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ABSTRACT
To understand the ecology and environmental impact of free-ranging 
sharks, it is essential to investigate patterns and drivers of their 
behavior. Recently, the powerful representations learned by Deep 
Learning models have been utilized within a Bayesian non-parametric 
framework in order to learn non-Euclidean similarity metrics for 
classification. In addition, attention mechanisms have proved state- 
of-the-art in modeling long-range dependencies between input 
features. In this work, we propose Recurrent Attentive Deep Kernel 
Learning for fine-scale shark activity recognition. We show that 
this flexible and general model can accurately model the relation- 
ship between a shark’s acceleration dynamics and the behavior at 
multiple scales. We perform elaborate experiments to demonstrate 
the effectiveness of the proposed methods and give a discussion on
interpretability of the models. 1.

CCS CONCEPTS
• Computing methodologies → Neural networks; Gaussian 
processes; • Mathematics of computing → Time series anal-
ysis.
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Figure 1: California horn shark tagged with a Cefas G6+
acceleration data logger demonstrating the differences be-
tweenA) static acceleration (yaw, pitch, roll) and B) dynamic
acceleration (heave, surge, and sway).
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1 INTRODUCTION
Understanding and predicting patterns in the behavior of free-
ranging animals is an essential and challenging task for animal
conservation[20]. Due to the heterogeneous conditions of marine
biological environments, marine predators modify their movement
patterns in order to respond to environmental conditions and prey
availability [22]. Studying the activity patterns of marine preda-
tors is essential towards gaining an understanding of their ecology
within a given habitat [25] and successfully modelling their behav-
ior and movement patterns would yield valuable insight into their
ecological impact. California horn sharks (Heterodontus francisci),
which play an important ecological role in regulating invertebrate
communities of squid, crabs, urchins, and small fish [21] [23] [32],
have been used successfully as a model species to represent non-
obligate ram ventilating elasmobranchs, both in a laboratory and
field setting [22]. While the fine-scale spatial and temporal move-
ments and daytime sheltering behaviors of horn sharks have been
recently explored, a greater understanding of their activity patterns
and feeding behaviors would lead to an improved understanding of
their overall ecology. This lack of understanding is primarily due
to the difficulty of measuring such observations of the species in
their natural environments over large temporal scales due to poor
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visibility (for example, low lighting or cloudy water), deeper depths,
and adverse environmental conditions [6].

Recent advances in biological sensor tagging have proven useful
in monitoring fine-scale animal behavior [33]. In particular, Accel-
eration Data Loggers (ADLs) provide acceleration data that can
be used to classify shark behavior [6]. Augmenting spatial move-
ment data with ADL data can enable researchers to geo-reference
these finer-scale activities and give an environmental context to
movement patterns. This results in an explicit spatial-temporal rep-
resentation of the horn sharks’ energetic costs which can then be
used to identify finer spatial and temporal scale behaviors.

ADLs have the ability to measure both static and dynamic accel-
eration for each spatial dimension. Static acceleration corresponds
to 3D body position (x, y, z) and orientation (pitch, roll, and yaw).
Dynamic acceleration represents 3D body movements (x, y, z; surge,
heave, sway) as shown in Figure 1. From these, overall dynamic
body acceleration (ODBA), which has been effectively used as a
proxy for energy expenditure [9] [21] [22], can be calculated by
taking the ℓ1-norm of the dynamic acceleration vector (x, y, z):

𝑂𝐷𝐵𝐴 =
∑

𝑖∈𝑥,𝑦,𝑧
|𝑑𝑖 | =

∑
𝑖∈𝑥,𝑦,𝑧

|𝑟𝑖 − 𝑠𝑖 | (1)

where 𝑑𝑖 is the dynamic acceleration, 𝑟𝑖 is the raw acceleration, and
𝑠𝑖 is the static acceleration in the direction 𝑖 .

In this paper, we investigate the use of deep kernel learning
and attention mechanisms for modeling the univariate ODBA and
multivariate static and dynamic acceleration time-series data. The
models recognize the input as one of four categories of shark be-
haviors: Resting, Swimming, Feeding, and Non-Directed Motion
(NDM). In our experiments, we obtain predictions for the behavior
of horn sharks for sequences of 2 seconds sampled at 25 Hz. To
summarize, our contributions are as follows:

(1) We propose a deep structured probabilistic sequence mod-
elling approach with fine temporal resolution to the shark
activity recognition task.

