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ABSTRACT
We examine the use of time series data, derived from Electric Cell- 
substrate Impedance Sensing (ECIS), to differentiate between stan- 
dard mammalian cell cultures and those infected with a mycoplasma 
organism. We perform feature-based classification, extracting in- 
terpretable features from the ECIS time courses, and achieve high 
classification accuracy using only two features at a time. Initial 
results also show the existence of experimental variation between 
plates and suggest types of features that may prove more robust to 
such variation. Our paper is the first to perform a broad examination 
of ECIS time course features in the context of detecting contami- 
nation, and to describe and suggest possibilities for ameliorating 
plate-to-plate variation.

CCS CONCEPTS
• Mathematics of computing → Cluster analysis; Exploratory
data analysis; • Applied computing → Computational biology.
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1 INTRODUCTION
1.1 Motivation: cell contamination
The study of cells in culture is a vital component of biological re- 
search, allowing the examination of cells’ physical morphology, 
their patterns of growth and process through the life cycle, and 
their responses to stimuli and the environment. Yet there is a re- 
producibility crisis in cell culture research, in large part due to 
misidentification and contamination of cell samples (see [13]). One 
common issue is the contamination of mammalian cells with other
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microorganisms such as Mycoplasma, which can flourish in the
medium used to grow the cells and create misleading results.

In this paper, we address the issue of contaminated cell cultures
as a classification problem. We draw on an automated, non-invasive
data collection method, electric cell-substrate impedance sensing,
to generate time series corresponding to individual cell cultures.
We then investigate the performance of features derived from these
time series in classifying cell cultures as infected or uninfected.

1.2 Electric Cell-substrate Impedance Sensing
Electric cell-substrate impedance sensing, or ECIS®, is an estab-
lished tool for measuring the behavior and characteristics of cells
over time. An introduction can be found in [10], and surveys of
some of the many applications can be found in [18] and [12]. ECIS
is far less labor intensive than optical assessment of cell cultures,
requires no chemical labels or markers to be applied to the cells, and
does not damage the cells or change their morphology, allowing
for sustained observation of the same culture.

In the ECIS technique, an experimenter cultivates a cell culture
using a tray of several wells, each of which is fitted with an elec-
trode. The tray is placed in a machine that passes a weak AC current
through the electrodes, at a chosen frequency, and repeatedly mea-
sures the impedance, resistance and capacitance over time. Over
time, the cells multiply, move, and eventually reach confluence, com-
plete coverage of cells across the entire well. If desired, the machine
can wound the cultures by briefly applying high voltage. This pro-
cess kills most of the cells located on top of the electrodes, causing
further changes in impedance as they are replaced by new cells.

Many studies have used ECIS data to examine specified cell
types or processes, but quantitative discussion has been sparse. [8]
appear to be the first to examine quantitative features of ECIS data
across multiple cell lines, with the goal of identifying unknown or
potentially-mislabeled cultures. [28] examine contamination data,
comparing long-memory behavior and the timing of the confluence
stage in infected and uninfected cells. We build on this work by
bringing in many other types of features, and by comparing their
efficacy in identifying contamination in multiple cell types.

1.3 The current dataset
In this paper, we use data provided by Applied BioPhysics, Inc.,
generated using the ECIS Z𝜃 machine. Cells are grown on arrays,
or plates, each containing 96 separate wells; measurements are
obtained at several AC frequencies between 500 and 32000 Hz.

We primarily examine MDCK II cells, some of which are contam-
inated with Mycoplasma hominis. Cells are grown on one of two
substrates: either with a gelatin coating, or with an adsorbed layer
of BSA (bovine serum albumin). Some wells of each type are left
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Figure 1: Sample ECIS data: time courses of resistance. These
time courses differ based on the cell type, the substrate on
which it is grown, and the presence and type of contaminat-
ing organisms.

empty, containing substrate but no cells, to provide a baseline. As
an extension to our original investigation, we also examine cultures
from a different cell line, BSC-1, some of which are infected with
M. hominis, and MDCK II cells infected with a different species of
mycoplasma, M. hyorhinis.

