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ABSTRACT
Forecasting multivariate time series is challenging as the variables 
are intertwined in time and space. Estimating such complex spa- 
tiotemporal correlations between variables is an important factor 
in achieving accurate prediction results. This paper shows that this 
complex relationship can be effectively estimated by a composition 
of simple linear functions in the case of traffic signals. Particularly, 
we propose to regularize the prediction model by the structural 
information of the transportation network with the help of graph 
heat diffusion kernels. We confirm by extensive experiments that 
our proposed simple model shows comparable or better forecasting 
performance to Deep Neural Network-based predictors with fewer
free parameters.

CCS CONCEPTS
• Computing methodologies → Bayesian network models.
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1 INTRODUCTION
Multivariate time-series prediction is an important task since many 
real-life problems can be modeled within this framework, such 
as weather forecasting, traffic prediction, etc. Since variables are 
complexly interrelated in time and space, proper modeling greatly 
influences the predictive performance. For example, in transporta- 
tion sensor networks, some spatially closed sensors measure similar 
patterned signals, but others record significantly different data, as 
shown in Fig. 1(a) and (b). Therefore, sensor B’s signal can be uti- 
lized to predict sensor A’s one as the two signals are well correlated
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with each other. However, the signal of sensor C is not correlated
with that of sensor A and may not contribute to the prediction.

Deep Neural Network (DNN) frameworks have been popularized
to predict time series as they can approximate any complicated func-
tions by universal approximation theorem [3], and their parameters
can be effectively estimated through back-propagation. Especially,
recent studies have prioritized distance-based correlations between
sensors by defining signals on graphs to reduce the complexity
of DNN architectures [1, 2, 7, 10–13]. Utilizing this information,
the signal’s spatial relationship can be correlated into a temporal
one through the heat propagation kernel (or convolutional filter).
By crafting the heat propagation model into DNN architectures,
state-of-the-art performance can be achieved for traffic prediction.

This paper shows that even linear models can successfully pre-
dict multivariate time series with high accuracy. We integrate the
sensors’ structural information into existing linear traffic model
e.g., [6], inheriting the proper representation of periodicity in the
traffic signal. In details, we establish a heat diffusion model from
sensors’ structural information and assume that the traffic signals’
change over time is regularized by this heat diffusion model. After
that, we update the model with data and estimate the required pa-
rameters optimally through Bayesian inference [8]. The estimation
process is relatively fast as most parameter estimation is performed
by analytic calculations.

Predictors based on this model showed comparable performance
with a much shorter learning time than state-of-the-art models
based on Deep Networks. Especially, the proposed model shows
great long-term prediction performance as the model captures well
the periodicity of traffic signals. Since the proposed model requires
minimal hyper-parameter tuning (most parameters are optimized
through Bayesian inference), it might be applied to other daily
periodic graph signal prediction problems easily (e.g., weather fore-
casting, daily energy consumption prediction).

2 DATA MODEL
2.1 Graph signal
We start with modeling a transportation network using a graph.
We define an undirected graph G = (V, E); V is a set of nodes
where each 𝑣 ∈ V denotes a node (sensor) on the network; E is
a set of edges where each of the edges connects two nodes. We
define a signal on the nodes of the graph with a traffic feature
(in this paper, for instance, speed), which is expressed as a vector
x𝑑𝑡 ∈ R𝑁 of a day 𝑑 and time 𝑡 , where the constant 𝑁 is the number
of nodes. Therefore, the vector x𝑑𝑡 represents a snapshot of speeds
at a particular time and day. Especially, we express the day index on
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Figure 1: A transportation sensor network in California and
signals of three different sensors on the network. Although
the sensors B and C are close to each other in distance, as
these sensors are located in different freeways (opposite di-
rection), two traffic signals from these sensors show very dif-
ferent patterns.

the vector representation to exploit the periodicity of traffic signals
later.

We also define a weight matrix that contains all edge weights
between node 𝑣𝑖 and 𝑣 𝑗 using a Gaussian kernel weighting function

with a threshold constant 𝜅: [W]𝑖, 𝑗 = 𝑒−
dist2 (𝑖,𝑗 )

𝜎2 if dist(𝑖, 𝑗) ≤ 𝜅, 0
otherwise. The function dist(𝑖, 𝑗) denotes the shortest travel dis-
tance on G between the node 𝑣𝑖 and 𝑣 𝑗 :

dist(𝑖, 𝑗) = min{dist(𝑣𝑖 → 𝑣 𝑗 ), dist(𝑣 𝑗 → 𝑣𝑖 )}, (1)

where the function dist(𝑣𝑖 → 𝑣 𝑗 ) represents the shortest travel
distance from node 𝑣𝑖 to node 𝑣 𝑗 . As the graph G is undirected, the
weight matrix is a symmetric matrix, i.e., W𝑇 = W.

