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ABSTRACT
This work proposes Change Point Embeddings (CAPE), word em-

beddings learned using a novel change-point objective framework.

Based on a Bayesian change point model for time series, a unique

feature of this objective function is that it trains representations to

be optimal at distinguishing between contexts. We gain improved

separation between context representations, and therefore achieve

improved performance in the presence of domain shift - a change in

the data distribution between an algorithm’s training dataset, and a

dataset it encounters when deployed. Without needing fine-tuning,

this change point framework outperforms state-of-the-art models

in clustering topics, and is also more robust against noise in topic

classification. Code and trained models are available at this URL.

CCS CONCEPTS
•Computingmethodologies→Natural language processing;
Information extraction.
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1 INTRODUCTION
Word embedding —- the mapping of words into numerical vector

spaces —- is a basic building block inmany natural language process-

ing (NLP) tasks. Many embedding techniques have been developed,

including pretrained embedding techniques (e.g. Word2Vec [24],

GloVe [26] and fastText [23]). More recently, deep neural network

based models (e.g. ELMO [27], BERT [9]) have emerged. These

models are trained to encode complex word relationships, leading

to improved performance in many NLP tasks. However, despite

the addition of objectives aimed at understanding relationships

between sentences [9], topic-level information is still underutilized

in training.
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We propose a novel embedding training method, change point

embedding (CAPE), based on a probabilistic change-point model.

The key idea of this method is to construct training passages with

a known transition of topics and then model the change of topics

using a change point model. By training the embeddings to optimize

the detection of the change point, it incorporates topic information

into the learning process, gearing the embedding towards learning

topic-discriminative features.

The use of this statistical model results in optimally separated

word representations. As well-separated representations are less

likely to be corrupted by noise, it improves the tolerance of the

representation against corruption introduced by noise. This is es-

pecially crucial for language models, as the majority of the world’s

languages do not have reliable textual or expert resources [11]. Even

in high-resource areas, language itself changes between different

domains and over time, and generalization performance is an issue

in contemporary models [21, 34].

In systematic comparisons, we show that CAPE substantially

improves performance in unsupervised tasks such as identification

of topic transitions, including situations with domain shift, and

improves robustness to noise in text classification. In addition, we

also develop novel strategies for evaluating pre-trained language

models in topic discovery, differentiation and robustness to noise.

2 THE MODEL
In the CAPEmodel, eachword𝑤𝑖 is represented using a𝑑-dimensional

vector, 𝜃𝑤𝑖
, with an associated covariance matrix Σ𝑤𝑖

= var(𝜃𝑤𝑖
).

Now suppose a sentence 𝑗 consists of words𝑤1, . . . ,𝑤𝑛 . We encode

it using (𝑥 𝑗 , Σ 𝑗 ) as follows:

𝑥 𝑗 =
1

𝑛
(𝜃𝑤1

+ · · · 𝜃𝑤𝑛
)

Σ 𝑗 = var(𝑥 𝑗 ) =
1

𝑛2
(Σ𝑤1

+ · · · Σ𝑤𝑛
)

(1)

where

Σ𝑤𝑖
=


𝜎2𝑤𝑖,1

0

. . .

0 𝜎2𝑤𝑖,𝑑

𝑑×𝑑
.

Here we assume all 𝜃𝑤𝑖
are independent, and all Σ𝑤𝑖

diagonal to

enforce independence across different dimensions of 𝜃𝑤𝑖
.

A linear relationship in (1) was chosen because it seemed to be

crucial for the robustness of the results. Briefly, arbitrary nonlinear-

ity (for example in the attention function) is great for its incredible

flexibility in fitting a complex dataset, but it also significantly com-

plicates interpolation/extrapolation. For example if we add a new

word 𝜃𝑤𝑛+1 to the sentence 𝑗 , there would be no guarantee the new
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sentence embedding 𝑥 𝑗 ′ would be close to 𝑥 𝑗 . In practice however,

sentences that share many words tend to have similar meanings.