2 FEATURE-BASED CLASSIFICATION
2.1 The feature-based approach
Instead of calculating similarity or distance “pointwise" between
individual time points in the time series, we reduce the effective
dimension by generating a limited set of features from the origi-
nal data. We may then perform classification or clustering using
these features, or a subset of them. There is an extensive body of
literature on feature generation and selection; an overview and
typography of many approaches appears in [4]. [20] provide an
extensive discussion of feature-based approaches specifically for
the classification of time series data.

One strength of the feature-based approach is the reduction of
dimensionality, as argued in [27], which can avoid many of the
problems involved in high-dimensional clustering (for examples,
see [1]). We also avoid the problematic requirement that the time
series under consideration be exactly the same length, as mentioned
in [15]. Moreover, the feature-based approach means that the user
need only consider a few features to understand why an observa-
tion is classified in a particular way. We can easily visualize the
distribution of scores across observations, and if we perform classifi-
cation using pairs of features, we can also visualize the classification
regions in the feature space.

2.2 Types of features
For this project, we generate a variety of features from the ECIS
time courses. Some reflect characteristics of ECIS data mentioned
as useful in previous studies, while others are based on time series
analysis or on capturing particular stages of the cells’ behavior. The
basic types of features are described here; a more complete and
detailed list can be found in the supplemental materials.

Several of our literature-inspired features look at the level of
resistance at a certain time and frequency, or simple differences
in resistance over time. The rate of increase in resistance early
on, shortly after inoculation, is mentioned in studies such as [21],
[16], and [22]. Post-confluence levels, meanwhile, are used in [16],
[11], and [2], while the overall peak value of resistance appears in
[21]. Several studies (including [18], [11], and [24]) address cells’
responses to wounding, both its immediate effects and the time
to recovery; we extend this idea by comparing the post-wounding
recovery process to the initial growth stage.

To characterize post-confluence behavior more generally, we
turn to time series methods. Using ARIMA model coefficients and
errors for clustering has appeared in a variety of time series appli-
cation areas (see [19] and [5]), while [7], [27], [3], and [6] use the
ACF or PACF. The estimates of error variance from ARIMA models
can also be useful in reflecting short-term erratic behavior.

In addition to attachment and spreading behavior, cells also
exhibit micromotion: small-scale shifts in their attachments to the
substrate, even after confluence has been reached and large-scale
movement is impossible. Several papers (such as [10], [18], and
[25]) examine this behavior, which can be observed in ECIS data as
small fluctuations in impedance after a stable level has been reached.
[17] and [23] examine long-memory behavior, while [28] looks at
the regime change between early growth and a post-confluence
long-memory system.

2.3 Variations of feature types
For the broad feature search, we calculate each feature on the time
course of resistance. Basic feature types are calculated both for the
raw time courses and using a rolling windowed average over 5
consecutive time points, intended to make the feature scores robust
to momentary noise in the data. We also introduce a normalization
procedure to help account for variations in conditions over time,
by taking the ratio of each time course to measurements from
“empty wells" on the same tray. All features are calculated for all
frequencies, sincemeasurements at different frequenciesmay reflect
different components of cell behavior, as discussed in [18] and [26].

3 CLASSIFICATION AND RESULTS
3.1 Classification process
We attempted three methods for performing classification on the
feature data: classification trees, linear discriminant analysis (LDA),
and quadratic discriminant analysis (QDA). A thorough discussion
of these methods appears in [8], including an exploration of dif-
ferent parameter choices for discriminant analysis. From the 476
features and feature variations, we obtain over 113,000 possible
feature pairs on which to base classifiers. For each feature pair, we
split the observations evenly into training and testing sets, and
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record the success rate. Performance values given here are averages
over 10 different training/test splits, using LDA.