The constants 𝜎 and 𝜅 are the kernel width and the distance
threshold. If the kernel width is large, the correlation of a pair of
nodes becomes strong (close to one) even though the shortest travel

distance between the two nodes is large. On the other hand, the
smaller the threshold is, the sparser the weight matrix is.

2.2 Heat diffusion model on graphs
The graph heat diffusion model [5] explains how each vertex propa-
gates its heat to its neighbors on the graph over time. As congestion
evolves from a location to its neighbor over time, we can express
the change of traffic features by the heat diffusion model.

The kernel on graphs that supports the heat diffusion model is
introduced by [5]:

HG (𝜏) = 𝑒−𝜏L(G) , (2)

where the constant 𝜏 denotes the diffusion period and the matrix
L(G) is the Laplacian of a graph G that is L(G) = diag(W1) −W.

Therefore, with the heat diffusion kernel, we can describe how a
traffic signal is diffused through the graph G as follows:

x̃𝑑𝑡+1 (𝜏) = HG (𝜏)x𝑑𝑡 . (3)

We call the vector x̃𝑑
𝑡+1 (𝜏) the internally diffused signals from x𝑑𝑡

by the diffusion period 𝜏 on the graph G over one incremental time
step.

We also define a convex combination of the heat diffusion kernels
of 𝐾 different predetermined diffusion periods with a set T =

{𝜏 (0) , 𝜏 (1) , · · · , 𝜏 (𝐾−1) }1 as

HG (T ) =
∑
𝜏 ∈T

𝜋 (𝜏)HG (𝜏), (4)

where
∑
𝜏 ∈T 𝜋

(𝜏) = 1.

2.3 Dynamic linear model (DLM) with heat
diffusion kernels

In this subsection, we describe how tomodel the time series of traffic
signals with a linear model. In particular, we describe a model that
can be applied to a non-stationary time series while expressing
the seasonality of a traffic signal well. In [6], authors defined a
state equation of traffic in a small-scale transportation network as
temporally localized linear models called Dynamic linear model
(DLM) as follows:

x𝑑𝑡+1 = H𝑡x𝑑𝑡 + n𝑑𝑡 ,∀𝑡 ∈ [0,𝑇 − 1] . (5)

The first time index (𝑡 = 0) corresponds to the beginning of a day
(midnight in our work), and the last index (𝑡 = 𝑇 − 1) refers to
the end of the day. Each entry of the noise vector n𝑑𝑡 ∈ R𝑁 is
assumed to be an independent and identically distributed (i.i.d.)
random variable, which follows a Gaussian distribution N(0, 𝛼−1

𝑡 ).
Here the precision parameter 𝛼𝑡 explains how precisely a data pair
(x𝑑𝑡 , x𝑑𝑡+1) fits to the model.

In this paper, we embed heat diffusion kernels into DLM to
exploit topological information of the transportation network. The
key idea is to express the transition matrix as a small variant from

1We predetermine the set T with two diffusion periods 𝜏0 and 𝜏∞ that correspond
two extreme cases (𝜏 → 0 and 𝜏 → ∞), respectively. In practice, we set 𝜏0 as the
biggest one that satisfies



HG (𝜏) − I




2 < 𝜖 and 𝜏∞ as the smallest one that satisfies

HG (𝜏) − 1/𝑁 11𝑇




2 < 𝜖 . After that, we define T = logspace(𝜏0, 𝜏∞, 𝐾), where the
function returns 𝐾 evenly spaced numbers on a log scale from 𝜏0 to 𝜏∞ .



Multivariate time series forecasting with diffusion kernels: Freeway traffic prediction MileTS ’21, August 14th, 2021, Singapore

a mixture of diffusion kernels. We decompose the transition matrix
into the time-variant internal diffusion and residual as follows:

H𝑡 = HG𝑡 (T ) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (6)

Here, the time dependent internal transition matrix (HG𝑡 (T )) can
be safely defined as in Eq. (4) by substituting the time-invariant
parameter 𝜋 (𝜏) for the time-variant one 𝜋 (𝜏)𝑡 . The internal diffusion
matrix represents how the current signal x𝑑𝑡 diffuses through the
transportation network (endogenous) whereas the residual repre-
sents how much the traffic situation is getting better or worse in
the next time step based on the current signal (exogenous). With
this interpretation, we model the prior distribution of the transition
matrix as:

𝑓 (H𝑡 |𝛾𝑡 ,Π𝑡 ,G) = N
(
HG𝑡 (T ), 𝛾

−1
𝑡

)
, (7)

where the precision parameter 𝛾𝑡 represents how precisely the
diffusion matrix explains the transition matrix and Π𝑡 = {𝜋 (𝜏)𝑡 |𝜏 ∈
T }.