Thus a linear relationship can be expected to provide stability.

We model 𝑥 𝑗 using a multivariate normal distribution [25] and

use a normal prior over the unknown parameter 𝝁 as follows:

𝑥 𝑗 |𝝁, Σ 𝑗 ∼ N(𝝁, Σ 𝑗 )
𝝁 ∼ N(𝜇0, Σ0)

(2)

To learn representations that incorporate topic-level information,

we develop a training strategy that constructs passages with known

transitions of topics, and formulate the learning process into a

change-point detection framework. We construct and optimize an

objective function, based on a Bayesian online change point model

(BOCD)[3], to learn (
ˆ𝜃, Σ̂) that recognize and differentiate topics.

Below in 2.1 we give a brief overview of BOCD. We then define

the change-point based objective function in 2.2.

2.1 An overview of the BOCD algorithm
The BOCD algorithm [3] is used to find ’change points’, i.e. locations

of abrupt changes in a sequence of observations, 𝑥1, . . . , 𝑥𝑇 , in an

onlinemanner. Briefly, BOCD estimates change points by probabilis-

tically estimating the “run length" distribution 𝑟𝑡 , i.e. the estimated

number of observations passed at time 𝑡 since the last change point.

If a change point occurs at 𝑡 , 𝑟𝑡 = 0; otherwise, 𝑟𝑡 = 𝑟𝑡−1 + 1, i.e. the
run length grows. Specifically, denote the observations that have

been seen so far as 𝑥1:𝑡 = {𝑥1 · · · 𝑥𝑡 }, then the run length distri-

bution at the 𝑡𝑡ℎ observation is 𝑅𝑡,𝑟 = 𝑃 (𝑟𝑡 = 𝑟 |𝑥1:𝑡 ) ∝ 𝑃 (𝑟𝑡 , 𝑥1:𝑡 ),
where 𝑟 ∈ [0, 1, · · · 𝑡 − 1].

The joint distribution 𝑃 (𝑟𝑡 , 𝑥1:𝑡 ) is modeled in terms of 𝑃 (𝑟𝑡−1, 𝑥1:𝑡−1)
as follows:

𝑃 (𝑟𝑡 , 𝑥1:𝑡 ) =



∑
𝑟𝑡−1

1

𝜆
𝑃 (𝑥𝑡 |𝑟𝑡−1, 𝒙 (𝑟𝑡−1)

𝑡 ;𝜂
(𝑟𝑡−1)
𝑡 )𝑃 (𝑟𝑡−1, 𝑥1:𝑡−1)

if 𝑟𝑡 = 0.

(1 − 1

𝜆
)𝑃 (𝑥𝑡 |𝑟𝑡−1, 𝒙 (𝑟𝑡−1)

𝑡 ;𝜂
(𝑟𝑡−1)
𝑡 )𝑃 (𝑟𝑡−1, 𝑥1:𝑡−1)

if 𝑟𝑡 = 𝑟𝑡−1 + 1.

0 otherwise.

(3)

where
1

𝜆
is the prior probability of have a change point at time 𝑡

and the posterior predictive distribution 𝑃 (𝑥𝑡 |𝑟𝑡−1, 𝒙 (𝑟𝑡−1)
𝑡 ;𝜂

(𝑟𝑡−1)
𝑡 )

is specified according to the data. Given 𝑅𝑡,𝑟 , one can estimate the

most probable run length at 𝑡 as argmax𝑟𝑅𝑡,𝑟 . See Figure 5 for an

example.

2.2 The change-point based objective function
and learning framework

To learn representations that incorporate topic-level context infor-

mation, we first randomly choose two different contexts from a

very large corpus (e.g. two different Wikipedia paragraphs) and

then concatenate a string of𝑚 observations from each context (e.g.

