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ABSTRACT
In this paper, we propose a method for the detection of lead-lag 
clusters in multivariate time series, using a pairwise lead-lag metric 
and a directed network clustering algorithm. We demonstrate that 
the latent network of pairwise lead-lag relationships between time 
series can be helpfully construed as a directed network, for which 
there exists a suitable algorithm for the detection of pairs of lead-lag 
clusters with high pairwise imbalance. Our method is able to detect 
statistically significant lead-lag clusters in our primary domain of 
study, the US equity market. We study the nature of these clusters in
the context of the empirical finance literature on lead-lag relations.
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1 INTRODUCTION
The study of lead-lag relationships in multivariate time series sys- 
tems is of interest in a number of fields [37], including earth sci- 
ences [24], biology [40], and economics [46, 52]. In this paper, we 
examine ensembles of pairwise lead-lag relationships in time series 
data, through the lens of directed network analysis. Our specific 
interest lies in discovering clusters of variables that exhibit strong 
lead-lag behaviour. To this end, we leverage recently developed 
algorithms [14] that identify clusters with high imbalance in the 
flow of weighted edges between pairs of clusters.

  While we expect our method to be applicable to a number of 
multivariate time series domains, the particular application domain
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of interest in this study is the analysis of lead-lag clusters in finan-
cial time series data. Large financial markets, such as the US equity
market, exhibit complex non-linear behaviour [12]. By using pair-
wise lead-lag detection and the tools of network analysis, we aim to
extract clusters that capture the latent lead-lag relationships inher-
ent in such complex systems. This approach may lead to insights
into the nature of lead-lag relationships in a system such as the US
stock market. Furthermore, persistent historical clusterings can be
utilised for the challenging task of returns forecasting. Our unsu-
pervised learning method may prove to be a valuable component
in high-dimensional forecasting problems.

Key contributions. Our primary contribution is the introduction
of a method for the previously unaddressed problem of extracting
clusters of leading and lagging time series inmultivariate time series
systems. Secondly, our empirical analysis yields the first data-driven
lead-lag clustering of the US equity market and provides insights
into its structure. Thirdly, in the Supplementary Information (SI)
section A.2, we introduce a benchmark data generating process for
multivariate time series systems with clustered lead-lag structure,
which is used to evaluate our method1.

2 PROBLEM SETTING
In the context of our study of multivariate time series systems,
values of a time series α may be associated with future values of
time series β with some strength of association I (α, β) which will
be defined later. Similarly, we can define the strength of association
I (β,α). We say that time series α leads time series β if I (α, β) >
I (β,α). Otherwise, we say that α lags β . There are a number of
ways to mathematically define and extract the pairwise lead-lag
relationship between time series. In Section 4, we propose a specific
metric that is suited to our application domain and performs well
in the synthetic data experiments.

Once we have chosen a metric to capture lead-lag relations, we
can represent the relations using a directed weighted network. The
nodes of our network correspond to different time series. A directed
edgeα → β exists between nodesα and β ifα leads β . The weight of
this edge is given by the magnitude of the pairwise lead-lag metric.
We are thus able to study the properties of lead-lag relationships
using the tools of network analysis.

A key question in network analysis concerns community detec-
tion. Does there exist a clustering of nodes such that node similarity
is stronger within clusters than between clusters? In the context
of a directed network encoding lead-lag relations, the question of
community detection can be interestingly framed in terms of iden-
tifying clusters that have high pairwise imbalance. We regard the
flow along a directed weighted edge α → β as a measure of how

1All code is available at https://github.com/stefanosbennett/kdd-time-series
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much α leads β . A high cut imbalance between communitiesA and
B means that variables inA are, on average, leaders of variables in
B. Therefore, by identifying pairs of clusters with high imbalance,
we segment our multivariate system into communities that are,
taken in pairs, mostly composed of either leaders or laggers. In Sec-
tion 4, we describe a specific directed network clustering algorithm
that is suited for this task.

The application domain studied in this paper is that of financial
time series. In this application, each time series corresponds to
the return time series for a particular financial instrument. We
investigate the lead-lag cluster structure of the US equity universe.
In particular, we are interested in three questions. Does there exist
a statistically significant cluster structure in US equities? What
is the nature of the data-driven clustering? How does the data-
driven cluster structure relate to previously discovered lead-lag
mechanisms?

