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ABSTRACT
Spatiotemporal traffic time series (e.g., traffic volume/speed) col-
lected from sensing systems are often incomplete with considerable
corruption and large amounts of missing values, preventing users
from harnessing the full power of the data. Missing data imputation
has been a long-standing research topic and critical application
for real-world intelligent transportation systems. A widely applied
imputation method is low-rank matrix/tensor completion; however,
the low-rank assumption only preserves the global structure while
ignores the strong local consistency in spatiotemporal data. In this
paper, we propose a low-rank autoregressive tensor completion
(LATC) framework by introducing temporal variation as a new reg-
ularization term into the completion of a third-order (sensor × time
of day × day) tensor. The third-order tensor structure allows us
to better capture the global consistency of traffic data, such as the
inherent seasonality and day-to-day similarity. To achieve local
consistency, we design the temporal variation by imposing an au-
toregressivemodel for each time series with coefficients as learnable
parameters. Different from previous spatial and temporal regular-
ization schemes, the minimization of temporal variation can better
characterize temporal generative mechanisms beyond local smooth-
ness, allowing us to deal with more challenging scenarios such as
“blackout" missing. To solve the optimization problem in LATC,
we introduce an alternating minimization scheme that estimates
the low-rank tensor and autoregressive coefficients iteratively. We
conduct extensive numerical experiments on several real-world
traffic data sets, and our results demonstrate the effectiveness of
LATC in diverse missing scenarios.
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1 INTRODUCTION
Spatiotemporal traffic data collected from various sensing systems
(e.g. loop detectors and floating cars) serve as the foundation to a
wide range of applications and decision-making processes in intelli-
gent transportation systems. The emerging “big” data is often large-
scale, high-dimensional, and incomplete, posing new challenges
to modeling spatiotemporal traffic data. Missing data imputation
is one of the most important research questions in spatiotemporal
data analysis, since accurate and reliable imputation can help vari-
ous downstream applications such as traffic forecasting and traffic
control/management.

The key to missing data imputation is to efficiently characterize
and leverage the complex correlations across both spatial and tem-
poral dimensions [1]. Specifically, traffic state data (e.g., speed and
flow) is individual sensor-based with a fixed temporal resolution.
This allows us to summarize spatiotemporal traffic state data in the
form of matrix (e.g., sensor × time) or tensor (e.g., sensor × time of
day × day) [2], and low-rank matrix/tensor completion becomes
a natural solution to solve the imputation problem. Over the past
decade, extensive effort has been made on developing low-rank
models through principle component analysis, matrix/tensor factor-
ization (with predefined rank) and nuclear norm minimization (see
e.g., [2, 4, 6]). However, the default low-rank structure (e.g., nuclear
norm) purely relies on the algebraic property of the data, which is
invariant to permutation in the spatial and temporal dimensions.
In other words, with the low-rank assumption alone, we essentially
overlook the strong “local” spatial and temporal consistency in the
data. To this end, some recent studies have tried to encode such “lo-
cal” consistency by introducing total/quadratic variation and graph
regularization as a “smoothness” prior into low-rank factorization
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models [1, 7, 9, 10] and imposing time series dynamics on the tempo-
ral latent factor in the factorization framework [3, 8, 11]. However,
these studies essentially adopt a bilinear/multilinear factorization
model, which requires a predefined rank as a hyperparameter.

In this paper, we propose a low-rank autoregressive tensor com-
pletion (LATC) framework to impute missing values in spatiotempo-
ral traffic data. For each completed time series, we define temporal
variation as the accumulated sum of autoregressive errors. Tomodel
the low-rankness property, we use truncated nuclear norm [5] as
an effective approximation to avoid the rank determination prob-
lem in factorization models. The final objective function of LATC
consists of two components, i.e., the truncated nuclear norm of
the completed tensor and the temporal variation defined on the
unfolded time series matrix. The combination allows us to effec-
tively characterize both global patterns and local consistency in
spatiotemporal traffic data. The overall contribution of this work is
twofold:

1) We integrate the autoregressive time series process into a
low-rank tensor completion model to capture both global
and local trends in spatiotemporal traffic data.

2) We conduct extensive numerical experiments on four traf-
fic data sets. Imputation results show the superiority and
advantage of LATC over recent state-of-the-art models.

