed model: one
with emission function parameterized by a neural network, EKFN-
M, and one with identical emission, EKFN-I. We parameterize the
transition network by a 3-layer MLP with ReLU activations on the
hidden layer and linear activations on the output layer for both
implementations. For the emission network of EKFN, we param-
eterize it by a 3-layer MLP with the same structure as the tran-
sition network. Moreover, we use RandomForestRegressor from
sklearn [2] in python for random forest implementation. We use
stats-toolbox [23] in python for the VAR implementation. For
Kalman filter implementation, we use pykalman [3] in python. For
the neural network model, we use 3-layer MLP with the same struc-
ture as the transition network. For LSTM and PLSTMmodel, we use
one layer with 128 neurons to model the time-series and then apply
a soft-max regressor on top of the last hidden state to do regression.
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As for DMM, we use the same network structure proposed in [15].
To perform the prediction task mentioned above, we use the final
outputs of predicted state data and given action data to get the next
predicted state data for regression models. For generative models,
we use a prediction method that the models already have to make
the prediction. To ensure a fair comparison, we use roughly the
same amount of parameters for all models. For experiments on

the described dataset, train/valid/test sets were split as 60/10/30,
and we report the average Mean Squared Error (MSE) on the test
dataset. Note that we train all the deep learning models with the
Adam optimization method [12] and use a validation set to find
the best weights and report the results on the held-out test set. All
the input variables are normalized to be of 0 mean and 1 standard
deviation.
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