(2) We design a deep recurrent kernel learning model with self-
attention for multivariate time-series classification that uti-
lizes the powerful feature representation capabilities of deep
learning for sequence learningwith the non-parametric prob-
abilistic representations of Gaussian processes.

(3) We conduct experiments on a real-world shark acceleration
data set, which demonstrate the effectiveness of our models.

(4) We analyze the interpretablity of our architectural designs
in the context of shark energy expenditure and ecology.

2 RELATEDWORK
In the past decade, Deep Learning has revolutionized the fields of
Pattern Recognition and Data Mining. This is in part due to the
technological advancement of graphical processing units (GPUs),
but also due to the development of heuristic techniques for training
deep networks [11] [13] [17] [19]. For sequence modelling tasks,
recurrent neural networks (RNNs) have been the de facto architec-
ture. The task of shark activity recognition shares similarities with
sequence modelling, with the key distinction being the explicit de-
pendence on time. In both cases, the input to the models is sequence

data which typically contain temporal information, such as seman-
tics in the case of natural language or energy expenditure in the
case of shark behavior. However, in language tasks the sequences
have discrete indices while in time-series data, the sequences are
indexed by continuous time values, sampled at uniform instances.
Simply put, sequential data is a subset of time-series data, while
the converse is not necessarily true.

While Deep Learning has permeated pattern recognition tasks in
computer vision and NLP, there has been a gap in the presence of
empirical studies done on the application of deep neural networks
for time series classification [14]. Time series classification is a
challenging task in data mining, but the field lacks large, generic
data sets akin to ImageNet [28]. In addition, deep learning for time
series classification lacks in-depth studies of data augmentation [7].
For this reason, we used re-sampling of varying sized windows to
augment the data and handle class imbalance issue. The re-sampling
method is discussed further in Section 4.1.

Traditional time series classification algorithms are either dis-
tance based methods using k-Nearest Neighbors (kNN) built on
a metric between the time series, or feature based methods that
extract features in the time or frequency domain which are then fed
to classical machine learning classifier such as Support Vector Ma-
chines, Decision Trees, etc. Naturally, the choice of metric between
time series datum is a fundamental problem in time series classifi-
cation. This is a primary driving factor in our proposal to use deep
kernel learning, which can learn non-Euclidean similarity metrics
directly from the data [34]. The previous state-of-the-art methods
consist of the Dynamic Time Warping (DTW) distance used with
a kNN classifier [3] and later the Collective of Transformation-
Based Ensembles (COTE) algorithm [4]. The COTE algorithm takes
data transformed into multiple domains via ensembles of classifiers.
The common theme is to transform the time-series data into some
feature space where discriminatory features are easily separable.
Deep kernel learning utilizes the representation learning capabili-
ties of neural networks in conjunction with learning the structure
of the similarity metric from data. This once again highlights the
relevance of deep kernel learning in time series classification.

3 METHODS
3.1 Attention
In recent years, the concept of attention has revolutionized the tasks
of machine translation and sequence modeling [5] [31]. Attention
is a generalization of pooling which weights feature alignments
using a kernel. Attention was proposed to combat the inability
of RNNs to model long-range dependencies in an input sequence.
We present three differing, yet complementary perspectives on
self-attention mechanisms. From a representation learning point of
view, self-attention mechanisms explicitly relate different temporal
positions in an input sequence in order to form a more comprehen-
sive feature representation. Alternatively, the attention function is
a mapping from a vector-valued query and set of key-value pairs to
a vector-valued output. Finally, from a Reproducing Kernel Hilbert
Space (RKHS) point of view, the attention mechanism is the integral
operator 𝑇𝐾 : 𝐿2 (𝑋 ) → 𝐿2 (𝑋 ) induced by a covariance function
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(kernel) 𝐾 : 𝑋 × 𝑋 → R:

[𝑇𝐾 𝑓 ] (𝑥) =
∫
𝑋

𝐾 (𝑥,𝑦) 𝑓 (𝑦)𝑑𝑦 (2)

We utilize the additive attention mechanism as described in [5].
In this attention mechanism, a context vector 𝑐 is computed as a
weighted sum of the outputs states of a bidirectional GRU:

𝑐 = [𝑇𝐾Φ] (𝑥1, ..., 𝑥𝑇 ) =
𝑇∑
𝑗=1

𝐾 ( [ℎ𝑇 ;𝑦𝑇 ], [ℎ𝑇 ;𝑦 𝑗 ])𝑦 𝑗 (3)

with the kernel

𝐾 (𝑞, 𝑘) = 𝑒𝑉𝑡𝑎𝑛ℎ (𝑞
𝑇𝑊𝑇

𝑞 𝑊𝑘𝑘) (4)
In equation (3), Φ is the functional representation of the RNN,
𝑥1, ..., 𝑥𝑇 is the input sequence, ℎ𝑇 is the final hidden state (where
forward and backward hidden states are concatenated), 𝑦 𝑗 is the
output of the RNN at time-step 𝑗 , and [· ; ·] is the concatenation
operation. In the kernel function (4),𝑊𝑞 ,𝑊𝑘 , and 𝑉 are learned
weight matrices corresponding to the query, key, and attention
scores, respectively.

3.2 Deep Kernel Learning
We now continue with our discussion of kernels, but diverge from
the realm of attention mechanisms. Kernel methods are a way of
generalizing linear models to feature spaces with Euclidean ge-
ometry. These feature spaces can be very high, or even infinite-
dimensional. The kernel then serves as a vehicle for computing dot
products in feature space:

𝐾 (𝑥, 𝑥 ′) = ⟨𝜙 (𝑥), 𝜙 (𝑥 ′)⟩ (5)
In this way, the kernel can be seen, informally, as a similarity met-

ric between data representations [29]. Kernel methods are identified
by two components: the first being a task-specific loss function
which determines the optimization problem used to learn from data
and the second being the central object of this section, the choice of
kernel. Jaakkola et al. [15] showed how changing the optimization
procedure transforms themodel from the support vector machine to
the generalized linear model. The kernel enforces a structural prior
on the space of functions that a learning algorithm can model. In
the context of Gaussian processes (GPs), by the Moore–Aronszajn
theorem [2], every symmetric, positive definite kernel is associated
with a unique reproducing kernel Hilbert space (RKHS). A Gaussian
process defines a distribution over the RKHS of functions defined
by a kernel. One important structural prior enforced by GPs (via
common kernels) is that of local constancy [10] [24]. In terms of
the RKHS associated with these kernels, we are considering a space
of locally smooth functions:

𝑓 (𝑥) ≈ 𝑓 (𝑥 + 𝜖) (6)
GPs place the structural prior that close-by data points are highly
correlated [15] [29]. This prior is made explicit via a kernel (or
covariance) matrix of a Gaussian distribution. This is the natural
extension of the kernel trick, mentioned above, to the Bayesian
framework. In the case of time-series modeling, this structural
prior is a hindrance, considering that global structure, captured by

Figure 2: Probabilistic graphical model for Recurrent Atten-
tive DeepKernel Learning. Blue elements indicate determin-
istic paths, while red indicates stochastic paths where we
place in bold the additive GPs, f𝑖 , to emphasize that they are
vector-valued. Observed quantities are marked by shading.
Dashed lines indicate that the input passes through directly
as the output (the attention weights are only used to weight
the class probabilities). ⊗ denotes batch matrix multiplica-
tion. 𝐴 denotes the linear mixing matrix.

long-range dependencies, can be of utmost important in compli-
cated tasks like classification. One would like to "bake in" another
structural prior, that of recurrent structure. This is the implicit bias
present in recurrent neural networks.

We now briefly sidestep our discussion of injecting the induc-
tive bias from deep recurrent models to GPs in order to discuss
a powerful end-to-end method for combining deep learning with
Gaussian processes. In [34], the authors proposed an end-to-end
method for learning the structure of kernels which incorporate the
inductive biases of deep learning architectures under a scalable
GP framework. A generic kernel with hyperparameters 𝜃 , can be
adapted as:

𝑘 (𝑔(𝑥𝑖 |𝑤), 𝑔(𝑥 𝑗 |𝑤) |𝜃,𝑤) (7)

where 𝑔(𝑥 |𝑤) is a deep neural network, parametrized by weights𝑤 .
This deep kernel is then used as the covariance function for a GP,
which can be viewed as a hidden layer with infinite width [18]. In
addition, it is well known that Gaussian Processes can be extended
to classification problems via the softmax likelihood [27]. In [35],
this method is extended to classification with training via stochastic
gradient descent (SGD). Here, 𝐽 Gaussian processes are applied
to subsets of the 𝑄 features learned by a deep neural network.
These 𝐽 Gaussian processes are then linearly mixed to produce
multiple, correlated outputs (class probabilities in the multi-class
classification setting):
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𝑝 (𝑦𝑖 |𝑓𝑖 , 𝐴) =
exp(𝑓 𝑇