2 METHODOLOGY
To ensure both global consistency and local consistency, LATC
framework takes into account both low-rank tensor completion
and autoregressive process. For any partially observed data matrix
𝒀 ∈ R𝑀×(𝐼 𝐽 ) consisting of𝑀 spatial sensors, 𝐼 time points per day,
and 𝐽 days in spatiotemporal setting, the minimization problem
can be formulated as follows,

min
X,𝒁 ,𝑨

∥X∥𝑟,∗ +
𝜆

2
∥𝒁 ∥𝑨,H

s.t.
{

X = Q (𝒁 ) ,
PΩ (𝒁 ) = PΩ (𝒀 ),

(1)

where PΩ (·) denotes the orthogonal projection supported on the
observed set Ω, which holds the following definition for the element
𝑦𝑚,𝑛,∀(𝑚,𝑛) from 𝒀 :

[PΩ (𝒀 )]𝑚,𝑛 =

{
𝑦𝑚,𝑛, if (𝑚,𝑛) ∈ Ω,
0, otherwise.

In this model, by defining the forward tensorization operator
Q(·), it is possible to generate a third-order tensor as X = Q(𝒁 ) ∈
R𝑀×𝐼×𝐽 . In contrast, the resulted tensor can also be converted into
the original matrix by 𝒁 = Q−1 (X) ∈ R𝑀×(𝐼 𝐽 ) where Q−1 (·)
denotes the inverse operator of Q(·). Relying on these definitions,
there are two critical components in the objective:

• Truncated nuclear norm ∥X∥𝑟,∗ (𝑟 denotes the integer-wise
truncation) on the tensor X serves as the fundamentals of
the whole model for capturing global low-rank patterns and
imputing missing values, and it takes the form:

∥X∥𝑟,∗ =
3∑

ℎ=1
𝛼ℎ ∥X (ℎ) ∥𝑟,∗ (2)

for X ∈ R𝑀×𝐼×𝐽 with
∑3
ℎ=1 𝛼ℎ = 1.

• Temporal variation of a time series matrix 𝒁 with a coeffi-
cient matrix 𝑨 ∈ R𝑀×𝑑 and a time lag setH = {ℎ1, · · · , ℎ𝑑 }
is defined as:

∥𝒁 ∥𝑨,H =
∑
𝑚,𝑡

(𝑧𝑚,𝑡 −
∑
𝑖

𝑎𝑚,𝑖𝑧𝑚,𝑡−ℎ𝑖 )
2, (3)

which quantifies the total squared errors when fitting each
time series 𝒛𝑚 ∈ R𝐼 𝐽 through an individual aoturegressive
model with coefficient 𝒂𝑚 ∈ R𝑑 . In the objective, 𝜆 is a
weight parameter which controls the trade-off between trun-
cated nuclear norm and temporal variation.

As mentioned above, the formulation of LATC can ensure both
global consistency and local consistency by combining truncated
nuclear norm minimization with temporal variation minimization.
Fig. 1 shows that 𝒀 can be reconstructed with both low-rank pat-
terns and time series dynamics because the constraint in the opti-
mization problem, i.e., X = Q(𝒁 ), is closely related to the partially
observed matrix 𝒀 .

3 EXPERIMENTS
In this section, we evaluate the proposed LATC model on several
real-world traffic data sets with different missing patterns.

3.1 Traffic Data Sets
We use the following spatiotemporal traffic sets for our experiments.

• (G): Guangzhou urban traffic speed data set.1 This data set
contains traffic speed collected from 214 road segments over
two months (from August 1 to September 30, 2016) with
a 10-minute resolution (i.e., 144 time intervals per day) in
Guangzhou, China. The prepared data is of size 214 × 8784
in the form of multivariate time series matrix (or tensor of
size 214 × 144 × 61).

• (H): Hangzhou metro passenger flow data set.2 This data
set provides incoming passenger flow of 80 metro stations
over 25 days (from January 1 to January 25, 2019) with a
10-minute resolution in Hangzhou, China. We discard the in-
terval 0:00 a.m. 6:00 a.m. with no services, and only consider
the remaining 108 time intervals of a day. The prepared data
is of size 80× 2700 in the form of multivariate time series (or
tensor of size 80 × 108 × 25).