2 sentences from each paragraph). We then encode them using

(𝜃, Σ). This creates a data stream with a known change point at

the (𝑚 + 1)st observation. Using BOCD, we want to realize poste-

rior run-length distributions that reflect the correct location of the

change point, so we update (𝜃, Σ) to improve performance at the

objective function below.

𝑜𝑏 𝑗 = 𝑅1,1 + 𝑅2,2 + · · · + 𝑅𝑚,𝑚 +
𝑅𝑚+1,1 + 𝑅𝑚+2,2 + · · · + 𝑅2𝑚,𝑚

(4)

Large values of (4) are achieved when the run length estimate

increases over the first𝑚 observations, resets to 0, and increases

again over the last𝑚. This happens when the first𝑚 observations

are represented as a compact cluster and the last𝑚 observations

map to a distant compact cluster. Thus, maximizing (4) with respect

to (𝜃, Σ) will learn representations that best differentiate contexts.

See the Appendix for a brief proof. The full process is summarized

in Algorithm 1.

Note that this task does not require human annotation; the para-

graph information is already in most text datasets (e.g. Wikipedia).

Algorithm 1 Training algorithm

1: procedure Train
2: procedure Initialize
3: Randomly initialize the encoder parameters (𝜃, Σ)

4: for K iterations do
5: Pick 2 distinct contexts in the training set and𝑚 obser-

vations from each context.

6: Encode the 2𝑚 observations using 𝜃, Σ. ⊲ Eq 1

7: Get 𝑅 using BOCD and calculate the objective. ⊲ Eq 3, 4

8: Improve 𝑜𝑏 𝑗 (wrt 𝜃, Σ) using stochastic gradient meth-

ods.

9: return trained encoder parameters (
ˆ𝜃, Σ̂)

3 EVALUATION OF EMBEDDINGS
In this evaluation, we evaluate the coherence of topics (3.1) and

robustness to noise in topic classification (3.2). In addition, we also

evaluate distances between sentence vectors (3.3), which implies

discriminability between sentences.

3.1 Clustering assessment
Representations that successfully differentiate between different

contexts are expected to have low separation between represen-

tations within the same contexts, and high separation between

dissimilar contexts. We quantify the separation quality using mod-

ularity.

Modularity, originally developed for community detection, is

designed to measure how well a graph separates into a specific

partitioning [8]. Here we create a passage with𝑚 = 3 sentences

each from 2 unique paragraphs. We represent each sentence in a

data stream as a node in the graph, and define the weight of the edge

between node 𝑢 and node 𝑣 as 𝐴𝑢𝑣 = 𝑐𝑜𝑟𝑟 (𝑥𝑢 , 𝑥𝑣), where 𝑥𝑢 and

𝑥𝑣 are the respective encoded representations and 𝑐𝑜𝑟𝑟 (𝑥𝑢 , 𝑥𝑣) is
computed using Pearson correlation. We then calculate modularity,

given by

𝑄 =
1

|𝐸 |
∑
𝑢𝑣

[
𝐴𝑢𝑣 −

𝑘𝑢𝑘𝑣

|𝐸 |

]
𝛿 (𝑐𝑢 , 𝑐𝑣), (5)

where 𝐴𝑢𝑣 is the weight of the edge between nodes 𝑢 and 𝑣 , 𝑘𝑢
and 𝑘𝑣 are the sum of edge weights associated with nodes 𝑢 and

𝑣 respectively, 𝛿 (𝑐𝑢 , 𝑐𝑣) equals 1 iff 𝑢 and 𝑣 originate from same
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context, and zero otherwise, and |𝐸 | is the total sum of edge weights

in the graph, i.e. the sum of all values in the upper triangle of

the adjacency matrix 𝐴. This measure computes the normalized

difference between the observed edge weights𝐴𝑢𝑣 and the expected

weights by chance
𝑘𝑢𝑘𝑣
|𝐸 | for all pairs of observations from the same

context, reflecting the strength of association beyond chance.

