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ABSTRACT
The Hierarchical Vote Collective of Transformation-based Ensem- 
bles (HIVE-COTE) is a heterogeneous meta ensemble for time series 
classification. Since it was first proposed in 2016, the algorithm has 
remained state of the art for accuracy on the UCR time series clas- 
sification archive. Over time it has been incrementally updated, 
culminating in its current state, HIVE-COTE 1.0. During this time 
a number of algorithms have been proposed which match the ac- 
curacy of HIVE-COTE. We propose comprehensive changes to the 
HIVE-COTE algorithm which significantly improve its accuracy 
and usability, presenting this upgrade as HIVE-COTE 2.0. We in- 
troduce two novel classifiers, the Temporal Dictionary Ensemble
(TDE) and Diverse Representation Canonical Interval Forest (Dr- 
CIF), which replace existing ensemble members. Additionally, we 
introduce the Arsenal, an ensemble of ROCKET classifiers as a new 
HIVE-COTE 2.0 constituent. We demonstrate that HIVE-COTE 2.0 
is significantly more accurate than the current state of the art on 112 
univariate UCR archive datasets and 26 multivariate UEA archive 
datasets.

CCS CONCEPTS
• Computing methodologies → Machine learning; Supervised
learning by classification; Ensemble methods.
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1 INTRODUCTION
Time series classification (TSC) is the problem of predicting a dis-
crete target variable from a (possibly multivariate) time series. The
publication of the University of California, Riverside (UCR) TSC
archive resulted in an increased interest into algorithmic research
for this type of problem. An experimental study, characterised
as a bake off [3], facilitated the objective and reproducible com-
parison of learning algorithm performance on the UCR archive.
Since then, new classifiers have been proposed in the literature
that have advanced the field by significantly outperforming those
used in the bake off. There are currently four algorithms with
reasonable claim to being state of the art for TSC based on experi-
mentation on the recently expanded UCR archive [7]. These are: the
deep learning approach called InceptionTime [10]; the tree based
Time Series Combination of Heterogeneous and Integrated Embed-
ding Forest (TS-CHIEF) [23]; the Random Convolutional Kernel
Transform (ROCKET) [8]; and the heterogeneous meta-ensemble
Hierarchical Vote Collective of Transformation-based Ensembles
(HIVE-COTE) [13], the latest version of which is called HIVE-COTE
version 1.0 (HC1) [2]. There have also been a range of algorithms
proposed for MTSC [19]. Dynamic Time Warping with pointwise
multivariate distance and a one nearest neighbour classifier, char-
acterised as dependent dynamic time warping (DTW-D) [24], and
multivariate versions of ROCKET, InceptionTime and CIF [15] are
our multivariate benchmark.

We propose a new version of HIVE-COTE that is significantly
more accurate than all four current state-of-the-art algorithms for
univariate time series classification. We call this classifier HIVE-
COTE version 2.0, or HC2 for short. The critical difference diagram
in Figure 1 summarises the final results of HC2 against the four lead-
ing algorithms on 112 equal length UCR archives, using 30 stratified
resamples on each dataset (more detail is provided in Section 3).
The number associated with each algorithm is the average rank of
the classifier on 112 UCR datasets and solid bars group classifiers
between which there is no significant difference. HC2 is on average
over 1% more accurate per problem than all of the current state of
the art.

