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ABSTRACT

Large and acute economic shocks such as the 2007-2009 financial
crisis and the current COVID-19 infections rapidly change the
economic environment. In such a situation, real-time analysis of
regional heterogeneity of economic conditions using alternative
data is essential. We take advantage of spatio-temporal granularity
of alternative data and propose a Mixed-Frequency Aggregate
Learning (MF-AGL) model that predicts economic indicators for
the smaller areas in real-time. We apply the model for the real-world
problem; prediction of the number of job applicants which is closely
related to the unemployment rates. We find that the proposed model
predicts (i) the regional heterogeneity of the labor market condition
and (ii) the rapidly changing economic status. The model can be
applied to various tasks, especially economic analysis.
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1 INTRODUCTION

Devastating external economic shocks such as the 2007-2009 finan-
cial crisis and COVID-19 infections rapidly change economic cir-
cumstances. Amid these situations, forecasting of current economic
status, Nowcasting, is essential. Nowcasting often takes advantage
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of alternative data, non-standard data such as search queries, loca-
tion data, SNS data, and satellite images [2, 4, 6, 11, 18, 26].

In response to the surging demand for alternative data, tech
giants have started providing economic indexes based on their
proprietary data [1, 10, 20]. However, their index does not help
us understand the whole picture of the economy itself because
the relationship between these indices and familiar economic in-
dicators such as GDP is unclear. To fill this gap, many nowcast-
ing/forecasting models that use high-frequency data such as Google
search query to predict economic variables are proposed [2-4, 18,
24-26]. Models for mixed frequency data have been actively studied
by economists [7, 8].

One caveat of these studies is that they do not fully extract the
granularity of the alternative data. Although the predictor variables
have a greater granularity, the predicted values are aggregated at
the state or even national level. However, governments, especially
local governments need to deal with heterogeneity among small
areas.

The problem is that the official statistics are not granular. This is
a typical aggregate learning problem [19]. Recently, the problem has
been taking attention from an increasing number of researchers [5,
15].

We, here, combine mixed-frequency data literature in econom-
ics and aggregate learning literature in machine learning to fully
utilize the richness of alternative data and provide an example of
useful application. Our Mixed-Frequency Aggregate Learning
(MF-AGL) model takes advantage of spatio-temporal granularity
of alternative data and predicts economic indicators in smaller ar-
eas in real-time, which are not possible by standard forecasting
models. The model also updates the prediction in real-time using
high-frequency data without high-frequency target data. To train
the model, we define a novel loss function for spatio-temporally ag-
gregated label data and granular predicted values. More specifically,
we aggregate predicted values for small areas and calculate loss
using an aggregated level. We also calculate the loss for each high-
frequency feature so that the model can learn the mixed-frequency
structure of the data. That means we reuse the same label data over
and over.

We apply the model to the real-world problem; prediction of the
number of job applicants for smaller areas in Japan. The number of
job applicants reflects the condition of the labor market because
job applicants are also unemployed persons. An acute increase in
the number of job applicants implies deterioration of labor market
conditions.
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To our best knowledge, the present work is the first to propose
a novel method combining mixed frequency data and aggregate
learning. We also demonstrate its practical importance in a real-
world application. While we applied the model to the nowcasting
of the labor market, the model can be applied to any task that
contains (i) infrequent and aggregated indices such as GDP and (ii)
spatio-temporally granular data.

2 PROBLEM SETTING AND METHOD
2.1 Problem Setting

Let yf € R be a target variable which is of interest of economists
(e.g. GDP). p stands for some larger area such as nation and state
and ¢ stands for some longer time period such as quarter and month.
Let xI € R be feature variable which is correlated with the target
variable yf . g stands for some smaller area such as city and county
and 7 stands for shorter time period such as day. The difference
between t and 7, and p and q are the granularity. In particular, an
area p is divided by multiple small areas gs and time period t is
divided by multiple short time period 7. We use mapping function p
and 7 to describe the relationship. In particular, p(7) = t indicates
that time 7 belongs to t and 7(q) = p indicates area ¢ belongs to p.

Our goal is to find a predictor f which predict y?o from granular
data (xg)fgfo , where p(19) = to, (i.e. 7o belongs to #y). Notice that
the superscript is not larger area p but small area g. That is, f
predicts y? instead of yf.