3.2 General classification results
An example of the LDA classification results is shown in Figure 2,
using two simple features: resistance at 2 hours after inoculation
(measured at a frequency of 4000 Hz) and the maximum resistance
during the first 24 hours after inoculation (at 32000 Hz). The clas-
sifier uses the training observations (square points) to generate a
posterior probability of contamination for each point in the feature
space, and a linear division of the feature space into infected and
uninfected regions. The test observations (round points) are all cor-
rectly classified based on their coordinates in this feature space, and
we can see that there is very clear separation between contaminated
and uncontaminated cultures in terms of these features.
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Figure 2: LDA classification regions based on one pair of fea-
tures. This pair yields perfect classification of the test obser-
vations.

In general, classification accuracy is high. There is no “best pair"
of features: many different feature pairs offer strong, and in many
cases equal, performance. For example, on our sample of BSA-
treated wells, about 27% of all feature pairs yield perfect classifica-
tion accuracy. This is a promising indication of the effectiveness
of ECIS measurements for distinguishing contaminated cultures,
though the problem becomes more difficult once we consider ex-
perimental variation across plates, as discussed below.

The protein coat on which the cells are grown does affect their
behavior: some features are more effective for classification of cells
grown with BSA, while others are more effective on gel-treated
wells. Since it is a simple matter in practice to grow cells using
one or the other substrate, high performance on either group of
cultures is equally useful.

3.3 Feature combinations
Figure 3 shows a heatmap of performance values for a subset of
feature pairs, with the brighter tiles representing feature pairs with
higher accuracy. This subset illustrates the high performance that

can be achieved with many different features, but also suggests
rules for combining features, based on the “sub-diagonals" of poorer
performance that can be seen throughout.

Some of these low-performance areas correspond to pairs con-
sisting of a feature and a modified version of the same feature: for
example, at2hR32000 (resistance at 2 hours, 32000 Hz) paired with
w5c2hR32000 (resistance averaged over a window at 2 hours, 32000
Hz). Other low-performance cases appear when the pairing consists
of the same feature calculated on two different versions of the data:
the original time series and the version normalized to empty wells
(features beginning with “EN"). Evidently, these feature modifica-
tions do not greatly change the information in the feature, so that
pairing a feature and its modified version is essentially equivalent
to using a single feature for classification.

To a lesser extent, we also see relatively weak performance when
a feature is paired with itself at a similar frequency, or with a
modification of the same feature at a similar frequency. For example,
at2hR32000 and at2hR16000 are not an effective pair, but each yields
perfect classification accuracy if pairedwith at2hR500. This provides
further evidence that more divergent frequencies provide more
useful information, by reflecting different characteristics of the
cells’ behavior.

3.4 Individual feature performance
We can obtain a simple measure of the effectiveness of individual
features by averaging the classification accuracy over all pairs in-
volving a given feature. Several different types of features prove
effective on this problem, with accuracy averages of 0.97 or above
(given the optimal frequency and substrate). These include the level
of resistance at two hours after inoculation; the initial growth rate;
the value of the first peak; the post-wounding recovery rate; and
the ratio of post-wounding recover rate to initial growth rate. No-
tably, fitted ARIMA coefficients perform quite poorly: though the
cell cultures’ ARIMA models are substantially different from white
noise and from models fitted to empty wells, there are no reliable
differences between infected and uninfected model coefficients. The
estimated error variance from these models, however, is effective,
reflecting differences in post-confluence micromotion.