𝑖
𝐴𝑇𝑦𝑖 )∑

𝑐∈C exp(𝑓 𝑇
𝑖
𝐴𝑇 𝑒𝑐 )

(8)

Here, each 𝑓𝑖 ∈ R𝐽 is a vector of Gaussian processes, 𝑦𝑖 ∈ {0, 1}𝐶 is
the one-hot encoding of sample 𝑖’s class, 𝐴 ∈ R𝐶×𝐽 is the learned
mixing matrix, and 𝑒𝑐 is the indicator vector for class 𝑐 . The pa-
rameters of the deep network and hyperparameters of the additive
GP layer are jointly trained by maximum likelihood (ML) of the
marginal log-likelihood:

log𝑝 (𝑦) ≳ E𝑝 (𝑓 |𝑢)𝑞 (𝑢) [log𝑝 (𝑦 |𝑓 )] − 𝛽𝐾𝐿[𝑞(𝑢) | |𝑝 (𝑢)] (9)

where 𝑞(𝑢) is the variational distribution over the inducing func-
tion values and 𝑝 (𝑢) is the prior over inducing function values.
One can take the expectation over the data-generating distribution
𝑝𝑑𝑎𝑡𝑎 (𝑥,𝑦) to obtain the variational evidence lower bound (ELBO)
loss function [12]. Here the Kullback-Leibler divergence (KL) is a
regularization term pulling 𝑞(𝑢) closer to 𝑝 (𝑢). We describe the
proposed Recurrent Attentive Deep Kernel Learning algorithm in
the following details. Figure 2 is showing a complete illustration of
our proposed model.

• We implement Recurrent Neural Network in order to benefit
from the inductive bias of recurrent structure in the learned
kernel [1].

• We apply an additive GP to every output time-step of the
RNN, in order to get a sequence of class-probabilities. These
are independent GPs are trained jointly. From equation 8, we
can view the mixing matrix𝐴 as a form of attention between
GPs to model the correlations between different time-steps.

• We train the deep network and additive GP layers from
scratch, as opposed to pre-training the deep network weights
as in [35].

• We utilize the parametric predictive log-likelihood of [16] to
enhance training of our deep GP layers.

• We use a self-attention mechanism to jointly enhance the
learned representations used by the deep additive GP lay-
ers by learning long-range correlations in the data. In ad-
dition, the attention weights are used to weight the class-
probabilities output by each additive GP per time-step.

4 EXPERIMENTS
4.1 Experimental Setup
The data sets have been collected from four California horn sharks
in the Santa Catalina Island using two acceleration data loggers:
the Cefas G6a+ and the Technosmart AxyDepth. The sharks were
tagged 6 hrs prior to the trials in order to allow the shark to ac-
climate; subsequently the sharks were monitored to collect the
ground-truth labels. Table 1 displays the number of California horn
shark data per category amongst the seven laboratory trials. Class
imbalance is present in all seven trials. To combat this imbalance, re-
sampling of the time-series data has been performed. To be explicit,
over represented classes are downsampled whereas under repre-
sented classes are upsampled. For re-sampling, each class is treated
as a continuous time-series observation, and training/validation
samples are taken by uniformly sampling 2 second (50 samples at
25Hz). For the training set we sample 2,000 sequences per class for

a total of 8,000 training sequences, and for the validation set we
sample 500 sequences per class for a total of 2,000 validation se-
quences. As we perform no re-sampling on the test set, we include
the F1 score as a metric to account for class imbalance.

4.2 Experimental Results and Analysis
In our experiments, we have trained eight different deep networks
in total, four models for each data set. In specific, we train a vanilla
GRU, a GRU with additive attention (Attention GRU), a recurrent
deep kernel learning model with a GRU backbone (RKL), and the
recurrent attentive deep kernel learning architecture (RADKL). The
results of all eight models can be seen in Tables 2 and 3(a-g)

The recurrent kernel learning and RADKL models are trained
using SGD with Nesterov momentum [30] with a momentum decay
factor of 0.9. The backbone GRU was trained with a learning rate of
0.1, and 1e-3 for the additive Gaussian process layer. The learning
rate is decayed be 75% of its previous value every 50 epochs. We use
L2 regularization with a weight of 1e-4 for the GRU weights. The
additive GP layer is trained with no L2 regularization, but it should
be noted that optimization via maximizing equation 9 contains
implicit regularization via the KL-divergence term.