Table 1 illustrates the data structure of our problem. Feature
vector x is observed for City 1 and 2 and for each day. But output
value y is only observed for prefecture (assume the prefecture
comprises of only two cities) and each month. We want to predict
monthly values for each city (i.e., yJ1an and yjzan). Since feature vector
x is collected in real-time, we want to update the prediction using
the latest information. As shown in Table 1 the predicted values
are changing according to the feature vector. That is, Jjan [Xjan1 #
Ujan | XJan2. In this way, we can fully utilize the real-time and granular
data for the forecast.

Table 1: The predicted data is updated every day using lat-
est information although the label data is only available for
spatially and temporally aggregated value.

output input pred
Pref A Pref A
Pref - - - -
Cityl | City2 City1 City2
1 1 ~1 1 ~2 2
J an 1 Xjanl x]anl y]an I Xjanl yjan | Xjanl
1 ~1 1 ~2
Jan 2 YJan X_]an2 X_]anZ yjan |X_]an2 yjan | x]anz
1 2 ~1 1 ~2 2
Jan 31 XJanSl x]anSl y]an I XJan31 yjan | XJanSl
1 2 ~1 1 ~2
Feb 1 Ykeb XFeb1 XFeb1 Yreb | XFeb1 Yreb | XFeb1

While we conduct spatial disaggregation, we directly predict
the aggregated value for a longer period. That is, we predict y?
rather than y. This seems simple supervised learning but it is not.
To see this, let 7 be Jan 15, 2020. Then ¢ is Jan 2020. We have data

only for the past. That is, we have x}]anl, szanz, cee szanl 5 but do not
have X;Ianl & x?an”, e ’X;Ian31' Nowcasting predicts the aggregated

Toda, Moriwaki and Ota

value using incomplete time series data [8]. For economists, the
monthly value y? is more informative than the daily value y7. y?
represents the economic status in a very short term while y? repre-
sents the forecast of the longer time period. For example, let y? be
the unemployment rate for January 2020 and 47 be that for January
1, 2020. While the daily movement of the unemployment rate is
interesting for stock traders who are eager to know the short-term
fluctuation, the forecast of the monthly unemployment rate is of
prime interest for policymakers who need to know the trend of
economic status. Furthermore, policy interventions take some time
to be implemented.

On the other hand, geographically granular estimates y? are
much more useful than aggregated value especially for local gov-
ernments who need precise information about their local economy.
Nevertheless, our method is easy to transform into a daily version.
In sum, our goal is to find a good predictor f(xY) for y?, u(r) =t.

2.2 Aggregate Learning for Mixed-Frequency
Data

Following the aggregate learning literature[5, 19], we first define
the aggregation function as,

it = Y wgf <L oD, (1)
qep

where wg € [0, 1] is weight. The weight controls for the share of
the values for each granular area in the large area. In the simplest
case (including the application discussed below), wg is set to one.
In these cases, f can learn the actual values of the target from the
features. However, when we only obtain normalized features such
as population per acre or averaged age, we need a weighted sum.
In these cases, the weights are pre-determined based on real data
and knowledge. Area and population are often surveyed at a fine
granularity by censuses and can be used as good proxies of the
share.

2.2.1 Mixed -Frequency Aggregate Learning Model. Predictor f pre-
dicts the outcome values for small areas. In contrast to standard su-
pervised learning, true values for the predictor can not be observed.
In another word, the predictor predicts latent values. The main
feature vector x? is of granular information such as search queries,
posts in social networking service (SNS), point of sales (POS), credit
card, and mobility data. The vector x contains the current value x7
and its lagged values. That is, x; = (x?, x?_il, ngz’ - -+ ). Forecasters
want to update the prediction when new data arrive. That is, 7 can
be any timing. For example, Let ¢ be April 2020 and 71, 72, - - - , 730
be April 1st, 2nd, - - - , 30th. Then, x;1 and x2 should give different
prediction. However, the label data are only available for complete
data XZ30 = (xZ30,x229, S ,xgl). xg?)o is missing in xzzg. In eco-
nomics, missing data is dealt with by either (i) a training model
on data with the same missing structure or (ii) an imputation of
missing data. In the above example, a forecaster who adopts (i) uses
only data from the 1st to 29th day for each month to keep the same
missing structure when training their model. Naturally speaking, it
causes a huge loss of information. A forecaster who resorts to (ii)
needs to prepare another model to conduct imputation.

In our model, the missing-ness is treated by introducing auxiliary

feature vector ¢ and non-linearity in the parameters. The vector ¢7
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contains one-hot encoded year, month, day, larger area p, and small
area ¢. By doing so, predictor f can learn the missing structure of
the data and appropriately use the information. The non-linearity of
the parameter is essential in this sense. We adopt a simple recurrent
neural network (RNN) to make the predictor flexible. As a result,
we can fully utilize the information and make it end-to-end.