4 VARIATIONS
4.1 Cell and contaminant types
When we extend our analysis to include a comparator cell type
(BSC-1) and contaminant (M. hyorhinis), it is immediately evident
that both factors change the contamination problem. For example,
with MDCK II cells and M. hyorhinis, the strongest-performing in-
dividual features are those focusing on the early peak behavior and
recovery from wounding. In contrast, all of the features with high
average performance for BSC-1 cells are either coefficients from
a quadratic fit to the first two hours of growth, or measurements
of local variation/micromotion after confluence. Indeed, for BSC-1
cells the problem is overall more difficult: far fewer feature pairs
are able to give good classification performance and, due to the
different growth pattern, the early levels and first-peak features that
worked well for MDCK II cells are not distinctive. These results
underline the importance of establishing the most effective and
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Figure 3: Heatmap matrix of classification accuracy (on gel) for a few feature pairs. Many pairs have high accuracy, but there
are “sub-diagonals" of feature pairs with poorer performance.

characteristic features for individual cell lines, and of exploring a
variety of possible feature types.

4.2 Experimental variation
In laboratory use, the cell cultures that require classification may
often be grown on a separate plate than the training set of cultures
known to be infected or uninfected. The test set may even be mea-
sured at a substantially different time, or under different conditions.
It is therefore desirable to examine the robustness of classification
to variation across plates, and experimental variation in general.

To this end, we examine four separate plates of MDCK II cells/M.
hominis, each plate using cultures taken from the same frozen
source, but grown and measured at a separate time. We can im-
mediately see that plate-to-plate variation exists, and makes the
classification problem substantially more difficult. Figure 4 shows
the same set of features and classification procedure as Figure 2,
but this time, all observations on one plate are used as the training
set, while the test observations come from a different plate. The
accuracy is far worse than the within-plate case.

Most features show a large drop in accuracy for cross-plate clas-
sification. A noticeable standout is the “7 hours minus 2 hours"
family of features, which reflect the rate of initial cell growth (for
example, average accuracy of 0.93 on gel-treated cultures at 4000
Hz). Though simple, this feature type performs well when paired
with several other types of features, or even with itself at two dis-
tinct frequencies. Such a feature draws on the information provided
by the early growth stage while accounting for the level reached
during the first two hours, making the values less sensitive to the
initial conditions of each cell culture.
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Figure 4: LDA classification regions, with training set from
one plate and test set from a second plate. Many test obser-
vations are incorrectly classified.

In general, features focusing on later-stage behavior also appear
to be more robust to plate-to-plate variation. The process of each
culture reaching confluence, or being wounded with the same high-
voltage current, appears to equalize the effects of initial conditions.
Indeed, features measuring local variability after confluence are
among the top overall performers (such as �̂�2 from an ARIMA(0,1,1)
model, with an accuracy of 0.92 on BSA at 500Hz).While the current
dataset is small, these are promising indicators of useful features.
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5 CONCLUSION
This paper demonstrates a methodology for differentiating between
standard cell cultures and those infected with a mycoplasma organ-
ism, by comparing features of their ECIS® time courses. Detecting
contamination in this way is particularly desirable since the ECIS
data gathered during the process can also be used to investigate
other scientific questions about cell morphology, without requiring
a separate tool, or labeling or destroying cells.

We have determined that high classification accuracy can be
achieved using a straightforward classification algorithm such as
LDA, applied to a small number of interpretable features. The best
individual features depend on the cell type and contaminant; typi-
cally, combining features at different frequencies is most effective.