The machine used for training has the following configurations:
NVIDIA Tesla V100-SXM2-16GB in Google Colab Pro. We imple-
ment all the deep learning models using the PyTorch and GPy-
Torch [8] frameworks. The RNNs takes 8 hours in the offline train-
ing procedure and the deep recurrent kernel learning models take
approximately 24 hours in the offline training procedure. For all
models, inference takes around 1 minute to process 4000 samples.

The classification performance of our models is measured by
accuracy, precision, recall, F1-score, and the area under the receiver
operating characteristic curve (AUC ROC). Considering the amount
of class imbalance, we use F1-score as the primary evaluation met-
ric for the performance of our models. Likewise, the classification
metrics (precision, recall, and F1) are all class-weighted. The classi-
fication results are shown in Table 2 and the confusion matrices of
each model are shown in Tables 3(a-g). On the static and dynamic
acceleration data, the proposed Recurrent Attentive Deep Kernel
Learning (RADKL) model outperforms GRU and Attention GRU. In
addition, our experiments show that the proposed attention mech-
anisms yield an increase in performance over the recurrent kernel
learning (RKL) model without attention.

To give a holistic and general evaluation of the proposed model,
we give a comparison of the two sub-tables in Tables 2. In specific
scenarios, we see significant degradation of all models, including
the baselines. To start, comparing the RKL and RADKL models
in Tables 2a) and 2b), we see a drop in performance for the RKL
model when only using one feature (ODBA). We attribute this to a
lack of features from which the Gaussian processes (GPs) can learn
rich statistical representations. By contrast, the RADKL model with
additive GPs at every time-step, can accurately capture statistical
information throughout the entire sequence.

It is important to note the increased intrepretability of the pro-
posed model over standard neural network approaches. In the cur-
rent framework, the neural network can be seen as learning a neural
representation of the data, which is used to form the interpretable
kernel hyperparameters of the Gaussian Processes. The explicit use
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of Gaussian Processes effectively makes the network’s hidden layer
infinite-width [18]. In this way, we can benefit from the expressivity
of the infinite basis set underlying a GP and the interpretability
of GPs as defining an explicit prior over the class of functions our
network learns.

By demonstrating the effectiveness of our proposed methods
on the difficult and budding task of time-series classification us-
ing deep learning, we hope to see more rigorous, theoretical de-
velopments marrying deep learning and the theory of stochastic
processes. For our task, we note that for modeling the acceleration
dynamics of free-ranging sharks, it may be more informative to
use dynamic acceleration vs. ODBA, which only yields absolute
changes in dynamic acceleration and treats acceleration in each di-
rection independently. Using static and dynamic acceleration yields
a more robust model that can more accurately discriminate between
similar activity classes (NDM and resting). We hope that this work
paves the way for future research into the applicability of prob-
abilistic graphical models and kernel methods in the time-series
community.

5 CONCLUSION AND FUTUREWORK
In conclusion, we propose a novel deep network for learning kernels
that canmodel long-range dependencies and recurrent structures by
utilizing self-attention mechanisms. We apply our proposed models
to a novel data set for shark behavior classification, to demonstrate
the effective and complementary nature of deep learning, kernel
methods, and probabilistic modeling. For shark activity recogni-
tion, future work might want to investigate deeper the effect of
non-stationarity in acceleration data on model performance. Using
modelling techniques from stochastic processes could help guide
future models for this domain. Finally, we intend to extend the
work presented here to use attention weights as a weighting over
kernels in order to yield a time-series Gaussian process mixture
model. In addition, the intrinsic connections between deep kernel
learning, metric learning, and self-attention are ones that can shape
the future for Deep Learning research.
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(a) Training class densities

(b) Testing class densities

Figure 3: Estimated class-wise densities of Overall Dynamic
Body Acceleration (ODBA) data in the logarithmic-scale.
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A DATASET
We also observe that each category has different distributions of
ODBA data in Fig. 3a). Further, each experiment has differing class-
wise densities. We attribute this to similarities in densities of classes
in the test set, that are not present in the majority of the training
samples in Fig. 3). For instance, we observe that NDM samples are
commonly misclassified as feeding in the test set. The densities are
estimated using scikit-learn’s [26] Kernel Density module, utiliz-
ing a Gaussian kernel. To ensure that the class-wise densities are
maintained between train, validation, and testing we shuffle and
split all the data. Of the 1,741,004 data points, 25% is held out for
testing, and then 20% of the remaining training data is held out for
validation. In total, 1,044,602 training samples, 261,151 validation
samples, and 425,251 testing samples are used.