The changes from HC1 to HC2 relate to the component classi-
fiers and a redefinition of the underlying data representations used
(see Section 2). HC2 is contractable (i.e. you can give the classi-
fier a maximum run time), checkpointable (i.e. you can restart the
classifier from a previous run) and works with multivariate time
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Figure 1: Critical difference diagram forHC2 against the cur-
rent state of the art on 112 UCR TSC problems. The average
rank for each classifier is shown, and solid lines group clas-
sifiers between which there is no significant difference. It
demonstrates that there is no difference between HC1 [2],
InceptionTime [10], ROCKET [8] and TS-CHIEF [23], but
HC2 is significantly higher ranked than all of them. More
details are given in Section 3.

series classification (MTSC). A recent study [19] concluded that
that MTSC is at an earlier stage of development than univariate
TSC. The only algorithms significantly better than the standard
TSC benchmark, one nearest neighbour with dynamic time warping
(DTW), were HC1, ROCKET, InceptionTime and CIF [15]. HC2 is
significantly more accurate than all these algorithms on the UEA
MTSC archive [1]. HC2 is available in two open source toolkits, sk-
time1 and tsml2. There are more comprehensive and downloadable
results are on the accompanying website3 including an easy guide
to reproducing the results.

2 HIVE-COTE 2.0 (HC2)
HIVE-COTE 2.0 replaces three of the four classifiers that make up
HIVE-COTE 1.0. The component modules are: the shapelet based
Shapelet Transform Classifier [5]; the convolution based ensemble
of ROCKET classifiers we call the Arsenal; the dictionary based
representation Temporal Dictionary Ensemble (TDE) [16]; and the
interval based Diverse Representation Canonical Interval Forest
(DrCIF) [15]. An overview of the updated HC2 structure is dis-
played in figure 2. Each component is trained independently and
in addition to the final model, it is required to produce an esti-
mate of its accuracy on unseen data. For new data, each module
produces a probability estimate for each class. The controller con-
structs a tilted distribution through exponentiation (using 𝛼 = 4
by default) to extenuate differences in classifiers when weighting
the accuracy estimate. Each module of HC2 contains new features
and improvements over previous versions. These include novel
algorithm improvements, multivariate extensions and contracting
improvements. In addition, the method for estimating the accuracy
from the train data has been improved. Rather than build 11 total
models for ten fold cross validation or a single model using bagging,
we construct one bagged model to estimate accuracy, and a full
model to predict new cases.

Temporal Dictionary Ensemble (TDE). HIVE-COTE alpha con-
tains the dictionary based classifier BOSS [20], which was updated
to cBOSS [17] in HC1. HC2 uses the Temporal Dictionary Ensemble
(TDE) (first introduced in Middlehurst et al. [16]), which draws on

1https://github.com/alan-turing-institute/sktime
2https://github.com/uea-machine-learning/tsml
3https://www.timeseriesclassification.com/HC2.php
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Figure 2: An overview of the ensemble structure of HIVE-
COTE 2.0 for a three class problem. Each module is trained
independently and produces an estimate of the probability
of membership of each class for unseen data. The control
unit (CAWPE) combines these probabilities, weighted by an
estimate of the quality of the module found on the train
data.

more recent work on dictionary classifiers [11, 22] and includes
several novel features.

TDE is an ensemble of 1-NN classifiers that transforms each
series into a histogram of word counts. A sliding window of length
𝑤 is run along each series, and the subseries is discretised into
a word of length 𝑙 from an alphabet of size 𝛼 . TDE transforms
the window using the Symbolic Fourier Approximation (SFA) [21]
transform proposed for BOSS [20]. Distance between histograms is
found using histogram intersection. In addition to word frequen-
cies, TDE also captures the frequencies of bigrams found from
non overlapping windows. Thus a transformed instance includes
a histogram of word counts and bigram counts for a given trio of
parameters (𝑤 ,𝑙 ,𝛼). TDE also includes some spatial information by
the utilisation of spatial pyramids [12].