We can also see that there is substantial variation across plates.
Since this experimental variation is to be expected in practice, where
cultures will be grown at different times and inmultiple laboratories,
it is an important topic for further investigation. We have already
shown that certain features appear to be more robust to this “plate
effect" than others, especially those that reduce the effect of initial
conditions; it may also be possible to normalize the measurements
in someway, though a naivemethod is not effective. A larger dataset
will be needed to study this plate effect more fully.
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A SUPPLEMENTARY MATERIALS
A.1 Methodology of ECIS data collection
A.1.1 Preparation of the wells. Proteins were adsorbed to the sur-
face of wells in 96W1E+ (Applied BioPhysics, Inc.) arrays using
sterile solutions of bovine serum albumin (BSA) (Pentex® brand
Miles Laboratories, Inc.) and of gelatin (Fisher purified grade gelatin;
275 bloom) in 0.15 M NaCl at a concentration of 200 micrograms/ml.
Half of the wells in each plate received 200 microliters of either BSA
or gelatin solutions at room temperature. Following 15 minutes
to allow protein adsorption, the solutions were aspirated from the
wells, and all wells received 200 microliters of a sterile solution of
10 mM cysteine in distilled water (Electrode Stabilizing solution,
Applied BioPhysics) to stabilize the gold electrodes. The cysteine
solution remained in the wells for at least 30 minutes and was
aspirated just prior to cell inoculation.
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A.1.2 Cell culture. BSC-1 cells and MDCK II cells were obtained
from the American Type Culture Collection (Manassas, VA) and
grown in DMEM (low glucose, SIGMAD6046) with 10% fetal bovine
serum. Antibiotics were not used to eliminate any possible effects
upon the mycoplasma infections being studied. Cells were grown to
near confluency, and cell suspensionswere prepared. BSCI-1 cell lay-
ers were disrupted using trypsin/EDTA, and MDCK II were exposed
first to EDTA for 10 min before the introduction of trypsin/EDTA.
Detached cells were harvested using complete medium and cen-
trifuged (250 x g, 5 mins). The cell pellets were resuspended in
complete medium at 37◦ C, counted, and plated into the ECIS wells.
The arrays were mounted in a 96 well ECIS Station that was main-
tained in a tissue culture incubator at 37◦ C with 5% carbon dioxide
and 95% relative humidity.

A.1.3 Infection of cell layers with mycoplasma. Freeze-dried sam-
ples of M. hominis and M. hyorhinis were obtained from the Amer-
ican Type Culture Collection (Manassas, VA) in sealed vials and
opened under aseptic conditions. The dried samples were divided
into two approximately equal parts. One was placed in a sealed glass
vial and stored under liquid nitrogen vapor for future inoculation.
The other was split and used to inoculate cultures of either BSC-1
cells or MDCK II cells. The lyophilized material was dispersed into
the medium of 50% confluent culture to initiate the infection. All
infected cultures were passaged several times using fastidious care
to prevent contamination of any uninfected cultures.

Tests were routinely run to verify infection of the inoculated
cultures and to assure that uninfected cultures were mycoplasma
free. We used one of two different commercially available kits to
detect mycoplasma: the MycoAlert® Detection Kit by Lonza and
the PlasmoTest™ by InvivoGen.

A.1.4 Measurements. All impedance measurements were obtained
using the ECIS® Z𝜃 instrumentation using ninety-six well 96W1E+
arrays, provided by Applied BioPhysics, Inc., Troy, NY. ([9], [10],
[24])

Following the addition of cell suspensions to the wells, time
course impedance data were gathered at low non-invasive current
(2.5 microamperes) at seven different AC frequencies, doubling each
frequency from 500 Hz to 32 kHz. The impedance (both the resistive
and reactive components) recorded the attachment and spreading
of the cells and the formation of a confluent cell monolayer. At 48
hours post-inoculation, half of the wells received a brief invasive
high current pulse (3000 microamperes at 60 kHz for 20 sec), killing
the cells attached to the electrodes. The system then reverted to the
low current mode, and cellular migration was then monitored as
the normal cells on the periphery of the electrode migrated inward
to reestablish a monolayer upon the electrodes ([14]).

A.2 List of features
The following features were extracted from the time series of re-
sistance values for each cell culture. Each feature was calculated
using the time series at each available AC frequency. In addition, we
calculated most features using both the original measured values,
and values normalized to the empty wells, though typically there
were only small differences in performance (see 3).