• (S): Seattle freeway traffic speed data set.3 This data set
contains freeway traffic speed from 323 loop detectors with
a 5-minute resolution (i.e., 288 time intervals per day) over
the first four weeks of January, 2015 in Seattle, USA. The
prepared data is of size 323×8064 in the form of multivariate
time series (or tensor of size 323 × 288 × 28).

• (P): Portland highway traffic volume data set.4 This data
set is collected from highways in the Portland-Vancouver
Metropolitan region, which contains traffic volume from
1156 loop detectors with a 15-minute resolution (i.e., 96 time
intervals per day) in January, 2021. The prepared data is of
size 1156×2976 in the form of multivariate time series matrix
(or tensor of size 1156 × 96 × 31).

1https://doi.org/10.5281/zenodo.1205229
2https://tianchi.aliyun.com/competition/entrance/231708/information
3https://github.com/zhiyongc/Seattle-Loop-Data
4https://portal.its.pdx.edu/home
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Figure 1: Illustration of the proposed LATC framework for spatiotemporal traffic data imputation with time lags H = {1, 2}.
Each time series 𝒚𝑚,∀𝑚 ∈ {1, 2, . . . , 𝑀} is modeled by the autoregressive coefficients {𝑎𝑚1, 𝑎𝑚2}.

3.2 Missing Data Generation
In this work, we take into account three missing data patterns as
shown in Fig. 2, i.e., random missing (RM), non-random missing
(NM), and blackout missing (BM). RM and NM data are generated
by referring to the existing work [2]. According to the mechanism
of RM and NM data, we mask certain amount of observations as
missing values (e.g., 30%, 70%, 90%), and the remaining partial ob-
servations are input data for learning a well-behaved model. BM
pattern is different from RM and NM patterns, which masks ob-
servations of all spatial sensors/locations as missing values with
certain window length. BM is a challenging scenario with com-
plete column-wise missing where we set the missing rate in our
experiments to 30%.

To assess the imputation performance, we use the actual values
of themaskedmissing entries as the ground truth to computeMAPE
and RMSE:

MAPE =
1
𝑛

𝑛∑
𝑖=1

����𝑦𝑖 − 𝑦𝑖

𝑦𝑖

���� × 100,

RMSE =

√√
1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2,
(4)

where 𝑦𝑖 and 𝑦𝑖 are actual values and imputed values, respectively.

3.3 Baseline Models
For comparison, we take into account the following baseline:

• Low-Rank Tensor Completionwith TruncationNuclear Norm
minimization (LRTC-TNN, [4]). This is a low-rank comple-
tion model in which truncated nuclear norm minimization
can help maintain the most important low-rank patterns.

• Bayesian Temporal Matrix Factorization (BTMF, [3]). This
is a fully Bayesian temporal factorization framework which
builds the correlation of temporal dynamics on latent factors
by vector autoregressive process.

• Smooth PARAFAC Tensor Completion (SPC, [10]). This is
a tensor decomposition based completion model with total
variation smoothness constraints.

𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼

(a) Random missing (RM).

𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼

(b) Non-random missing (NM).

𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼

(c) Blackout missing (BM).

Figure 2: Illustration of three missing data patterns for spa-
tiotemporal traffic data. In these graphics, two curves corre-
spond to two different time series. (a) Data are missing at
random. Small circles indicate the missing values. (b) Data
are missing continuously during a few time periods. Seg-
ments in gray indicate missing values. (c) No sensors are
available (i.e., blackout) over a certain time window.

3.4 Results
In Table 1, despite the truncated nuclear norm built on tensor, the
results also show the advantage of temporal variation built on the
multivariate time series matrix. Due to the temporal modeling,
temporal variation can improve the imputation performance for
missing traffic data imputation. Table 1 shows the overall imputa-
tion performance of LATC and baseline models on the four selected
traffic data sets with various missing scenarios. Of these results, NM
and BM data seem to be more difficult to reconstruct with all these
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imputation models than RM data. In most cases, LATC outperforms
other baseline models. Comparing LATC with LRTC-TNN shows
the advantage of temporal variation, i.e., temporal modeling with
autoregressive process has positive influence for improving the im-
putation performance. For volume data sets (H) and (P), the relative
errors are quite high because some volume values are close to 0
or relatively small and estimating these values would accumulate
relatively large relative errors.

