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ABSTRACT
This paper focuses on the analysis of time series representation of
blood loss and cytokines in animals experiencing trauma to under-
stand the temporal progression of factors affecting survivability
of the animal. Trauma related grave injuries cause exsanguination
and lead to death. 50% of deaths especially in the armed forces
are due to trauma injuries. Restricting blood loss usually requires
the presence of first responders, which is not feasible in certain
cases. Hemostatic nanoparticles have been developed to tackle
these kinds of situations to help achieve efficient blood coagulation.
Hemostatic nanoparticles were administered into trauma induced
porcine animals (pigs) to observe impact on the cytokine and blood
loss experienced by them. In this paper we present temporal models
to study the impact of the hemostatic nanoparticles and provide
snapshots about the trend in cytokines and blood loss in the porcine
data to study their progression over time. We utilized Piecewise
Aggregate Approximation, Similarity based Merging and clustering
to evaluate the impact of the different hemostatic nanoparticles
administered. In some cases, the fluctuations in the cytokines may
be too small. So, in addition we highlight situations where tem-
poral modeling that produces a smoothed time series may not be
useful as it may remove out the noise and miss the overall fluctua-
tions resulting from the nanoparticles. Our results indicate certain
nanoparticles stand out and lead to novel hypothesis formation.

CCS CONCEPTS
• Information systems→ Information systems applications;
• Data mining→ Clustering.
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1 INTRODUCTION
In this study, we use temporal analysis to discover patterns and
generate insights from porcine data collected after the hemostatic
nanoparticles are injected onto trauma-induced porcine animals.
In particular we evaluate the state of the animal, in terms of surviv-
ability and blood clotting, over time as a result of the nanoparticle
or control administration. Our study focused on the survivabil-
ity factor along with clot formation components. The hemostatic
nanoparticles investigated in this study are designed to syntheti-
cally mimic the role of fibrinogen , while the control nanoparticles
do not lead to a hemostatic effect. The nanoparticles were adminis-
tered in a porcine trauma model. The study consisted of 19 porcine
animals classified into three groups namely vehicle control, control
nanoparticle and hemostatic nanoparticle groups[35, 36]. Within
the groups, the six animals in the vehicle control group received
saline only (i.e., no control or hemostatic nanoparticles were ad-
ministered to these animals), while the six animals in the control
nanoparticle group received control nanoparticles only, and the
seven animals included in the hemostatic nanoparticle group re-
ceived hemostatic nanoparticles only. We evaluated this lab data as
temporal models and then clustered the porcine animals based on
their similarities and differences based on their reactions over time
to the hemostatic nanoparticles and their survivability. Understand-
ing when the animal moves from a trauma phase into a survivability
phase or clotting phase is important to evaluate the impact of the
nanoparticles. As a result, temporal analysis plays a key role here
especially in understanding the overall trends in the animals based
on the hemostatic nanoparticle or control administered. We present
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an exploratory study that used temporal analysis to find discrete
intervals in time when the state of the animal transitions. However,
we also outline situations where the modelling is useful and where
it may not be as effective. We utilize this intuition to cluster the
raw data to evaluate outcomes from this study in terms of animals
exhibiting similar trends over time.

1.1 Motivating Scenario
Traumatic injury is the leading cause of death in men, women, and
children between the ages of 1 and 46 worldwide[1], and blood loss
is the primary cause of death at acute time points post injury in both
civilian[2] and battlefield trauma[3]. Immediate intervention is key
to survival[4], and yet there are no reliable and readily available
treatments for internal bleeding. We developed an intravenously
infusible hemostatic nanoparticle that effectively stopped internal
bleeding in a number of rodent models of trauma [5–7], but we
have encountered off target effects in large animal (porcine) models
of trauma that mimic infusion reactions seen in some people [8].
We developed a novel version to avoid these infusion reactions,
and while it did not exhibit signs of complement activation seen
previously, off target effects including non-specific clots were seen
in some animals. To understand the features that correlated with
these unexpected findings, we needed to be able to determine the
specific features that correlated with the clots. The porcine model
is the gold standard for modeling trauma and critical for preclinical
translation. It has been a model that is appreciated for how well
it replicates the cardiovascular responses to trauma [9–11] and
preclinical model for testing therapies [9–11, 22–27]. While the
porcine model is exceptional for modeling cardiovascular responses,
it has become a substantial question in the field as to whether
they are appropriate for translation of nanomedicines because of
the infusion responses [12, 13]. So, while one can obtain infusion
responses to nanomedicines in mice and rats [18–20], the porcine
response is a better predictor of the human response [14–17, 21].