2.2.2  Model Training. The predictor is trained by minimizing the
MSE loss,
2

L= 2 |- DL edGled|. @
Pt omp(r)=t q:r(q)=p
At each data point (7, p), the predictor f predicts the values for
small area g at 7. The predicted values are weighted average and
the loss is calculated.

2.2.3  Prediction. Trained predictor f is used for the prediction
using granular data. Forecaster can use real-time data x7 to predict
the smaller area’s current status as Q? = f(x7). The good news
is that the forecaster does not need to re-train the model until
new label data y is released. She can re-use the same model for an

extended period.

3 EXPERIMENT WITH JAPANESE JOB
APPLICATION DATA

We apply the model to predict the number of job applicants in
Japan. The Japanese government releases official statistics on the
number of persons who file job applications to public employment
offices on monthly basis. Job application is required to take up the
unemployment insurance benefits. The number of job applications
is a good proxy for the number of unemployed persons as the
unemployment insurance claims statistics in the U.S. is considered
one of the most important economic indicators by economists.

The reasons we chose the problem are the following. First, un-
employment is a huge tragedy; It leads to loss of income and also
loss of contact with society, which causes economic and mental
hardship. Real-time analysis is essential for a swift policy response.
Second, the prefecture-level data provided by the reports are too
rough for the appropriate policy response. In Japan, each prefecture
has a population of several million to ten million. More granular
statistics are needed for careful policy intervention. Third, monthly
updates of the reports are too infrequent. Looking at monthly data
for one or two months ago is not very meaningful especially amid
COVID-19.

Fortunately, there is a good alternative data for the number of job
applicants. As Moriwaki [18] shows GPS data from smartphones
has good predictive power for the number of unemployed persons.
In this study, we utilize similar datasets. In contrast to [18] who
only count the number of GPS readings inside the radius of the
offices, we extract rich features from these data.

The whole process is summarized in Fig. 1 We first extract fea-
ture vector z from raw GPS readings taken from mobile apps. Then
the visit predictor predicts xJ, the number of visits to public un-
employment offices located in each city. Then another predictor f
predicts y?, the number of job applicants for each office. The visit
predictor is trained on the different domains and transferred to the
task. The transfer learning is explained in Section 3.2.
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Figure 1: Overview of the data pipeline.

3.1 Datasets

We use three datasets as follows. Reports on Employment Ser-
vice is a monthly official statistic released by the Ministry of Health,
Labour and Welfare. The reports contain the monthly number of
job applicants by prefecture. The data is publicly available on the
webpage of the ministry [17]. GPS data from Smartphones is
taken from various mobile apps from Jan 1, 2016, to Oct 31, 2020.
The data is anonymized and not related to privacy. The number of
users ranges from several hundred thousand to several million. The
data contains tuples (latitude, longitude, timestamp). The data con-
tains no private information. Locations of Public Employment
Offices is publicly available on the webpage of the MHLW. We use
the location with the GPS trajectories to extract feature values [16].

3.2 Visits Prediction using Transfer Learning

3.2.1 Transfer of Visit Predictor. Since there is no true label for
public employment office visitors, we transfer the visit predictor
trained on the different proprietary source and transfer to the visit
prediction for the main task; visits to public employment offices.
The predictor is implemented using LightGBM [12].

3.2.2  Feature Extraction from GPS Readings. The crucial challenge
is to accurately count visitors from noisy GPS readings. Visited
point extraction methods typically rely on (i) the number of stay
points, (ii) the stop location, (iii) stop duration, and (iv) speed [9,
13, 21, 22].

3.2.3  Visits Prediction for Public Employment Offices. Unemployed
persons visit the nearest public employment office to file an un-
employment insurance claim. There are 544 offices in Japan. We
divide the entire country into 544 regions based on the location of
the offices assuming each region is covered by the nearest office.
We use the transferred predictor to predict the visit count to each
office.

3.3 Job Applicants Predictor and Aggregation
Function

With the predicted visits count, we train the job applicants pre-
dictor that predicts the number of job applicants for each public
employment office. The predictor uses past visit count and dummy
variables extracted from the date of making a prediction.