Figs. 3, 4, and 5 show some imputation examples with differ-
ent missing scenarios that achieved by LATC. In these examples,
we can see explicit temporal dependencies underlying traffic time
series data. For all missing scenarios, LATC can achieve accurate
imputation and learn the true signals from observations even with
severe missing data (e.g., NM/BM data). In Fig. 3, it shows that the
time series signal of passenger flow is not complex. By referring
to Table 1, we can see that LRTC-TNN without temporal variation
outperforms the proposed LATC model on Hangzhou metro pas-
senger flow data, and this demonstrates that not all multivariate
time series imputation cases require temporal modeling, for some
cases that the signal does not show strong temporal dependencies,
purely low-rank model can also provide accurate imputation.

Table 1: Performance comparison (inMAPE/RMSE) of LATC
and baseline models for RM, NM, and BM data imputation.
The number next to the BM denotes the window length.

Missing LATC LRTC-TNN BTMF SPC

(G)

30%, RM 5.71/2.54 6.99/3.00 7.54/3.27 7.37/5.06
70%, RM 7.22/3.18 8.38/3.59 8.75/3.73 8.91/4.44
90%, RM 9.11/3.86 9.55/4.05 10.02/4.21 10.60/4.85
30%, NM 9.63/4.09 9.61/4.07 10.32/4.33 9.13/5.29
70%, NM 10.37/4.35 10.36/4.34 11.36/4.85 11.15/5.17
30%, BM-6 9.23/3.91 9.45/3.97 12.43/7.04 11.14/5.13

(H)

30%, RM 19.12/24.97 18.87/24.90 22.37/28.66 19.82/26.21
70%, RM 20.25/28.25 20.07/28.13 25.65/32.23 21.02/31.91
90%, RM 24.32/34.44 23.46/35.84 31.51/46.24 24.97/49.68
30%, NM 19.93/47.38 19.94/50.12 25.61/77.00 27.46/68.56
70%, NM 24.30/47.30 23.88/45.06 34.50/70.11 46.86/98.81
30%, BM-6 21.93/28.64 21.40/27.83 52.15/57.61 22.49/37.53

(S)

30%, RM 4.90/3.16 4.99/3.20 5.91/3.72 5.92/3.62
70%, RM 5.96/3.71 6.10/3.77 6.47/3.98 7.38/4.30
90%, RM 7.47/4.51 8.08/4.80 8.17/4.81 9.75/5.31
30%, NM 7.11/4.33 6.85/4.21 9.26/5.36 8.87/4.99
70%, NM 9.46/5.42 9.23/5.35 10.47/6.15 11.32/5.92
30%, BM-12 9.44/5.36 9.52/5.41 14.33/13.60 11.30/5.84

(P)

30%, RM 17.46/15.89 17.27/16.08 18.22/19.14 21.29/56.73
70%, RM 19.56/18.70 19.99/18.73 19.96/22.21 24.35/43.32
90%, RM 23.47/22.74 22.90/22.68 23.90/25.71 28.45/39.65
30%, NM 18.90/18.84 19.59/18.91 19.55/20.38 26.96/60.33
70%, NM 24.67/31.74 30.26/60.85 23.86/26.74 33.42/47.34
30%, BM-4 24.04/23.52 31.74/74.42 27.85/25.68 31.01/60.33

Best results are highlighted in bold fonts.

4 CONCLUSION
Spatiotemporal traffic data imputation is of great significance in
data-driven intelligent transportation systems. Fortunately, for an-
alyzing and modeling traffic data, there are some fundamental
features such as low-rank properties and temporal dynamics that
can be taken into account. In this work, the proposed LATC model
builds both low-rank structure (i.e., truncated nuclear norm) and
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Figure 3: Imputed values by LATC for Hangzhou metro passenger
flow data. This example corresponds tometro station #3 and the 4th
day of the data set. Black dots/curves indicate the partially observed
data, gray rectangles indicate blackout missing, while red curves in-
dicate the imputed values.
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Figure 4: Imputed values by LATC for Seattle freeway traffic speed
data. This example corresponds to detector #3 and the 7th day of the
data set.
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Figure 5: Imputed values by LATC for Portland traffic volume data.
This example corresponds to detector #3 and the 8th day of the data
set.

time series autoregressive process on certain data representations.
By doing so, numerical experiments on some real-world traffic data
sets show the advantages of LATC over other low-rank models.
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