3.2 Robustness evaluation in classification
tasks

The robustness of word embeddings against noise in the data is

critical for generalizability and reproducibility. We evaluate the

robustness of the trained word embeddings in the task of topic

classification when the text to be classified contains added noise.

To proceed, we split a labeled dataset into training and test sets,

and add a fixed amount of random noise (random words) to each

element of the test set. After encoding the training and test sets

using the trained word embeddings, we train a classifier on the

training set, then run the classifier on the test set and report the

classifier’s accuracy as a function of the amount of added noise.

(Note: when evaluating BERT, we used its internal classification

capabilities.) This experiment measures how robust a classifier

trained on the representation of clean data is against noisy data.

3.3 Dispersion of sentence vectors
Dispersion of sentence vectors in a dataset reflects how well sen-

tence vectors span the embedding space. A higher value implies

that sentence vectors are well separated, offering a higher tolerance

to corruption introduced by noise.

To quantify vector dispersion in a dataset, we first define a nor-

malized distance statistic. Given a collection of sentences and a

sentence vector 𝑣 from a dataset, we define the normalized distance

from 𝑣 to the collection as

Normalized Distance(𝑣) =
median distance from 𝑣 to other

sentence vectors in the collection√∑
𝑖 𝑣

2

𝑖

(6)

To measure the overall vector dispersion in a dataset, we sample

random vector collections 100 times in a dataset, then compute

the normalized distance for each collection, and report the median

normalized distance.

4 EMPIRICAL STUDY SETUP
4.1 Datasets
We downloaded Wikipedia (July 2019) and cleaned it, keeping 24M

paragraphs with at least 3 sentences with 4+ words each. The last

300K paragraphs were split off to make the Wikipedia test set, and

the rest were used to make the training data. This training set had a

full vocabulary of size 4.8M, but to save time and space we restricted

training and testing to the 400Kmost common words in the training

set. Each paragraph is treated as a distinct context.

To test the embedding’s performance under domain shift, we

selected Bookscorpus as another test set. Bookscorpus consists of

large datasets of free books on the internet written by yet unpub-

lished authors [16, 19, 35, 36]. Its narrative style is quite different

from Wikipedia training data.

For the robustness analysis, we picked the AG News corpus [1],

which consists of news articles collected from various sources on-

line, each annotated by news type. Following [13], we concatenated

each article’s title and short description together (average length

42 words), and used that to predict the news type.

4.2 Training process
We maximized the objective function on the Wikipedia training set

using Tensorflow’s [2] implementation of an adaptive gradient de-

scent algorithm (AdaGrad [10]). We trained 3 models corresponding

to 𝑑 ∈ {10, 100, 500}, denoted as CAPE(𝑑), each for 7-8M iterations.

The procedure took {39, 40, 60} hours respectively on an i7 8700K

CPU.

4.3 Testing process
We evaluate CAPE against three competing methods: the fast-

Text 300-dimensional English embeddings (2018) [23], the 300-

dimensional Wikipedia+Gigaword GloVe vectors [26], and the 1024

dimensional BERT embeddings (BERT-Large, Uncased,WholeWord

Masking), extracted using bert-as-service [32]. All embeddings used

the same average of vectors encoder model. We run the following

analyses:

(A) We randomly sample 1000 paragraphs from Wikipedia and

Bookcorpus respective test sets and compute normalized dis-

tance (3.3) to evaluate vector dispersion in these two datasets.

For each dataset, we also construct passages with 2 distinct

contexts and𝑚 = 3 sentences per context and calculate mod-

ularity (3.1) to evaluate topic discrimination (avg runtime: <

5m).

(B) We run the classification test (3.2) on the AG news dataset,

evaluating resistance to added noise. We train a SVM clas-

sifier on the clean data, and add a fixed amount (0-100) of

random noise words at random positions to each article in

the test set. We then assess the classifier’s accuracy for clas-

sifying the article’s news type as a function of the amount

of noise (avg runtime: < 10m per test).