3 MODEL INFERENCE
3.1 Inference of the transition matrix
We infer the transition matrix by maximizing its posterior distribu-
tion:

Ĥ𝑡 = argmax
H𝑡

𝑓 (H𝑡 |X𝑡 ,X𝑡+1, 𝛼𝑡 , 𝛾𝑡 ,Π𝑡 ,G), (8)

where X𝑡 =
(
x0
𝑡 x1

𝑡 · · · x𝑚−1
𝑡

)
and it is proportional to the

product of the prior and the likelihood by Bayes’ rule:

Posterior dist. ∝ 𝑓 (H𝑡 |𝛾𝑡 ,Π𝑡 ) 𝑓 (X𝑡+1 |X𝑡 ,H𝑡 , 𝛼𝑡 ) . (9)

Maximizing the posterior distribution can be interpreted as bal-
ancing between the prior and likelihood of the transition matrix.
For example, if there is no topological information about sensors,
the transition matrix should be inferred by considering the training
dataset only. In this case, we can set the prior distribution as a
uniform distribution meaning that there is no strong preference for
a particular value of the transition matrix and the most probable
transition matrix becomes the maximum likelihood solution [6]:

Ĥ𝑡 |No topological info. := H̄𝑡 = argmax
H𝑡

𝑓 (X𝑡+1 |X𝑡 ,H𝑡 , 𝛼𝑡 )

= X𝑡+1X𝑇𝑡 (X𝑡X𝑇𝑡 )−1 .
(10)

On the other hand, if we do not have any measurements, the most
probable transition matrix should be the maximizer of the prior
distribution:

Ĥ𝑡 |No measurements = argmax
H𝑡

𝑓 (H𝑡 |𝛾𝑡 ,Π𝑡 ) = HG𝑡 (T ) . (11)

The most probable transition matrix is a function of these two
matrices:

Ĥ𝑡 = 𝑔(H̄𝑡 ,HG𝑡 (T ))

= (H̄𝑡𝛼𝑡U𝑡Λ𝑡 + HG𝑡 (T )𝛾𝑡U𝑡 ) (𝛼𝑡Λ𝑡 + 𝛾𝑡 I)
−1U𝑇𝑡 ,

(12)

with the eigendecomposition of X𝑡X𝑇𝑡 = U𝑡Λ𝑡U𝑇𝑡 .

3.2 Inference of other parameters
For the next step, we infer parameters 𝛼𝑡 , 𝛾𝑡 , and Π𝑡 . Similarly to
inferring the most probable transition matrix, we infer the most
probable 𝛼𝑡 , 𝛾𝑡 , and Π𝑡 by maximizing the following posterior
distribution:

𝛼𝑡 , 𝛾𝑡 , Π̂𝑡 = argmax
𝛼𝑡 ,𝛾𝑡 ,Π𝑡

𝑓 (𝛼𝑡 , 𝛾𝑡 ,Π𝑡 |X𝑡+1,X𝑡 ) . (13)

Setting the prior distribution (𝑓 (𝛼𝑡 , 𝛾𝑡 ,Π𝑡 )) as a uniform distri-
bution based on the assumption that there is no preference for a
certain value for these parameters before inferring, the objective
changes to maximize evidence [8] since

𝑓 (𝛼𝑡 , 𝛾𝑡 ,Π𝑡 |X𝑡+1,X𝑡 ) ∝ 𝑓 (X𝑡+1 |X𝑡 , 𝛼𝑡 , 𝛾𝑡 ,Π𝑡 ) 𝑓 (𝛼𝑡 , 𝛾𝑡 ,Π𝑡 )
∝ 𝑓 (X𝑡+1 |X𝑡 , 𝛼𝑡 , 𝛾𝑡 ,Π𝑡 ) .