Diverse Representation Canonical Interval Forest (DrCIF).
The Diverse Representation Canonical Interval Forest (DrCIF) is an
interval based ensemble and an extension of its prototype version,
the Canonical Interval Forest (CIF) [15]. Interval based classifiers
extract phase-dependent subseries, aiming to find discriminatory
features over different intervals. For time series of length𝑚 there
are𝑚(𝑚−1)/2 possible intervals that can be extracted. The original
interval based classifier, the Time Series Forest [9], is a component
of HC1. It selects multiple intervals for each decision tree base
classifier, then concatenates derived features (mean, standard devi-
ation and slope) to form a diverse training set for each ensemble
member. The other interval based classifier in HC1, RISE, selects a
single interval for each base classifier, then derives spectral features
(periodogram and auto-regressive terms) over the single interval.
DrCIF replaces both these interval based classifiers, combining and
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enhancing both feature spaces. It draws on recent ideas presented
in the STSF interval based classifier [6] and the feature set method
defined as the canonical time series characteristics (catch22) [14].

The base classifier for DrCIF is a simple information gain based
tree used in TSF, called the time series tree [9]. Features from
the tree are derived from multiple intervals taken from the base
series, the first order difference series and the periodograms of
the whole series. Intervals from each are randomly selected. 𝑎 out
of 29 possible features (seven summary statistics and 22 catch22
features) are randomly selected for each tree. For each of the three
representations, This is repeated for 𝑘 randomly selected phase
dependent intervals and features are concatenated into a 3 · 𝑘 · 𝑎
length vector for each series, and the new dataset is used to build
the tree. Diversity is achieved by providing each base classifier with
different intervals and a different subset of the 29 features.

TheArsenal: AROCKETEnsemble. The RandomConvolutional
Kernel Transform (ROCKET) [8] uses a large number of randomly
parameterised convolution kernels applied to each instance. As
each kernel is applied to a series, the max value and proportion of
positive values are recorded and concatenated into a feature vec-
tor. These features are then used to build a linear ridge regression
classifier with built in cross-validation to select the alpha parameter.

ROCKET is a very fast classifier that has state-of-the-art accuracy,
and we believe it is the most important recent development in
the field. It represents a different class of approach, and as such
is a candidate for assimilation into the collective. However, an
issue arises when trying to include ROCKET in HIVE-COTE: the
ridge regressor used by ROCKET is hard to configure to produce
useful probability values for each class when making predictions.
The CAWPE ensemble structure of HIVE-COTE uses weighted
probabilities, and relies on classifiers to produce a distribution
representative of the classifiers strength of belief in predictions. One
solution would be to replace the ridge regressor with a classifier that
does produce representative probability estimates. However, our
experimentation with suitable replacement classifiers did not yield
a candidate algorithm that was as accurate as the ridge regressor
for ROCKET.

To solve this problem, the version of ROCKET we use in HIVE-
COTE is an ensemble of smaller ROCKET classifiers. We refer to
this fusillade of ROCKETs as the Arsenal. New cases are classified
using a weighted majority vote. Arsenal is slower to build than
ROCKET, but its improved probabilities make it a better candidate
for HC2.

Shapelet Transform Classifier (STC). Shapelets are phase inde-
pendent subseries found in the training data. The STC approach to
classification using shapelets is to construct a pipeline where the
search for high quality shapelets is followed by a transformation
where the new features represent distances to retained shapelets.
A rotation forest [18] is constructed on the transformed features.
The shapelet transform is highly configurable: it can use a range
of sampling/search techniques in addition to alternative quality
measures. We present the default settings and direct the interested
reader to the tsml code. The original shapelet based algorithms
performed an exhaustive search of all possible shapelets. This of
course is very slow. However, subsequent work [5] identified that
exhaustive search can actually lead to over fitting and is never

necessary. Instead, we randomly search for shapelets for a given
amount of time, which is now a parameter (defaults to one hour).
Our version of STC is essentially the same as that used for HC1 [2],
so we direct the interested reader there for more details. The multi-
variate version searches dimensions independently and is the same
version used in the MTSC bake off [19].