As evident from the complexity of the reactions to hemostatic
particles and variations possible by nanoparticles administered, it
is imperative that we have a robust model to represent the changes
to blood loss over time and identify similarities and dissimilari-
ties between animals not just by treatment but also by the trends
in their blood loss. In addition, we also observe trends in the cy-
tokine features that lead to reactions in the immune system that
occur as a result of the trauma (including IL6, IL8, Neutrophils
[8]). Understanding Cytokine reactions may also be useful in study-
ing severe acute respiratory syndrome coronavirus [31, 32]. There
are several heterogeneous experiments in this framework that are
conducted resulting in time series datasets with survivability or
clotting outcomes. Understanding the time series representation
for the progression of blood loss of the animal or cytokines helps
understand the underlying complex mechanisms at play for the
hemostatic nanoparticles administered to the animal. For exam-
ple if a particle is administered to one animal and it behaves very
similarly to other animals in a cluster in terms of its trend of surviv-
ability we can further explore what factors lead to the survivability
potentially understanding complex cytokine mechanisms at play
such as hemostasis (stopping of bleeding) or vasodilation (leading
to more bleeding).

In this paper we present our preliminary work in representing
the data in discretized temporal models [28]. We also utilize cluster-
ing to identify animals which are highly similar in these temporal
models. We aim to produce novel hypotheses based on grouping
animals based on their reaction to hemostatic nanoparticles.

Our overall contribution in this study is twofold in nature:

• We present multiple ways for bioinformaticians to be able to
visualize the trends in blood loss as a result of administering
the hemostatic nanoparticles.

• We have also shown that traditional smoothing techniques
may sometimes hide the fluctuations in the data that are cru-
cial in feature selection and understanding the mechanisms
by which cytokine features can be impactful even in minor
fluctuations.

We discuss our approach in section 2, followed by results in section
3.

2 APPROACH
The lab experiments involved intravenous administration of saline,
control nanoparticles and hemostatic nanoparticles in 19 porcine
animals and their data was recorded. The blood loss data for each
animal contained about 60 time instances, moreover each of these
animals also had temporal data about the cytokine features. Time
series variables of our study were the cytokine and blood loss vari-
ations at each time instance. As mentioned in the previous section,
these 19 animals were divided into 3 groups. The three groups con-
sisted of control, hemostatic and vehicle control groups. Animals
were observed after they underwent a trauma incision. Blood sam-
ples were collected and weighed at each minute to determine the
amount of blood loss experienced by the animals. We generate tem-
poral representations of the blood loss and cytokine features using
exploratory models such as Similarity based Merging(SMerg) [28]
and Piecewise Aggregate Approximation (PAA) [29]. Both SMerg
and PAA generated representations of the blood loss experienced
by the animals at every time interval that was helpful for the bioin-
formaticians to understand the overall trend in blood loss. PAA data
proved beneficial in assessing which animals are similar within and
across the different groups of control and vehicle control groups.
Similarly, SMerg helped us see when the blood loss plateaued or
dropped. SMerg provided a robust noise free representation of the
data and we also clustered the outcomes from SMerg to observe
which animals are in the same clusters. We performed a compar-
ative analysis with variations of the clustering using SMerg and
using the raw time series data. We found that the raw data captures
some minor fluctuations which might be missed when the data is
smoothed. Across all these comparisons we identified if animals
consistently fell into similar clusters or fluctuated across methods
in their cluster memberships. We also evaluated if there were a lot
of cluster reassignments in certain nanoparticles which would indi-
cate fluctuations in the data to warrant additional investigations
in those nanoparticles in the lab. Our exploratory data analysis is
summarized in Figure 1 and the steps are discussed next:
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Figure 1: Evaluating Temporal progression

2.1 Similarity based Merging (SMerg)
In order to find representations in temporal blood loss data, we used
our prior work on discovering temporal neighborhoods [28]. We
have used this technique to divide the porcine data into temporal
neighborhoods based on similarity in terms of blood loss experi-
enced by animals at various time instances. SMerg uses a Markov
model to generate a temporal neighborhood. It starts by dividing
the temporal data into equal depth bins initially. These equal-depth
bins are treated as the states of the Markov model. The distance be-
tween each bin and its neighboring bins is computed using distance
metrics such as Mahalanobis, Kullback-Leibler distance measure
(KL), and Bhattacharyya. Next, the Markov transition matrix is com-
puted using a row-stochastic similarity matrix from the distance
matrix. From the transition matrix, the adjoining bins with high
degree of similarity are merged to generate the temporal neigh-
borhood. This provides a set of discretized bins which represent
the overall distribution of the data. The advantage of this method
is that it smooths out the data without losing any key trends or
patterns and provides a very robust summarization of the data.

2.2 Piecewise Aggregate Approximation (PAA)
PAA is a well-known dimensionality reduction technique in time-
series mining [29]. It helps visualize the data in a condensed form.
Input to the PAA algorithm is a time series. PAA divides the time
series into a set of segments, and each segment is replaced by the
mean of its data points. PAA proves to be helpful in identifying
similarities and differences across the animals. PAA captures the
essence of each time interval but shows it in a compressed manner.
PAA replaces the time points in our data by themean of those points.
We have used PAA in our study to be able to monitor the movement
of blood loss of porcine animals over continuous time intervals in a
compact manner without losing sight of even a single rise and fall
of data anywhere. PAA helps in recognizing anomalies in the data.
SMerg on the other hand helps in generating plateaus and drops
that help ascertain which nanoparticles elicit consistent behavior
and till what point. Both PAA and SMerg are complementary in
investigating the temporal progression of the survivability as a
function of the blood loss in the porcine animals.