3 RELATEDWORK
There exists substantial evidence of lead-lag relations at the scale
of monthly, weekly and daily financial returns [2, 7, 9, 10, 29, 33] as
well as at higher frequencies [15, 16, 26, 52]. In addition, a number of
papers have considered lead-lag relations from the point of view of
networks [5, 15, 20, 28, 41, 51, 53, 54]. Commonly studied questions
in this financial lead-lag network literature concern the cluster
structure of the lead-lag network [4, 5, 28, 41, 53, 55]. A number of
papers consider the relative influence of different industry sectors
within the lead-lag network [4, 28, 55]. The influence of various
sub-sectors within the lead-lag network of financial institutions
is also a particular question of concern [5, 41, 53]. The effect of
geography-based clusters has also been investigated [41].

In addition to the literature on financial lead-lag correlation
networks, there is also substantial literature on synchronous corre-
lation networks [32, 34, 42, 50]. The reader is referred to Marti et al.
[32], for an extensive review of clustering on (mostly) synchronous
financial correlation networks.

Our empirical analysis is novel within the financial lead-lag
literature since it is the first work to extract a data-driven clustering
of the lead-lag network. In contrast, previous studies [4, 5, 28, 41,
53, 55] are only able to capture the influence of pre-defined groups2
within the financial lead-lag network. We believe that the academic
interest in our data-driven clustering approach is underscored by
the plurality of papers [32] that apply data-driven clustering to the
synchronous correlation network, as well as the number of papers
that apply data-driven ranking methods to the lead-lag network
[3, 5, 28, 47, 54].

4 METHOD
Our method is a pipeline consisting of three steps. First, we ap-
ply a pairwise lead-lag metric to capture the lead-lag relationship
between each pair of time series; this results in a network of lead-
lag relationships. Second, we apply a directed network clustering
method to extract a partition of the multivariate system such that
there is a large flow imbalance (net sum of weights of inter-cluster
edges [14]) between cluster pairs. The third step leverages this
clustering to identify the leadingness of a cluster.

2that are defined, for instance, by industry sector [4, 28, 55] or geography [41]

There are a number of choices for each of these components
of our pipeline. In SI A.2, we evaluate different metrics that can
be used to quantify lead-lag relations between pairs of time series
and possible directed network clustering methods, under synthetic
data experiments. On the basis of a-priori considerations and per-
formance under the synthetic data experiments, a lead-lag metric
that computes distance correlation [49] between the shifted time
series and a directed clustering method that uses the spectrum
of a Hermitian adjacency matrix are suitable components for the
application of our method to US equity returns. We outline the
implementation of our method using these components.

A lead-lag adjacency matrix. Let X i
t denote the random value of

the time series variable i ∈ {1, ...,p} at time t = 0, . . . ,T . Further,
define the first differences Y it = X i

t − X
i
t−1 for i ∈ {1, ...,p}, t =

1, . . . ,T . In our application domain of US equities, X i
t denotes the

logarithm of the closing price for stock i ∈ {0, 1, ...,p} on day
t = 0, . . . ,T . Hence Y it provides the corresponding log-return for
equity i from day t − 1 to t .

First, we define the sample cross-correlation function between
time series i and j evaluated at lag l ∈ Z to be

ccfi j (l) = corr
(
{Y it−l }, {Y

j
t }

)
, (1)

where corr denotes the distance correlation [49]; more choices of
correlation measures are given in SI A.1.1. Next, the lead-lag metric,
a measure of the extent to which i leads j , is obtained by applying a
functional, which we denote ccf-auc, that computes the signed nor-
malised area under the curve (auc) of the cross-correlation function
(ccf). Mathematically, this amounts to

Si j =
sign(I (i, j) − I (j, i)) ·max(I (i, j), I (j, i))

I (i, j) + I (j, i)
, (2)

where I (i, j) =
∑L
l=1

���corr ({Y it−l }, {Y j
t }

)��� for a user-specified maxi-
mum lag L. Thus Si j is designed to quantify how much time series
variable i leads j. The value Si j satisfies Si j = −Sji , rendering
the matrix skew-symmetric. Our method is able to detect general
non-linear dependencies across multiple lags l ∈ {−L, . . . , L}.