3 RESULTS
We perform our experiments on the 112 equal length univariate
TSC problems from the UCR time series archive [7] and 26 multi-
variate TSC problems from the UEA archive [1]. For each dataset
we present performance as an average over 30 resamples. Both
archives provide a default split into train and test sets which we use
for the first resample. The remaining 29 are randomly resampled
from the original split in a stratified manner. We seed each classifier
and data resample using the fold index to ensure out results are
reproducible. All of our non-deep learning experiments were run
using the Java tsml toolkit implementations. For deep learning ap-
proaches we use Python sktime companion package sktime-dl4.
Further experimental detail, including the configuration for each
algorithm, is provided in the accompanying website. Our core result
is that HC2 is significantly better than the current state of the art
on the 112 UCR equal length datasets. Figure 1 in the Introduction
shows the accuracy performance of HC2 vs the four baseline ap-
proaches. These pattern of results are also observed using negative
log likelihood and area under the receiver operator curve to assess
performance. Table 1 summarises the differences in test accuracy
between HC2 and the four baselines.

Table 1: Summary of the differences between HC2 and the
benchmarks. A negative value means the HC2 is better.
Wins and losses against HC2 is in brackets. So, for example,
ROCKET beat HC2 11 times but lost 97.

Classifier Mean Median Max Min StDev
TS-CHIEF (29/77) -1.36% -0.41% -22.99% 5.50% 3.64%
IncTime (32/74) -1.69% -0.37% -31.04% 9.46% 5.13%
HC1 (25/85) -1.06% -0.69% -10.47% 6.33% 2.10%
ROCKET (11/97) -2.49% -0.72% -76.31% 3.64% 7.92%

We observe from Table 1 that there is lower variance between
HC1 and HC2, but that HC2 consistently outperforms HC1 with
an average accuracy of more than 1%. The variation in difference
to HC2 is greater with the other three classifiers, in particular
ROCKET. The median difference is lower than the mean in all cases.
This suggests skew, which supports the core hypothesis that the
heterogenous ensemble can compensate for the shortcomings of its
components. It also suggests that HC2 has a higher representational
power, in that it can find a more diverse set of features. Figure 3
shows the accuracy scatter plot of HC2 against a representative
baseline classifier and Table 1 summarises the differences in test
accuracy between HC2 and the four baselines.

Accuracy is not the only consideration. Table 2 summarises the
run time and memory requirements for the classifiers compared
in Figure 3. There are a few caveats to these results. Firstly, all of
4https://github.com/sktime/sktime-dl

https://github.com/sktime/sktime-dl
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Figure 3: Scatter plot of the accuracy of HIVE-COTE 2.0
against InceptionTime.

Table 2:Median run time andmemory requirements to train
single resample of 112 UCR problems.

Algorithm Total (hrs) Average (mins) Max Mem (MB)
ROCKET 2.85 1.53 4349
Arsenal 27.91 14.95 1683
DrCIF 45.40 24.32 920
TDE 75.41 40.40 6565

InceptionTime 86.58 46.38 -
STC 115.88 62.08 4219
HC2 340.21 182.26 6677
HC1 427.18 228.84 4876

TS-CHIEF 1016.87 544.75 26052

the results except InceptionTime are run in a single thread on a
CPU. Thus InceptionTime time experiments are not really directly
comparable, since it runs on a GPU. ROCKET and HC2 are forced
to run in a single thread, despite being threadable. The times for
the HC2 components are without the time to estimate performance,
but these are included in the HC2 times. Memory is the maximum
memory used throughout the run, as obtained from the Java garbage
collector, and should be considered approximate.