(14)

and the evidence is

𝑓 (X𝑡+1 |X𝑡 , 𝛼𝑡 , 𝛾𝑡 ,Π𝑡 ) =
∫

𝑓 (X𝑡+1 |X𝑡 ,H𝑡 , 𝛼𝑡 ) 𝑓 (H𝑡 |𝛾𝑡 ,Π𝑡 )𝑑H𝑡

= N(HG𝑡 (T )X𝑡 , 𝛼
−1
𝑡 I + 𝛾−1

𝑡 X𝑇𝑡 X𝑡 ) .
(15)

Therefore, we infer the most probable hyper-parameters by maxi-
mizing the log-evidence with gradient-based algorithms:

maximize
𝛼𝑡 ,𝛾𝑡 ,Π𝑡

logN(HG𝑡 (T )X𝑡 , 𝛼
−1
𝑡 I + 𝛾−1

𝑡 X𝑇𝑡 X𝑡 )

subject to 0 ≤ 𝜋 (𝜏)𝑡 ≤ 1 ∀𝜏 ∈ T , 0 < 𝛼𝑡 , 0 < 𝛾𝑡 ,∑
𝜏 ∈T

𝜋
(𝜏)
𝑡 = 1.

(16)

We emphasize that inferring the parameters by maximizing the
evidence leads to avoid the transition matrix to over-fit to either
data measurements or prior information. In Eq. (15) we calculate the
evidence bymarginalizing the transition matrix. In other words, we
set the transition matrix as a random variable instead of fixing it as
a representative value, e.g., maximum likelihood estimator. Noting
that these parameters determine the contributions of measurements
(H̄𝑡 ) and priors (HG𝑡 (T )) when the transition matrix is estimated
in Eq. (12), the marginalization process automatically penalizes for
the transition matrix to become to be an extreme case [8].

4 PREDICTION OF TRAFFIC FEATURES
We infer the probability density function of the signal x𝑑

𝑡+ℎ

𝑓 (x𝑑
𝑡+ℎ |x

𝑑
𝑡 , x

𝑑
𝑡−1 · · · ,G), (17)

where the time index 𝑡 and 𝑡 + ℎ represent the current time and
the future time index (ℎ-steps ahead) respectively that we want
to predict. In the expression, the probability density function is
conditioned by the signals {x𝑑𝑡 , x𝑑𝑡−1, · · · } and the graph G that
represents a set of measurements and prior structural information,
respectively.

In reality, it is common to limit the number of measurements
to a fixed-sized one in a training set. In addition to the training
set that contains measurements apart from the day to be predicted,
it is crucial to keep measurements just before 𝑡 as the temporal
correlation is strong when the time difference is small. As a result,



MileTS ’21, August 14th, 2021, Singapore Trovato and Tobin, et al.

Table 1: RMSE of different methods for PEMS-BAY dataset.

Model Horizon
15 min 30 min 60 min

FC-LSTM [4] 4.19 4.55 4.96
DCRNN [7] 2.95 3.97 4.74
Graph WaveNet [10] 2.74 3.70 4.52
Proposed 2.91 3.77 4.44

we estimate the density function that is conditioned by a training
set, the 𝑝-most recent measurements, and the graph G:

𝑓 (x𝑑
𝑡+ℎ |x

𝑑
𝑡 , x

𝑑
𝑡−1, · · · , x

𝑑
𝑡−(𝑝−1) ,X0:𝑇−1,G), (18)

where the training setX0:𝑇−1 contains signals from 𝑡 = 0 to 𝑡 = 𝑇−1
of multiple days 𝑑 ∈ [0,𝑚 − 1]. The dynamic linear model further
simplifies the distribution (18) as 𝑓 (x𝑑

𝑡+ℎ |x
𝑑
𝑡 ,X𝑡 :𝑡+ℎ,G) because of

the temporal locality of the model.
We define a predictor x𝑑

𝑡+ℎ |𝑡 at the time step 𝑡 for the horizon ℎ
as the maximizer of the probability density function

x𝑑
𝑡+ℎ |𝑡 := argmax

x𝑑
𝑡+ℎ

𝑓 (x𝑑
𝑡+ℎ |x

𝑑
𝑡 ,X𝑡 :𝑡+ℎ,G) . (19)

In other words, we define the predictor x𝑑
𝑡+ℎ |𝑡 as the most probable

x𝑑
𝑡+ℎ based on the current measurement vector x𝑑𝑡 , the training set

X𝑡 :𝑡+ℎ , and the graph G.
The posterior distribution 𝑓 (x𝑑

𝑡+ℎ |x
𝑑
𝑡 ,X𝑡 :𝑡+ℎ,G) is a Gaussian

distribution that has the mean vector Ĥ𝑡+ℎ−1 · · · Ĥ𝑡x𝑑𝑡 assuming
𝑓 (H𝑡 |X𝑡 ,X𝑡+1, 𝛼𝑡 , 𝛾𝑡 ,Π𝑡 ,G) = 𝛿 (H𝑡 − Ĥ𝑡 ), where the Dirac delta
function 𝛿 (𝑥) = 1 when 𝑥 = 0 and 𝛿 (𝑥) = 0, otherwise. The most
probable transition Ĥ𝑡 is the maximizer of the posterior distribution
𝑓 (H𝑡 |·). Since the mean value of a Gaussian distribution maximizes
the distribution, the optimal predictor is

x𝑑
𝑡+ℎ |𝑡 = Ĥ𝑡+ℎ−1 · · · Ĥ𝑡x𝑡 := Ĥ𝑡+ℎ−1←𝑡x

𝑑
𝑡 . (20)