Clustering the lead-lag adjacency matrix. Define the asymmetric
lead-lag adjacency matrix matrix Ai j = max(Si j , 0) which encodes
the leading relationships between all pairs of time series. We apply
the directed network clustering algorithm of Cucuringu et al. [14],
to the weighted and directed network G, where each node corre-
sponds to a time series variable and the adjacency matrix is A. This
algorithm for clustering directed networks considers the spectrum
of the complex matrix Ã ∈ Cp×p derived from the directed network
adjacency matrix as Ã = i(A−AT ). Since Ã is Hermitian, it has a real
spectrum which can be used to extract an eigenvector embedding
that is amenable to clustering. The Hermitian clustering algorithm
is particularly suited to our setting of clustering lead-lag networks
since we aim to extract pairs of clusters with high flow imbalance
[14]. In addition, as a pre-processing step for this algorithm, we
apply random-walk normalisation to the adjacency matrix Ã so
that the method is robust to heterogeneous degree distributions
[14]; we refer to the resulting algorithm as the Hermitian RW
algorithm. Details of this algorithm as well as alternative clustering
algorithms can be found in SI A.1.2.
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The leadingness metric. We introduce a meta-flow graph in order
to capture the aggregate weighted flow between pairs of clusters.
The total “flow” between any two clusters is given by the normalised
sum of the signed weights between all edges directed from one
cluster to another. The skew-symmetric matrix that encodes this
information is dubbed the meta-flow matrix F with entries

Fi j =
1

|Ci | |Cj |

∑
l ∈Ci ,m∈Cj

[Alm −Aml ] , (3)

where Ca denotes the set of all nodes in cluster a ∈ {1, . . . ,k},
and i, j ∈ {1, . . . ,k}, i , j. The diagonal of F consists of zeros:
Fii = 0, ∀i ∈ 1, . . . ,k . We also define a metric for the leadingness
of each cluster i ∈ {1, . . . ,k}, L(i), as follows

L(i) :=
1
|Ci |

∑
l ∈Ci ,m∈{1, ...,p }

[Alm −Aml ] . (4)

Thus, L(i) averages the row-sums of the skew-symmetric matrix
A − AT for nodes within the cluster i; the row sums of the lead-
lag matrix provide a measure of the total tendency of the equity
corresponding to the row to be a leader [25]. From this metric,
we obtain a ranking of the clusters from the most leading cluster
(largest row-sum value), which we will label 0, to the most lagging
cluster (smallest row-sum value), which has the greatest label. The
row-sums [22, 25] algorithm is an instance of a ranking method that
recovers a latent ordering of variables given pairwise observations.
There exists a number of alternative ranking algorithms [6, 13, 17,
21, 35] that can be used for defining the leadingness of a cluster.

5 US EQUITY DATA EXPERIMENT
It is well known that US equity returns have a cross-sectional fac-
tor structure [18]. Some of the prominent factors, for example the
factors representing industry membership, exhibit cluster mem-
bership. This induces a clustering structure in the synchronous
cross-sectional equity returns [19]. In addition to this synchronous
clustering structure, we conjecture that there exists a clustering
structure in US equities due to inter-temporal relations in equity
returns. In this section, we apply our method to construct and clus-
ter a lead-lag network on a US equity universe, and investigate
the resulting data-driven clustering. We will use ccf-auc with lags
l ∈ {−5, . . . , 5} with the distance correlation as our lead-lag metric,
and Hermitian RW clustering as our clustering step. This method
is able to capture non-linear lead-lag relations between returns on
the scale of up to a week. We set the number of clusters, a hyper-
parameter of our algorithm, to 10 in order to facilitate comparison
with the industry-sector clustering of equities.

Data description. We consider a universe of 434 equities spanning
from 04-01-2000 to 31-12-2019 inWharton’s CRSP database [1]. Our
data gathering and pre-processing steps reduce the risk of detecting
spurious lead-lag relations that are due to non-trading effects; the
details of these steps can be found in SI A.3.1. The data consist of
daily closing prices from which we compute daily log-returns.