With this in mind, we can make the following observations.
ROCKET lives up to its name and can build models on all 112 data
in under 3 hours, even when not threaded. If speed is your main
criteria, ROCKET is a good starting point in any analysis. STC is the
slowest component, but this is caused by the configuration rather
than an inherent problem: STC defaults to a one hour shapelet
search or a full evaluation of the shapelet search if this will take
less than an hour. For the very small problems, it takes a lot longer
than the other algorithms (although still less than an hour). HC2 is
faster than HC1, primarily because of improvements to STC and
the change in classifiers. TS-CHIEF is the slowest algorithm by far,
and seems to scale less well than the others. On the slowest five
problems it takes ten times longer than HC2, but the difference
is minimal on smaller problems. All of the classifiers are within
reasonable bounds for memory. TS-CHIEF has the highest memory
requirement, with a max requirement of 26GB on HandOutlines. As

HC2
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Figure 4: A comparison of classifiers in terms of accuracy
rank and train time. The time and accuracy are averaged
over 112 UCR problems. The train time is on a log scale.
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3.2692HC1
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Figure 5: Test accuracy critical difference diagram for five
classifiers, averaged over 30 resamples for each of the 26
UEA MTSC problems.

with run time, it seems to scale worse than the others. HC2 requires
more memory than HC1, but it is is not unreasonable. ROCKET has
a worse max memory case (ElectricDevices) than Arsenal. Overall,
ROCKET tends to use less memory thanArsenal but appears to scale
worse for larger datasets with many cases. Arsenal uses a smaller
amount of kernels for each individual classifier, meaning that each
transformed set of data is smaller in size and discarded before the
next is built. ROCKET on the other hand must transform using its
larger amount of kernels at a single point. Figure 4 summarises the
accuracy and run time results by plotting the log of the train time
against the rank.

Figure 5 shows that HC2 is significantly more accurate than
DTW-D, ROCKET, HC1 and CIF on the 26 MTSC datasets. Table 3
summarises the differences of HC2 against the benchmarks. We
think these results strongly support the assertion that HC2 repre-
sents a new state of the art for multivariate time series classification.

Table 3: Summary of the differences between HC2 and the
benchmarks. A negative value means the HC2 is better.

Classifier Mean Median Max Min StDev
ROCKET (5/19) -2.52% -0.64% -31.65% 4.73% 6.75%
CIF (7/19) -1.71% -1.58% -21.21% 12.43% 5.56%
HC1 (6/20) -2.25% -1.92% -11.27% 3.44% 3.30%
DTW-D (3/23) -8.22% -4.66% -48.94% 4.87% 11.39%
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4 CONCLUSION
HIVE-COTE version 2.0 is a meta ensemble of four very different
classifiers, each of which is designed to capture different discrim-
inatory features. It represents a new state of the art in terms of
time series classification, significantly outperforming the previous
best on both univariate and multivariate problems in terms of ac-
curacy. We believe its strength lies in the fact that many problems
have discriminatory features in multiple data domains; a shapelet
might be indicative of one class value, whereas a repeating pattern
may characterise another. HC2 uses a simple yet highly effective
ensemble scheme to combine this information.

HC2 is available in two open source toolkits and has improved us-
ability features such as contracting, which allow the user to specify
an approximate maximum run time. Our experiments are easily re-
producible, and an accompanying website contains complete results
and more information on how to use HC2.
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APPENDIX: ABLATIVE STUDY OF HC2
We address the question of why HC2 works so well, and evaluate
design decisions made in the change from HC1 to HC2. HC1 uses
cross validation to estimate the test accuracy from the train data
for each component. HC2 modules are all ensembles, and so it
was natural to attempt to use bagging and the out of bag accuracy
estimate to speed up HIVE-COTE training. However, whilst this
produces good estimates of the test accuracy, the models were less
accurate on unseen data for every module. Hence, we made the
decision to fit a separate bagging model for the estimation stage
for those that need it, thus providing an order of magnitude speed
up compared to cross validation. DrCIF and Arsenal both create
separate models with bagging to generate their estimates. STC
builds a new Rotation Forest model with bagging for its estimate,
but uses the same transformed shapelet data for both. TDE naturally
takes a 70% subsample when creating its ensemble, as such a new
model is not required to generate its out-of-bag error. However,
we were concerned that these estimates may be biased and/or not
consistent. Table 4 summarises the distributions of the differences
between estimated and observed test accuracy for HC2 and its
components.