5 RESULTS AND DISCUSSION
5.1 CAPE generates better topic discrimination

and higher vector separation in the test sets
We evaluated the modularity and normalized distance on the test

sets of Wikipedia passages and Bookcorpus passages (without fine

tuning). Table 1 shows a numerical summary of the results. Figures

3-4 in Appendix B show the full distributions.

CAPE has significantly higher median modularities than the

other methods, suggesting that it clusters paragraphs (i.e. topics)

much more coherently. It also has significantly higher median nor-

malized distance. This suggests that it has better separated sen-

tence embedding, indicating a higher efficiency to span the em-

bedding space. It is also observed that its modularities and normal-

ized distance increase with the increase of its dimension. Though
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Bookscorpus has very different narrative style from the training set

(Wikipedia), CAPE’s superiority is maintained. In contrast, BERT

does not seem to transfer well to these tasks.

Modularity Normalized distance

Wikipedia Bookscorpus Wikipedia Bookscorpus

CAPE (10) 0.304 0.163 1.173 0.910

CAPE (100) 0.396 0.286 1.300 1.243

CAPE (500) 0.465 0.376 1.389 1.343

Glove 0.128 0.107 0.714 0.652

FastText 0.146 0.124 0.820 0.763

BERT 0.097 0.094 0.537 0.534

Table 1: Summary of clustering evaluation results in
Wikipedia and Bookscorpus. The medians of modularity
and normalized distance are reported. No fine tuning was
applied to Bookscorpus.

5.2 CAPE is robust to noise in text
classification

Next, we evaluated CAPE in text classification using the AG news

data. We focused on the robustness of the embeddings against the

distortion detailed in Section 3.2. Note that we only trained the

classifier and did not fine-tune the encoder. When training BERT,

we ran a grid search over the fine-tuning options recommended in

the BERT paper (Appendix 3), varying batch size, learning rate and

number of epochs.

As shown in Fig 1 (top), though all the three word embedding

methods have broadly similar performance when no noise is added,

the CAPE text classification has a much smaller accuracy reduction

when noise is added. BERT’s results (Fig 1 bottom) vary across

fine-tuning settings. The overall relationship between their clas-

sification accuracy and the amount of added noise largely follow

the general pattern as for FastText and GloVe, showing a larger

accuracy reduction with added noise than CAPE. This indicates that

CAPE is much more robust against this noise model than all the

other three methods. With higher model dimension, CAPE shows

improved classification accuracy in both the cases with and with-

out added noise. CAPE’s robustness is likely due to its property of

generating more separated sentence vectors (5.1). Larger distance

between sentence vectors offers higher tolerance to added noise.

6 CONCLUSION
In this paper we propose a novel change-point based framework for

training and evaluating embeddings. CAPE, with its distributional

assumptions and optimized separation through a change-point ob-

jective, strongly outperforms conventional models such as fastText,

GLoVe or BERT at topic discrimination in the unsupervised setting.

CAPE vectors are easily integrated into a statistical model.
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Figure 1: Accuracy in text classification as a function of
added noise in the AG news dataset. Each line shows how a
classifier trained (or fine-tuned) on a clean training set per-
forms when evaluated on a test set with added noise. Top:
CAPE, FastText and GloVe. Bottom: BERT with various fine-
tuning settings.

The CAPE framework also demonstrates robust performance

in topic classification when noise is present. We attribute CAPE’s

robustness to the linearity of the encoder, and the improved sep-

aration between the word embeddings, as seen using modularity

and normalized distance. Other methods have closely packed vec-

tors that are more likely to overlap, so they are more sensitive to

distortions in the texts. Robustness is essential for generality and

reproducibility of word embeddings in NLP tasks, as such tasks

often involve changing language environments and adaptability to

different contexts is highly desirable.
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A SEPARATION BETWEEN TOPICS IN AN
EXAMPLE PASSAGE

Table 2: A sample passage of six sentences with two topics

Topic: Feral cats

A feral cat is a cat that lives outdoors and has had little or no

human contact

They do not allow themselves to be handled or touched by

humans, and will run away if they are able

They typically remain hidden from humans, although some

feral cats become more comfortable with people who regularly

feed them

Topic: Atlanta

Atlanta is the capital of, and the most populous city in, the US

state of Georgia

With an estimated 2017 population of 486,290, it is also the 39th

most populous city in the United States

The city serves as the cultural and economic center of the At-

lanta metropolitan area, home to 5.8 million people and the

ninth largest metropolitan area in the nation.
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Figure 2: Heatmaps show the correlations between all pairs
of sentences from Table 2.