2.3 K-Means Clustering
We conducted clustering experiments on the porcine data and
created different types of inputs namely: SMerg Normalized data,
SMerg Not normalized data with 2 values of k=5 and k=7 (based on
the elbow method of determining an optimal K value with respect
to Sum of Squared Errors)[34]. Here normalized data was created
by comparing it to a baseline captured at the start of the experi-
ments. We also considered raw data to evaluate whether SMerg is
capturing the fluctuations that the bioinformaticians observed. We
then computed the Sum of Squared Error(SSE) values for blood loss
and each cytokine measured feature namely IL6, IL8, Neutrophil.
Our intuition was that the animals should fall into the same clusters
regardless of the method used and if there are variations that would
be interesting to evaluate further.

3 EXPERIMENTAL RESULTS
Our dataset consisted of 19 porcine animals. These animals were
present in three groups namely vehicle control, control nanoparticle
and hemostatic nanoparticle groups.There were 6 animals each in
the vehicle control and control nanoparticle groups, there were 7
animals in the hemostatic nanoparticle groups.

3.1 Temporal Analysis
Temporal visualizations created using PAA and SMerg can be seen
in figures 2 and 3 respectively. In figure 2 we can compare the
original data seen in with the PAA (2(a)) and SMerg representations
(2(b)) for Animal 4 that did not survive. We can see that PAA helps
in capturing the trend without losing all the fluctuations. Relative to
PAA, SMerg is more suitable to smooth out the data to see overall
plateaus and dips. SMerg smoothes out the data to capture the
larger trends in the data. However, in this process it also leads to
loss of minor fluctuations which might be interesting given the
complexity of the reactions. Losing noise should generally not be
an issue, however, if the data has minor fluctuations that need to
be captured in that case a method like SMerg may not be useful.

Figure 2: PAA and SMerg representation for Animal 4 of
Group B (Not Survived)
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Figure 3: PAA and SMerg representation for Animal 6 of
Group A (Survived)

As can be seen in figure 2, SMerg smoothes out the data. This
smoothing is useful in seeing the dip and plateau when the Animal
did not survive. However, for the Animals that did survive the
trends need to capture more nuance since fluctuations could have
significance and show impact of the nanoparticles. In figure 3(b)
SMerg analysis has a somewhat flat trend which may create a
notion that the animal had a drop and plateaued (similar to figure
2 (b)) .Figure 2 and 3 collectively help us understand that capturing
noise is essential to get a comprehensive understanding of the data
especially when used for decision making tasks such as predicting
feature importance or associations.

3.2 Clustering

Figure 4: SSE across blood loss and Cytokine features

In figure 4, we depict the sum of squared errors(SSE) values for neu-
trophil, cytokines namely IL6, IL8 and blood loss using variations
of data (after applying temporal modeling and raw data with or
without normalization). SSE is the sum of the squared differences
between each observation and its group’s mean. It can be used as a
measure of variation within a cluster. If all cases within a cluster
are identical the SSE would then be equal to 0[37]. We can see that

blood loss has the highest SSE indicating the variance in the blood
loss data. Neutrophil is the next highest SSE followed by IL6 and
IL8.

Figure 5: Cluster Membership for IL6 in raw data

We also capture how many times an animal switched clusters
by normalization and by change in K values when we used the raw
data. Figure 5 depicts each animal with the ‘number of changes’
measure. We can see that in most of the cases animals that have
survived havemore cluster switching as opposed to the animals that
did not survive indicating that they do not have as much separation.
This was quite interesting as this captured the minor fluctuations
in the data as well. However, we did not see such cluster changing
behavior in IL8 as shown in figure 6. In terms of cluster changes IL6
shows the most fluctuation however, in terms of SSE value Blood
loss and Neutrophil exhibit a higher amount of fluctuation as shown
in figure 7. We also see that IL6 and Neutrophils are ranked much
higher in feature ranking as well, as shown in figure 8. Their activity
in the trauma is critical to outcomes, and the cytokine levels.

Figure 6: Cluster Membership for IL8 in raw data
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Figure 7: Cluster Changes vs SSE

Figure 8: Feature Ranking

4 CONCLUSIONS AND FUTUREWORK
Visualizations created using PAA and SMerg were useful in making
a general comparison among all the 19 animals in terms of temporal
progression. We observed that if fluctuations are important to study
underlying mechanisms, then the traditional time series methods
may not be useful. Clustering captured deviations in IL6, IL8 and
Neutrophils, which were also captured in feature ranking. The
cluster outcomes provided novel insights into these findings to
observe why these animals survived and showed the fluctuations.
The major limitation in our work was the availability of few porcine
animals’ data. This was primarily due to the fact that the data comes
from slaughter of porcine animals and we want to reduce this.
Moreover conducting the experiments in the laboratory setup was
a complex process as it was not only expensive but also required
domain expertise. However, we believe that this sparse data scenario
would help us dive into the real-world scenarios where a large
amount of data is unavailable. The future work includes testing
hypotheses based on the findings of IL6, IL8 and Neutrophils and
their interactions in the lab. We have also explored few methods
that fall in the supervised domain[33].
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