Figure 1 (left) shows a sorted skew-symmetric lead-lag matrix
encoding the measurement between each pair of stocks. A block
structure is apparent, with the last block being a highly lagging
cluster.

Testing statistical significance for lead-lag clusters using a permu-
tation test. We test whether there is a statistically significant time
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Figure 1: Left: Heatmap of the double-sorted lead-lagmatrix
A − AT ; positive entries in the matrix correspond to a lead-
ing relationship between the stock depicted on the vertical
axis with respect to the stock depicted on the horizontal axis.
Right: Meta-flow network for Hermitian RW clusters; clus-
ters are represented by nodes and larger edge weights are
depicted by bolder lines.

dependence in daily US equity returns using a permutation test on
the spectrum of the Hermitian adjancency matrix Ã = i(A − AT ).
Under the null hypothesis that there is no time dependence, the
ordering of the rows of the daily returns matrix Y ∈ RT×p is drawn
uniformly at random from the set of all permutations on {1, . . . ,T },
σ ∈ ST . Therefore, under the hypothesis of no time dependence,
the spectrum of the observed lead-lag matrix should be consistent
with the distribution over the spectra of row-permuted matrices
Ãσ (t ), j , t = 1, . . . ,T , j = 1, . . . ,p. Since lead-lag cluster structure is
associated with the largest eigenvalues of the Hermitian matrix Ã
[14], our permutation test statistic is set to be the largest eigenvalue
of Ã. We use 200 Monte Carlo samples from the null distribution.
Under the null hypothesis, the Monte Carlo probability that the
largest eigenvalue is greater than or equal to the observed largest
eigenvalue is 1/201. We thus reject the null hypothesis with p-value
p < 0.005, and conclude that there is significant temporal structure
in US equity markets.

Note that a rejection of the null implies either
(1) Significant auto-correlation,
(2) Significant cross-correlation,
(3) Some combination of (1) and (2).

However, since our test statistic is a summary statistic of the lead-
lag matrix spectrum, which encodes cross-correlations between
time series and relates to the clustering structure [14], a rejection
of the null suggests that there is significant cluster structure in the
lead-lag matrix.

Comparing data-driven clustering with known lead-lag mecha-
nisms. We investigate whether our data-driven lead-lag extraction
and clustering results can be explained by three potential mecha-
nisms explored in the financial lead-lag literature.

(1) Sector membership induces clustered lead-lag effects. Bieley
et al. [4] find associations between sector membership and
lead-lag structure on the high-frequency scale of returns.

(2) Equities with higher trading volume are hypothesised to
lead lower volume equities. The disparities in trading vol-
ume across equities can lead to non-synchronous trading
lead-lag effects [8, 9]. Clustering structure may be induced
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by ordering equities based on quantiles of average trading
volume.

(3) Larger capitalisation equities are hypothesised to lead lower
capitalisation equities [29]. This market capitalisation mech-
anism can produce lead-lag effects partly via non-trading
effects and partly via other channels [8]. Conrad et al. [11]
also find that large stocks may lead small stocks via volatility
spillovers. Clustering structure may be induced by ordering
equities based on quantiles of market capitalisation.

Comparison of data-driven clustering with industry membership
clustering. We compute the Jaccard similarity coefficient between
the data-driven Hermitian RW clustering and the clustering due
to industry membership. We use the first level of the Standard
Industrial Classification (SIC) [1] code for the firm corresponding
to each equity in order to assign the equity to an industry. Table
1 in SI A.3.2 counts the number of equities that are a member of
each SIC sector. Figure 2 displays the Jaccard similarity between
each pair of Hermitian RW and industry clusters.

0 1 2 3 4 5 6 7 8 9
cluster

Agri., Forest. & Fish.
Construction

Fin., Ins. & RE
Manufacturing

Mining
Retail

Services
Trans., Util. & other

Wholesale

se
ct

or

0.00

0.08

0.16

0.24

0.32

0.40

Figure 2: The Jaccard similarity coefficient between Hermit-
ian RW and industry clusters (SIC)

Overall, noting the low value of the Jaccard similarity coefficient
between the Hermitian RW and SIC industry clusters, we see that
we cannot fully explain the Hermitian RW clustering in terms of
the SIC industry sectors. However, there does appear to be some
association between certain SIC sectors and Hermitian RW clusters.