(1) Value at 2 hours after inoculation

(a) Windowed value at 2 hours: average value over 5 consecu-
tive time points, centered at 2 hours after inoculation

(2) Value at 24 hours after inoculation
(a) Windowed value at 24 hours

(3) Second-order coefficient of a quadratic fit to the first 2 hours
after inoculation

(4) First-order coefficient of a quadratic fit to the first 2 hours
after inoculation

(5) Maximum value up to 24 hours after inoculation
(a) Maximum value up to 24 hours after inoculation of a

smoothed time series (rolling average over 5 time points)
(6) Maximum value up to 48 hours after inoculation
(a) Maximum value up to 48 hours after inoculation of a

smoothed time series
(7) Features of the first peak in a smoothed time series after

inoculation (these features use a rolling window of 15 time
points, for reduced sensitivity to noise in the early series):

(a) Value at this peak
(b) Time when this peak occurs

(8) Value at 7 hours minus value at 2 hours
(a) Windowed value at 7 hours minus windowed value at 2

hours
(9) Value at 57 hours minus value at 52 hours
(a) Windowed value at 57 hours minus windowed value at 52

hours
(10) Value at 57 hours over value at 52 hours

(a) Windowed value at 57 hours over windowed value at 52
hours

(11) Ratio of “value at 57 hours minus value at 52 hours" to “value
at 7 hours minus value at 2 hours"

(a) Ratio of “windowed value at 57 hours minus windowed
value at 52 hours" to “windowed value at 7 hours minus
windowed value at 2 hours"

(12) Coefficients from ARIMA models fit to post-confluence/pre-
wounding data, from 24 to 36 hours:

(a) 𝐴𝑅𝐼𝑀𝐴(1, 1, 0) (𝐴𝑅(1) model with first differencing), 𝜙1
(b) 𝐴𝑅𝐼𝑀𝐴(1, 1, 0), constant term
(c) 𝐴𝑅𝐼𝑀𝐴(0, 1, 1) (𝑀𝐴(1) model with first differencing), 𝜃1
(d) 𝐴𝑅𝐼𝑀𝐴(0, 1, 1), constant term

(13) Estimated error variance from these fitted ARIMA models:
(a) 𝐴𝑅𝐼𝑀𝐴(1, 1, 0), �̂�2
(b) 𝐴𝑅𝐼𝑀𝐴(0, 1, 1), �̂�2

(14) Features measuring autocorrelation time series from 24 to
36 hours, after first differencing:

(a) ACF at lag 1
(b) ACF at lag 2
(c) PACF at lag 1
(d) PACF at lag 2

(15) Sample variance of once-differenced time series from 24 to
36 hours

(16) Sample standard deviation of once-differenced time series
from 24 to 36 hours

(17) Features of the first peak in a smoothed time series after
wounding:

(a) Value at this peak
(b) Time when this peak occurs
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(18) Minimum value after wounding
(a) Minimum value after wounding of a smoothed time series

(19) Features from the Growth-to-Confluence Detector of Zhang
et al., applied to post-wounding data:

(a) 𝜏 , the detected time for the beginning of the confluent
phase

(b) 𝑑 , the estimated long-memory parameter for the series
following confluence

A.3 Additional results
A.3.1 Results for classification algorithms. The three classification
algorithms used in this study are classification trees, linear discrim-
inant analysis (LDA), and quadratic discriminant analysis (QDA).
Following the findings of [8], we do not investigate further possi-
bilities for the parameters of the discriminant analysis beyond LDA
and QDA, since these were not found to have a great effect on the
classification of cells.

Overall, LDA was the most effective classification algorithm on
our main dataset. The average performance of the LDA classifiers
over all feature pairs was 0.882, as compared to 0.855 for QDA
classifiers and 0.857 for trees. In a small number of cases, the dis-
criminant analysis algorithms are unable to define classification
regions, thanks to a small sample size and small numerical differ-
ences between individual wells’ feature scores. The tree method
can be used in these cases.

The difference in performance between the methods is, indeed,
not large. We find LDA to be desirable, however, not only for its
slight advantage in performance but for the nature of its classifica-
tion regions, which are easy to describe and visualize.

A.3.2 Results for different cell/contaminant types. We summarize
additional results from the within-plate classification task for the
three different combinations of cell type and contaminant.