The training/prediction model is a simple recurrent neural net-
work. This model uses an LSTM layer and a multi-layer perceptron
to predict a daily visit count of small areas, and each prediction
is aggregated to predict a monthly visit count of large areas ac-
cording to Eq. (1). We use Adam [14] solver for optimization with
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B1 = 0.9, f2 = 0.999, initial learning rate = 0.0001, no weight de-
cay and no learning rate decay. We train our models for a total of
600 epochs with a batch size of 1 and the MSE loss described in
Eq. (2) on Tesla V100 GPU. We implemented the whole network in
PyTorch [23].

3.4 Spatial Disaggregation using MF-AGL
model

Fig. 2 shows the four maps represent regional heterogeneity of the
change of the number of job applicants. The maps are generated by
data from the actual Reports on Employment Service for October
2020 (Ground Truth), predictions by the proposed model (MF-AGL),
predictions by an auto-regressive model (AR), and predictions by
a Random Forest model (RF). The AR model uses the number of
job applications of past 11 months (i.e., 11 lags) as inputs, i.e., Qf =
fAR(yf_l, cee yf_n). RF model uses dummy variables for a year,
month, and prefecture as well as the number of job applications of
the past 11 months (i.e., 11 lags).

Ground Truth

»
L 0.10
; %-#'
uh
o 0.05
RF 0.00
-0.05
’ s -0.10
” v‘%

Figure 2: Year-over-year change in the number of job applicants
in Japan. Good (lighter)-bad (darker) conditions of labor market.
Ground Truth shows the actual data from official statistics;AR
shows the prediction made by the AR model with 11 lags;RF shows
the predictions made by Random Forest model with 11 lags and year,
month, and prefecture dummy as input;MF-AGL shows the predic-
tion made by MF-AGL model. MF-AGL model shows many granular
predictions.

The MF-AGL model is trained on the data from October 2016 to
September 2020. Then the model use feature extracted on October
31, 2020. The AR and RF model is trained on the data from October
2016 to September 2020 and uses the data from September 2020 as
input. It seems unfair that only the MF-AGL model uses the data
from October 2020. However, this is the strength of the nowcasting
model.

Now let’s turn to the maps in Fig. 2. One significant difference of
the MF-AGL model is its geographical granularity. While the other
three figures only tell that the southeast areas are in bad condition
(darker), the MF-AGL model shows that there is a mix of bad and
good conditions at a granular level. We can see there are darker
areas in the granular map that are bright in the ground truth data.
The local governments need to take care of these hidden problems.
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The other finding is that the AR and RF models are not good
at prediction. To see this, we first aggregate the prediction by the
MF-AGL model at prefecture level and calculate the Mean Absolute
Percentage Error (MAPE), a standard metric to evaluate forecasting
models.

The results are shown in Table 2. The MF-AGL obtained the
lowest error. Although the prediction performance at the aggregate
level is not the priority of the MF-AGL model, this result highlights
the robustness of the prediction of the model.

Table 2: Mean Percentage Errors by models

model mape (%) Std.Err N

AR 13.41 (0.66) 47
RF 8.11 (0.67) 47
MF-AGL  7.78 (1.03) 47

Note: The mean percentage error by each model. The values are
calculated for the prediction shown in Fig. 2.

3.5 Real-time Labor Market Analysis using
MF-AGL Model

Finally, we demonstrate another practical usefulness of our model.
Fig. 3 shows how the model updates the prediction using the real-
time data. The model shows the year over year for each city and for
each day. That is, we first predict the disaggregate number of job
applicants on the same day of the previous year and calculate the
year-over-year change in the number of job applicants. The figure
implies the rapid improvement in the labor market during October
2020. The possible reason is the peak-out of the second wave of
the COVID-19 pandemic. The number of cases was dramatically
decreased in September and stable in October.

MF-AGL Oct 1 MF-AGL Oct 15 MF-AGL Oct 31 0.10
.;,@:" 0.05
&
0.00
R s
2l -0.05
-0.10

Figure 3: Changes in the number of job applicants in Japan. The
prediction is done by MF-AGL model uses the input available at each
day.

4 CONCLUSION

In this work, we proposed a novel aggregate learning method that
adapts to the mixed-frequency data. The model predicts spatio-
temporal changes in the economic indices without granular label
data. We proposed an LSTM-based simple architecture and the loss
function for the training.

We applied the model to a real-world task that is the prediction
of the number of job applicants in Japan. Our MF-AGL model well
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predicts the regional heterogeneity at the sub-prefecture level and
also the rapid change in the labor market condition during a month.
The present model can be applied to broad areas including GDP
prediction, labor market prediction, and industrial production pre-
diction. The direction of the future work can be the extension to
the other domain and more improvement of the model using more
fine-grained architectures.
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