As an illustration, we compare the models on a Wikipedia pas-

sage (Table 2). The first three sentences are about feral cats, and the

next three are about the city of Atlanta. Figure 2 shows the results.

In this example, CAPE achieves a much higher modularity score

(𝑄 = .29, .44, .47) than the other three word embedding methods

(𝑄 = 0.18, 0.16, and 0.14 for fastText, GloVe, and BERT, respec-

tively), suggesting that CAPE has much better topic coherence and

topic separation. CAPE also shows improved performance with

increasing dimension.

B BOXPLOTS OF MODULARITY AND
NORMALIZED DISTANCE IN WIKIPEDIA
AND BOOKSCORPUS TEST SET

CAPE (500) CAPE (100) CAPE (10) GloVe FastText BERT

0
.1

0
.2

0
.3

0
.4

0
.5

M
o

d
u

la
ri

ty
CAPE (500) CAPE (100) CAPE (10) GloVe FastText BERT

0
.1

0
.2

0
.3

0
.4

0
.5

M
o

d
u

la
ri

ty

Figure 3: Distribution ofmodularity values in theWikipedia
(top) and Bookscorpus (bottom) test set.
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Figure 4: Distribution of normalized distance values in the
Wikipedia (top) and Bookscorpus (bottom) test set.

C ADDITIONAL BOCD DETAILS
To estimate 𝑅𝑡,𝑟 , the algorithm processes the data stream in an

online fashion. For each newly observed data point 𝑥𝑡 , the algorithm

uses the previously computed 𝑃 (𝑟𝑡−1 |𝑥1:(𝑡−1) ) and the current data
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point 𝑥𝑡 to estimate 𝑃 (𝑟𝑡 |𝑥1:𝑡 ) for all the possible run lengths (𝑟𝑡 ∈
[0, 1, · · · , 𝑡 − 1]). The algorithm then updates all the parameters

to take into account 𝑥𝑡 , in the standard Bayesian manner, and

the posterior is used as a prior for the next observed data point.

When 𝑃 (𝑥𝑡 ) is chosen to be a member of exponential family and

conjugate priors are used, the parameters can be updated efficiently

by conjugacy. Afterwards the algorithm returns the estimated run

length probabilities, 𝑅 = {𝑅𝑡,𝑟 : 𝑡 ∈ [0, 1, · · ·𝑇 ], 𝑟𝑡 ∈ [0, 1, · · · 𝑡 − 1]}
and the estimated most probable change points. As 𝑡2/2 𝑅𝑟,𝑡 ’s need
to be computed, the computational complexity of BOCD is 𝑂 (𝑡2).
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Figure 5: Visualization of the run length distributions for a
simulated example of 6 observations (𝑚 = 3), with a change
point at the 4th point. Left: Estimated log run-length prob-
abilities, 𝑅. The color of the square at (𝑡, 𝑟 ) corresponds to
log 𝑃 (𝑟𝑡 = 𝑟 |𝑥1:𝑡 ). Right: Maximum a posteriori (MAP) run
length estimates, max𝑟 𝑅𝑡,𝑟 , which suggests the data can be
divided into two segments: {𝑥1, 𝑥2, 𝑥3} and {𝑥4, 𝑥5, 𝑥6}.