We see that the Mining sector seems to be strongly associated
with cluster 1 (the second most leading cluster). The Finance, In-
surance and Real Estate sector is also associated with a relatively
leading cluster (cluster 2). These observations are consistent with
the findings of Biely et al. [4] that the finance and energy sectors
have strong participation in the significant eigenvalues of the lead-
lag matrix3. Xia et al. [55] also find that the financial and real estate
sectors are associated with leading equities in the Chinese equity
market. These associations between SIC code and Hermitian RW
membership provide a partial interpretation for the links of the
meta-flow network corresponding to the Hermitian RW clustering.
The meta-flow network is depicted in Figure 1 (right). For example,
we see that one of the strongest flows is from cluster 4 to 9 – which
are associated with Manufacturing and Construction respectively.

3While Biely and co-authors [4] use GICS sector classification in their analysis, the
GICS Energy sector has substantial overlap with the Mining SIC sector.

Figure 7 of SI A.3.2 displays a histogram of the edge weights of
the two meta-flow networks: one corresponding to Hermitian RW
clustering and the other corresponding to SIC clustering. The data-
driven Hermitian RW clustering results in larger flow between pairs
of clusters than an industry-based clustering. This demonstrates
the efficacy of our method in retrieving pairs of clusters with high
flow imbalance.

Comparing data-driven clustering with market capitalisation and
volume-based explanations. We also find that more leading clus-
ters (clusters labelled 0 − 3) do not appear to have larger average
daily dollar volume or market capitalisation4. These results are
not consistent with the hypotheses that a cluster’s tendency to
lead is positively associated with the trading volume or market
capitalisation of its constituents.

Therefore, the results obtained by our data-driven clustering
method cannot be explained by the three previously hypothesised
mechanisms outlined in this section. Our novel method may prove
to be useful in the exploration of novel lead-lag mechanisms in the
empirical finance community.

Time-variation in clusters. To investigate the time-variation in
the clustering obtained through our method, we recompute the
clustering year-by-year using only data from the retrospective year
to do so. In order to compare the similarity in clusterings across
time, we calculate the Adjusted Rand Index (ARI) between each
pair of yearly clusterings. The results are illustrated in Figure 10 of
SI A.3.4. The relatively low ARI values between pairs of clusters in-
dicates a low persistence in year-to-year lead-lag structure. Further,
higher ARI values occur in earlier years: this suggests that there
is a decrease in persistence between clusterings as time increases.
This agrees with the observation in the work of Curme et al. [15]
that the informational efficiency of the market appears to increase
in 2012 relative to earlier years.

6 CONCLUSION
We propose a method for the previously unaddressed problem of
data-driven detection of leading and lagging time series clusters.
Our method captures general, non-linear lead-lag correlations and
leverages a state-of-the-art directed network clustering algorithm
which is able to detect clusters with high flow imbalance. When
applied to US equity data, our method produces a clustering that
cannot be explained by three prominent lead-lag hypotheses; this
suggests that our method is useful for the exploration of novel
lead-lag mechanisms in the discipline of empirical finance. In on-
going work, we find that our method can be used for challenging
downstream forecasting tasks in noisy, high-dimensional settings.
In addition to the application domain of finance, our method may
be used in domains – such as economics, medicine and earth sci-
ences – that are characterised by large multivariate time series data.
Finally, our network approach to time series, which is able to infer
global clustering structure based on local pairwise interactions, can
be applied to general pairwise directed interaction data between
time series variables. Thus, our framework may be generalised be-
yond lead-lag interactions, in order to discover cluster structure
in high-dimensional time-series systems based on general directed
interactions.

4The details of our methodology and results can be found in SI A.3.3
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A SUPPLEMENTARY MATERIAL
A.1 Description of the method components
A.1.1 Pairwise metrics of lead-lag relationship. In a complex, non-
linear system such as the US stock market, determining a suitable
way to define a metric to capture lead-lag relationships is a chal-
lenging task.