Therefore, the most probable signal x𝑑
𝑡+ℎ is the successive prop-

agation of the current measurement vector x𝑑𝑡 through the most
probable transition matrices.

5 EXPERIMENTS
5.1 Settings
The PEMS-BAY dataset is used as a benchmark to compare with
other state-of-the-art models [7, 9]. This data set consists of data
measured from 325 sensors (Fig. 1(b)) on the freeways of San Fran-
cisco Bay area. The training and test dataset were constructed in
the same way as [7, 9] to achieve a fair comparison.

5.2 Other methods
5.2.1 FC-LSTM (Fully Connected Long Short-Term Memory). This
model has been used as a representative reference for time-sequence
modeling in deep learning [4]. The RMSE score for PEMS-BAY
dataset is retrieved from [7].

5.2.2 DCRNN (Diffusion Convolution Recurrent Neural Network).
The work in [7] constructed a successful predictor by extracting
the signal’s spatial features from the underlying graph structure.
The model extracts spatial and temporal features of multivariate
time series by diffusion convolutional and RNN layers, respectively.

5.2.3 Graph WaveNet. The authors of [10] suggested a model that
extracts temporal features by dilated convolutional layers rather
than an RNN structure, which shows better prediction performance
than the DCRNN with a shorter learning time.

5.3 Results
Table 1 shows the RMSE of each model and our proposed method.
We confirm that the performance of the proposed method reaches
that of state-of-the-art methods based on a complex deep learning
architecture. It even performs better for long-term prediction as our
model is based onDLM that explicitly expresses the daily periodicity
of traffic signals.

Our proposed method requires lower computational effort com-
pared to the others. Also, it infers the majority of the parameters
(𝑁 2) analytically by Eq. (12). The method only requires numerical
computation when it solves the optimization problem (16) to infer
𝐾 + 2 parameters where 𝐾 + 2 is noticeably smaller than 𝑁 2. On the
other hand, all state-of-the-art methods require heavy numerical
computations to train a large number of parameters as they are
based on deep-neural-net architectures. As a result, our method
successfully infers all parameters at the time scale of minutes with
CPU computations, while the others compute at the time scale of
hours with GPU computations.

Another advantage of our model compared to the deep-learning-
based architectures is that only a small number of parameters should
be decided heuristically. This can provide easy scalability to apply
our model to other traffic datasets or datasets with similar prop-
erties to traffic data (daily periodicity). For example, in our model,
the parameters to be determined before training are the threshold
constant 𝜅, the kernel width 𝜎 to build a proper graph, and the
number of diffusion processes 𝐾 to determine how many diffusion
processes should be mixed. We empirically choose the constants 𝜅
and 𝜎 such that the corresponding graph G is a 𝑘-vertex-connected
graph with a small number 𝑘 . For the number of diffusion processes
𝐾 , we set 𝐾 = 5 for the PEMS-BAY dataset but the prediction per-
formance is not sensitive to the parameter (±0.01 minutes changes
of the RMSE score from 𝐾 = 3 to 𝐾 = 7).

6 CONCLUSION
In this paper, we show that even linear models are enough to rep-
resent complex spatio-temporal correlations of multivariate time
series when prior structural information is properly integrated into
the models. We integrate topological information of the sensor net-
work into the model by assuming that the parameters in the model
are supported by the mixture of diffusion kernels with uncertain-
ties. We exploit the Bayesian inference to optimally determine the
parameters that characterize the distribution of diffusion processes
and the importance of measurements against prior information.
Most importantly, the proposed method reaches accurate predic-
tion at the level of state-of-the-art methods with less computational
effort. It particularly shows excellent performance in long-term



Multivariate time series forecasting with diffusion kernels: Freeway traffic prediction MileTS ’21, August 14th, 2021, Singapore

predictions by exploiting DLM’s periodicity modeling. Our method
can be applicable for predicting graph signals having daily patterns
such as weather or energy consumption.
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