D ADDITIONAL MODEL SPECIFICATION
AND HYPERPARAMETER OPTIMIZATION

By standard Bayesian conjugate computation in (2), the posterior

predictive distribution 𝑃 (𝑥𝑡 |𝑟𝑡−1, 𝒙 (𝑟𝑡−1)
𝑡 , 𝜂

(𝑟𝑡−1)
𝑡 ) in (3) is a multi-

variate Normal distribution with run-specific parameters 𝜂
(𝑟 )
𝑡 =

{𝜇 (𝑟 )𝑡 , Σ
(𝑟 )
𝑡 }. Belowwe give the initial parameters𝜂 (0) = {𝜇 (0) , Σ(0) }

and Bayesian update procedures [25]. As in [3], we start with

𝑅00 = 𝑃 (𝑟0 = 0) = 1.

𝜇 (0) = (0, 0 · · · 0)𝑑

Σ(0) =


(𝜎2) (0)

. . .

(𝜎2) (0)

𝑑×𝑑
(7)

Σ
(𝑟+1)
𝑡+1 = ((Σ(𝑟 )

𝑡 )−1 + Σ−1𝑡 )−1

𝜇
(𝑟+1)
𝑡+1 = Σ

(𝑟+1)
𝑡+1 (Σ−1𝑡 𝑥𝑡 + (Σ(𝑟 )

𝑡 )−1𝜇 (𝑟 )𝑡 )
In this model the hyperparameters are

• The embedding size, 𝑑

• The number of sentences being compared,𝑚

• The optimization algorithm (gradient descent variety), and

its learning rate

• The batch size for gradient descent

• The strategy used to initialize (𝜃, Σ). We used a random-

uniform initialization, where the ranges are hyperparame-

ters.

• (𝜎2) (0) , the prior variance within BOCD.

• The constant hazard parameter 𝜆 within BOCD.

In this paperwe present experimental results for𝑑 ∈ {10, 100, 500}.
The number of sentences compared at each iteration was fixed at

𝑚 = 2. Experiments with𝑚 = 3 found no appreciable difference

except the models took longer to converge. The batch size was set

at 25 for all experiments. Experiments showed that AdaGrad [10]

was the best optimization algorithm. The parameter 𝜆 was fixed at

10. Preliminary experiments show that the choice of 𝜆 too made

little difference.

For each 𝑑 , the other hyperparameters were tuned using random

search [5]. We picked random sets of hyperparameters, ran the

algorithm for 5𝑒4 iterations with each set, then picked the hyper-

parameter set with the highest objective value at the end.

Other architectural choices include the preprocessing and tok-

enization strategies in Section 4.1. We used fairly straightforward

tokenization techniques.

E SEPARATION OF EMBEDDING VECTORS
REPRESENTING DIFFERENT CONTEXTS

We outline a brief argument to show that the optimization of (4)

will separate vectors representing different contexts.

As described earlier in the setup of (4), where𝑚 = 3, the true

run length increases over the first three observations, then resets to

0 and increases again over the last three observations. This means

𝑅3,3 = 𝑃 (𝑟3 = 3|𝑥1:3) and 𝑅4,1 = 𝑃 (𝑟4 = 1|𝑥1:4) will be maximized.

Hence, 𝑅4,4 = 𝑃 (𝑟4 = 4|𝑥1:4) will be minimized, since

∑
4

𝑟=1 𝑅4,𝑟=1.

Consequently, 𝑃 (𝑟4, 𝑥1:4) will be small and 𝑃 (𝑟3, 𝑥1:3) will be large.
By Eq 3 (middle case) for 𝑡 = 4, 𝑃 (𝑥4 |𝑟3 = 3, 𝒙 (3) = 𝑥1:3;𝜂

(3)
4

) must

be very small.