Lead-lag metrics based on a functionals of the cross-correlation. A
commonly used approach to defining a lead-lag metric is to use a
functional of the cross-correlation function (ccf) between two time
series. As in (1), the sample cross-correlation function between time
series i and j evaluated at lag l ∈ Z is given by

ccfi j (l) = corr
(
{Y it−l }, {Y

j
t }

)
,

where corr denotes a choice of sample correlation function. Gener-
alising equation (2), the lead-lag metric, a measure of the extent to
which i leads j, is then obtained by

Si j = F (ccfi j ),

where F is a suitable functional. Concretely, we consider four
choices for the sample correlation function corr

(1) Pearson linear correlation
(2) Kendall rank correlation [27]
(3) Distance correlation [49]
(4) Mutual information based on discretised time series val-

ues [20]
Further, we consider two choices for the functional F as follows

(1) ccf-lag1: computes the difference of the cross-correlation
function at lag l ∈ {−1, 1}

Si j = ccfi j (1) − ccfi j (−1),

(2) ccf-auc: computes the signed normalised area under the
curve (auc) of the cross-correlation function

Si j =
sign(I (i, j) − I (j, i)) ·max(I (i, j), I (j, i))

I (i, j) + I (j, i)
,

where I (i, j) =
∑L
l=1

���corr ({Y it−l }, {Y j
t }

)��� for a user-specified
maximum lag L.

The ccf-lag1 method used with Pearson correlation is a crude
lead-lag indicator [8]. This lead-lag indicator is only able to correctly
determine the direction of the lead-lag relationship under a positive
cross-correlation association between time series. Thus, this lead-
lag indicator should be restricted to domains such as US equity
returns, where cross-correlations between time series variables are
predominantly positive [8].

The ccf-auc method accounts for both positive and negative
associations across multiple lags l ∈ {−L, . . . , L}. The maximum
lag L can be be chosen a-priori as the maximum time lag expected
in the multivariate system or by using cross-validation on some
downstream validation criterion. The averaging approach ccf-auc
presented here is similar to Wu and coauthors’ [54] lag aggregation
methodology.

The four different sample correlation functions are devised to
detect different dependencies. Pearson correlation is able to detect
linear dependencies, Kendall rank correlation is able to detect mono-
tonic non-linear dependencies, Distance and Mutual information

are able to detect general non-linear dependencies. A drawback
of such non-linear sample correlation functions is that they have
lower power in the case of a true linear relationship.

In total, we consider 8 possible choices for lead-lag metrics based
on functionals of the cross-correlation. This comprises 4 possible
choices for correlation (Pearson, Kendall, distance and mutual in-
formation) and 2 possible choices for the functional form (ccf-lag1
and ccf-auc).

The functional cross-correlation approach is flexible and com-
putationally simple. The flexibility of the framework permits the
use of robust and non-linear correlation metrics. The use of non-
linear correlation metrics is particularly useful for the extraction
of lead-lag relationships in the financial time series domain where
linear cross-correlations between returns are expected to be low.
High information efficiency in US equity markets [30] implies low
linear return cross-correlation. On the other hand, a stylised fea-
ture of financial returns is volatility clustering [12]; the size of the
cross-correlation between the volatility of returns is expected to
be larger than the cross-correlation between the raw returns them-
selves. A linear cross-correlation approach is unable to capture
the relationship between the volatility of two instruments across
time. Empirical studies have also found that stronger lead-lag rela-
tionships can be detected when taking into account volatility [5].
Thus, when comparing the time-dependence in returns between
two assets, we should allow for non-linear effects [20]. In addition,
the functional cross-correlation approach easily permits the use
of correlation metrics that are robust to outliers. Since financial
times series exhibit heavy tails [12], this is an important feature for
a lead-lag extraction method.

The linear Granger causality approach that is often considered
in financial lead-lag studies [45] can be viewed as an extension of a
functional linear cross-correlation-based approach that takes into
account autocorrelation and also filters for statistical significance.
General Granger causality methods may also use non-linear func-
tional forms to capture the association between time series. These
more general methods can be used as the lead-lag extraction com-
ponent of our method. However, for our purposes of demonstrating
our method and using robust and non-linear lead-lag extraction,
simpler functional cross-correlation approaches will suffice. Fur-
ther, in the synthetic data generating processes that we consider in
SI A.2 there is no association between past values of a time series
and its own future values; thus, Granger causality approaches that
take into account such association are not relevant in this setting.