Two separate data sets are compiled for our experiments: uni-
variate time-series data containing ODBA and the multivariate
time-series data with static & dynamic acceleration. The data are
treated as sequences of vectors. The two data sets have slightly
different pre-processing procedures. The ODBA data is found to
be log-distributed in Fig. 3 and is thus analyzed in the logarithmic
scale. So the signal (ODBA), which is used as a proxy for energy
expenditure, may have a better interpretation in terms of relative,
percent-based changes. Finally, both data sets are standardized to
have zero mean and unit variance. The mean and standard deviation
were calculated from only the training data. In addition, we find out
that the ODBA data is stationary in Fig 4b, but the static/dynamic
data was slightly non-stationary for certain windows/classes in
Fig 4a. Exploring the effect of stationarity on these models may be
of interest for future research, but for our experiments the overall
effect of the non-stationarity was minimal. However, stationarity
of the data for each class may play a role in the performance of our
models on a per class basis, and may influence the optimal window
sizes for each class.

(a) Static X component with upward trend

(b) Stationarity inOverall DynamicBodyAc-
celeration (ODBA) data

Figure 4: Examples of stationarity and non-stationarity in
static acceleration and ODBA data at differing time-scales.

https://doi.org/10.1007/s00227-009-1282-2
https://doi.org/10.1111/cobi.12486


Submission and Formatting Instructions for MileTS’21 MileTS ’21, August 14th, 2021, Singapore

Table 1: California horn shark data distribution

PPPPPPPClass
Trial No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 Total

Feeding 5,700 350 200 1,375 875 2,900 2,100 13,500
Swimming 6,200 209,550 5,100 81,525 7,975 19,750 61,475 391,575
Resting 157,750 565,580 379,850 10,250 6,150 27,975 77,374 1,224,929
NDM 51,950 7,400 15,700 1,750 1,775 27,025 5,400 111,000
Total 221,600 782,880 400,850 94,900 16,775 77,650 146,349 1,741,004

Table 2: Classification Results - 2 second windows (Sequence length 50)

Test Acc. Precision Recall F1 AUC ROC
GRU 91.0% 0.9453 0.9103 0.9250 0.93415
Attention GRU 92.4% 0.9480 0.9237 0.9342 0.93585
RKL 89.5% 0.9129 0.8947 0.9011 0.92827
RADKL 93.0% 0.9425 0.9298 0.9355 0.91905

(a) Results on Overall Dynamic Body Acceleration (ODBA) data

Test Acc. Precision Recall F1 AUC ROC
GRU 92.1% 0.9504 0.9212 0.9320 0.96632
Attention GRU 93.8% 0.9519 0.9381 0.9436 0.96996
RKL 93.8% 0.9556 0.9378 0.9441 0.97420
RADKL 94.9% 0.9573 0.9491 0.9523 0.97570

(b) Results on static and dynamic acceleration data

Table 3: Confusion Matrices Results - 2 second windows (Sequence length 50)

(a) GRU - ODBA

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 31 3 0 7
Swimming 62 1442 1 30
Resting 6 3 4419 317
NDM 100 17 58 239

(b) GRU - Static and Dynamic

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 31 1 0 9
Swimming 22 1463 1 49
Resting 8 17 4396 324
NDM 45 12 43 314

(c) Attention GRU - ODBA

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 26 5 0 10
Swimming 70 1426 1 38
Resting 11 5 4519 210
NDM 74 15 75 250

(d) Attention GRU - Static and Dynamic

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 34 1 1 5
Swimming 21 1489 1 24
Resting 11 12 4513 209
NDM 44 18 70 282

(e) RKL - ODBA

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 20 6 0 15
Swimming 26 1465 1 43
Resting 9 270 4292 174
NDM 57 23 85 249

(f) RKL - Static and Dynamic

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 34 0 0 7
Swimming 8 1501 3 23
Resting 14 21 4448 262
NDM 26 14 41 333

(g) RADKL - ODBA

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 19 4 1 17
Swimming 36 1448 1 50
Resting 25 10 4565 145
NDM 49 30 105 230

(h) RADKL - Static and Dynamic

HH
HHHT

P Feeding Swimming Resting NDM

Feeding 36 1 0 4
Swimming 12 1497 2 24
Resting 26 11 4574 134
NDM 35 14 80 285
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