Table 4: Summary of the difference between estimated and
observed test accuracy for HC2 and its components. A pos-
itive figure means that the classifier is overestimating accu-
racy from the train data.

Classifier Mean Median Min Max MSE
DrCIF -2.15% -0.93% -46.78% 9.64% 0.40%
Arsenal -1.17% -0.40% -23.13% 9.23% 0.15%
STC 1.24% 0.78% -55.54% 26.88% 0.86%
TDE -1.14% -0.77% -18.89% 10.02% 0.14%
HC2 0.47% 0.11% -19.81% 19.17% 0.13%

Whilst there is small bias for each component, HC2 ensemble
method compensates for this and has the lowest average deviation
(and MSE deviation) between estimated and observed test accuracy.

http://arxiv.org/abs/1809.06705
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Figure 7: Texas sharpshooter plot for HC2 vs ROCKET. Each
point represents a single dataset. The x-axis is the ratio of
HC2 and ROCKET actual test accuracy and the y-axis is the
ratio or predicted test accuracy.

Table 5: Possible variants of HC2 components.

Variant DrCIF Arsenal STC TDE
HC-1 X X
HC-2 X X
HC-3 X X
HC-4 X X
HC-5 X X
HC-6 X X
HC-7 X X X
HC-8 X X X
HC-9 X X X
HC-10 X X X

11 10 9 8 7 6 5 4 3 2 1

3.8661 Full HC2
5.0848 HC-8
5.2054 HC-10
5.3214 HC-7
5.375 HC-9

5.9196 HC-3
6.7991HC-5
6.9375HC-2
7.0179HC-4
7.2232HC-1
7.25HC-6

Figure 8: Critical difference diagram for 11 variants ofHIVE-
COTE 2.0 described in Table 5. Full HC2 contains all four
components and is referred to as simply HC2 elsewhere.

This is due to the averaging ensemble effect, and the biasing ef-
fect of reusing estimates from the components: a full nested cross

validation estimate would be computationally demanding and is
not necessary. STC is the only component that is over optimistic.
This is to be expected. STC performs a random search on the whole
train data then bags rotation forest. This introduces bias, and is a
possible area for future improvement. The min and the max show
that there are some very large differences between estimate and
observed. These primarily arise in problems where there are very
few cases per class, such as PigAirwayPressure, PigCVP and PigArt-
Pressure, which each have only two cases per class. Every classifier
underestimates the test accuracy by over 10% on these problems.
Figure 6 shows the difference in the test accuracy estimate and
actual plotted against the log of the train set size for HC2. The
picture is not conclusive, but it could be argued that the variance
of the difference is decreasing, which is encouraging evidence for
the consistency of the HC estimate.
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Figure 6: Difference in estimated and observed test set accu-
racy against the log of the train set size for 112UCRdatasets.

Another benefit of accurate estimates from the train data is that
they can be used to compare classifiers with a Texas Sharpshooter
plot [4]. These compare two classifiers by comparing the ratio of
estimates from the train data with those of the test data to form
a kind of contingency table. Computing train estimates through
cross validation for TS-CHIEF and InceptionTime is unpractical
due to run times. However, it is easy with ROCKET, since it is so
fast. Figure 7 shows the plot for ROCKET vs HC2. Using the train
estimates would lead to the correct decision of choosing HC2 on 94
of the 112 datasets.

The next issue is to quantify what impact each component has
on the overall performance. Ignoring single component variants
there are 11 possible combinations, identified as HC-1 to HC-10 in
Table 5, with the eleventh being the Full HC2, referred to as just
HC2 elsewhere. Figure 8 shows the relative performance of the
11 possible variants. The two component models (HC-1 to HC-6)
form a clear clique, followed by another clique of three component
versions. However, the full four component classifier is significantly
more accurate than all of the other variants. This demonstrates that
each element contributes to the overall whole.
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