Based on the conjugate specification in (2) and (7), the posterior

predictive distribution 𝑃 (𝑥4 |𝑟3 = 3, 𝒙 (3) = 𝑥1:3;𝜂
(3)
4

) is a multivari-

ate Normal distribution with parameters found through conjugate

Bayesian updating [25] over 𝑥1:3 and Σ1:3. It takes a small value

when its kernel (𝑥4 − 𝜇
(3)
4

)T (Σ(3)
4

)−1 (𝑥4 − 𝜇
(3)
4

) is large. Note that,

(𝑥4−𝜇 (3)
4

)T (Σ(3)
4

)−1 (𝑥4 − 𝜇
(3)
4

) Mahalanobis distance

= (𝑥4 − 𝜇
(3)
4

)T𝑃Λ−1𝑃𝑇 (𝑥4 − 𝜇
(3)
4

) eigendecomposition

(8)

= 𝒃𝑇Λ−1𝒃 𝒃 = 𝑃𝑇 (𝑥4 − 𝜇
(3)
4

) (9)

=
∑
𝑖

𝑏2
𝑖

𝜆𝑖
(10)

So as 𝑅4,4 is minimized through gradient descent, the kernel above

is maximized, and it is preferential to move 𝑥4 away from 𝜇
(3)
4

pri-

marily in the direction associated with the smallest eigenvalue 𝜆𝑖

of Σ
(3)
4

, because that yields the greatest increase in statistical (Ma-

halanobis) distance. This eigenvector is orthogonal to all the other

eigenvectors, which together capture the major sources of variation
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in the distribution fit on 𝑥1:3. Thus, the estimated 𝑥4 is nearly or-

thogonal with 𝑥1:3. As the algorithm converges, the representations

of dissimilar contexts are distant and decorrelated.

Similar reasoning shows that representations in similar contexts

(i.e. each of {𝑥1, 𝑥2, 𝑥3}, and {𝑥4, 𝑥5, 𝑥6}) will be close in Maha-

lanobis (and Euclidean) distance, and therefore more correlated.

Together, this indicates that the optimization of (4) will separate

vectors representing different contexts.

F RELATEDWORK
F.1 Text representation
Due to their ability to capture syntactic and semantic information

in words, pretrained word vectors are a core component in cur-

rent NLP architectures. Numerous embeddings are available, for

exampleWord2Vec [22, 24], GloVe [26] and fastText [23]. Word2Vec

and FastText are trained using CBOW, a word prediction strategy,

while GLoVE is trained on a combination of global word-word

co-occurrence statistics and local context window methods. One

drawback of these techniques is that the embedding representa-

tion is context independent, i.e. the vector representing a word

stays fixed regardless of surrounding words. This makes them less

adaptive to changes in the language environment.

More recently, deep neural network encoders have been shown

to outperform embeddings across a broad range of diverse NLP

tasks [28, 31]. These models, such as BERT [9], RoBERTa [20],

XLNet [33], GPT-3 [6], demonstrate the efficacy of transformer

models [30], in combination with millions to billions of parameters,

extensive computational resources, and large amounts of training

data [14].

By training them using word prediction strategies [17][12] in

a large general corpus, these techniques generate contextual rep-

resentations of input tokens that are infused with information of

its neighborhood. The same word can have very different repre-

sentations in different situations, thus taking context into account.

After training, the full neural network models that were used to

train these embeddings can be used for downstream tasks, unlike

pre-trained embeddings which require additional structures (e.g

classifiers) to make predictions. Relatively simple fine-tuning can

be performed on these general models with task-specific data to

improve performance in downstream tasks [15].

F.2 Change point analysis
Change point analysis is a powerful tool for detecting whether

any changes take place in a data stream, and to locate where the

changes occur [4]. Bayesian Online Changepoint Detection algo-

rithm (BOCD) [3] identifies change points by modeling the prob-

ability distribution of the “run length", i.e. the elapsed time since

the most recent change point. By leveraging conjugate-exponential

models, it achieves efficient, exact and online Bayesian inference.

It has been applied and extended in numerous ways, for example

to include variational inference for non-exponential distributions

[29], time lags that use future information to better detect change

points [7], and non-stationary spatio-temporal processes [18].
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