For MDCK-II cells with M. hominis, 27% of all feature pairs
yielded perfect classification accuracy on BSA-treated cultures, and
25% of all pairs did so on gel-treated cultures. Some examples of
pairs with perfect accuracy include:

• 57 hours - 52 hours, 32000 Hz and Value of initial peak, 1000
Hz; BSA

• Sample variance of differenced series, 8000 Hz and Value of
post-wound peak, 2000 Hz; BSA

• Value at 2 hours, 500 Hz and PACF of differenced series, lag
2, 32000 Hz; gel

There are many individual features with average accuracy rates
extremely close to 1 (above 0.99). These include:

• (57 hours - 52 hours)/(7 hours - 2 hours),500 Hz, gel
• 57 hours - 52 hours, 500 Hz, BSA
• Quadratic coefficient from fit to first 2 hours, 100 Hz, gel
• Value of post-wound peak, 1000 Hz, gel

For MDCK-II cells with M. hyorhinis, 13% of all feature pairs
yielded perfect classification accuracy on BSA-treated cultures, and
38% of all pairs did so on gel-treated cultures. Some examples of
pairs with perfect accuracy include:

• Quadratic coefficient from fit to first 2 hours, 16000 Hz and
57 hours/52 hours, 32000 Hz, gel

• Max over first 24 hours, 4000 Hz and Quadratic coefficient
from fit to first 2 hours, 1000 Hz, gel

• Minimum value after wounding, 500 Hz and Post-wounding
long-memory parameter 𝑑 , 1000 Hz, BSA

Again, many individual features have average accuracy rates
above 0.99. These include:

• Max over first 24 hours, 8000 Hz, BSA
• 57 hours - 52 hours, 32000 Hz, gel
• Quadratic coefficient from fit to first 2 hours, 400 Hz, gel
• Minimum value after wounding, 500 Hz, gel

For BSC-1 cells withM. hominis, 0.08% (888/113469) of all feature
pairs yielded perfect classification accuracy on BSA-treated cultures,
and only 4 pairs did so on gel-treated cultures. Some examples of
pairs with perfect accuracy include:

• Max over first 24 hours, 32000 Hz andMax over first 24 hours,
8000 Hz, gel

• Sample variance of differenced series, 500 Hz and Value at
24 hours, 500 Hz, BSA

• Quadratic coefficient from fit to first 2 hours, 1000 Hz and 7
hours - 2 hours, 16000 Hz, BSA

Overall, the individual featureswith the highest average accuracy
rate are:

• Quadratic coefficient from fit to first 2 hours, 500 Hz, BSA:
0.964

• Sample standard deviation of differenced series, 32000 Hz,
BSA: 0.957

• Sample standard deviation of differenced series, 1600 Hz,
BSA: 0.950

• Linear coefficient from quadratic fit to first 2 hours, 1000 Hz,
BSA: 0.943

A.3.3 Results for cross-plate classification. For the cross-plate clas-
sification task, few feature pairs had perfect average classification
accuracy across train-test combinations: 1 for BSA-treated cells and
97 for gel-treated cells. Some examples with accuracy above 0.99
include:

• �̂�2 fromARIMA(1,1,0), 500 Hz and Value of post-wound peak,
500 Hz, BSA

• 7 hours - 2 hours, 4000 Hz and Constant from ARIMA(0,1,1),
16000 Hz, gel

• Sample standard deviation of differenced series, 500 Hz and
Value at 2 hours, 1000 Hz, gel

Overall, the individual featureswith the highest average accuracy
rate are:

• 7 hours - 2 hours, 4000 Hz, gel: 0.933
• Sample standard deviation of differenced series, 500 Hz, BSA:
0.926

• 7 hours - 2 hours, 2000 Hz, gel: 0.925
• �̂�2 from ARIMA(0,1,1) model, 5000 Hz, BSA: 0.924
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