Alternative lead-lag metrics. The lead-lag extraction approaches
mentioned in this section are not exhaustive. Indeed, alternative
methods can be found within the financial time series lead-lag
literature [52]. Further, the functional cross-correlation framework
presented in this paper is agnostic to the choice of correlation
metric used within it. As such, it is able to draw on a wide array of
non-linear correlation metrics such as Target/Forget Dependence
Coefficient [31], maximal information coefficient [38] or maximum
mean discrepancy [23].

A.1.2 Algorithms for clustering directed networks. Let Si j denote
the user-defined lead-lag metric that captures howmuch time series
variable i leads j. The value Si j can be positive or negative and
satisfies Si j = −Sji . Define the asymmetric matrixAi j = max(Si j , 0)
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which encodes the leading relationships between each all pairs of
time series. We apply directed network clustering algorithms to the
weighted and directed network G where each node corresponds to
a time series variable and the adjacency matrix is A. In this section,
we present different relevant clustering methods for such directed
networks. We start with more details on Hermitian random walk
clustering, which is the method used in the main part of the paper.

Hermitian clustering. The Hermitian clustering procedure [14]
for clustering directed networks considers the spectrum of the
complex matrix Ã ∈ Cp×p , which is derived from the directed
network adjacency matrix as Ã = i(A −AT ). Since Ã is Hermitian,
it has p real-valued eigenvalues which we order by magnitude
|λ1 | ≥ . . . ≥ |λp |. The eigenvector associated with λj is denoted by
дj ∈ C

p where | |дj | | = 1 for 1 ≤ j ≤ p.
Algorithm 1 describes the procedure for clustering the directed

graph G. In our implementation, we set l = k .

Algorithm 1 Hermitian clustering algorithm
Input: A directed graph G = (V , E) with Hermitian adjacency

matrix Ã; number of clusters k ≥ 2; ϵ > 0
(1) Compute all the eigenvalue/eigenvector pairs of A
{(λ1,д1), (λ2,д2), . . . , (λl ,дl )} satisfying |λj | > ϵ

(2) P ←
∑l
j=1 дjд

T
j

(3) Apply a k-means algorithm with input rows of P
(4) Return a partition of V corresponding to the output of k-

means

Cucuringu et al. [14] study the performance of the algorithm
theoretically and experimentally under data generated by a directed
version of the stochastic block model that embeds latent structure
in terms of flow imbalance between clusters. They show that the
algorithm is able to discover cluster structures based on directed
edge imbalance. This contrasts with previous spectral clustering
methods which detect clusters based purely on edge-density of
symmetrised networks. The Hermitian clustering algorithm is par-
ticularly suited to our setting of clustering lead-lag networks since
we aim to extract pairs of clusters with high flow imbalance. In ad-
dition, as a pre-processing step for this algorithm, we apply random
walk normalisation to the adjacency matrix Ã so that the method is
robust to heterogeneous degree distributions [14]; we refer to the
resulting algorithm as the Hermitian RW algorithm.

In addition to Hermitian clustering, we also considered the fol-
lowing clustering algorithms for directed networks.

Naive symmetrisation clustering. Popular undirected network
clustering methods such as spectral clustering [44] cannot be im-
mediately applied to directed networks, since directed networks
have complex spectra. Traditional approaches for directed network
clustering have applied spectral analysis to a symmetrised version
of the directed network adjacency matrix [36, 48]. We consider a
commonly used naive symmetrisation-based directed clustering
method as a baseline [43]. This naive method applies a standard
spectral clustering [44] algorithm to the undirected network with
adjacency matrix Ã = A +AT . In this paper, the spectral clustering
algorithm applied to the derived undirected networks uses k-means

clustering on a projection onto the first k non-trivial eigenvectors
of the random-walk normalised graph Laplacian (we drop the first
eigenvector since for connected networks it is always the unit vec-
tor). The value of k , corresponding to the desired number of clusters,
is a hyperparameter of the algorithm.

Bibliometric symmetrisation clustering. Naive symmetrisation
methods produce a clustering that only takes into account edge
density and not edge direction. As a result, they are unable to target
clusterings with high pairwise flow imbalance between clusters.
Satuluri and Parthasarathy [43] propose the degree-discounted bib-
liometric symmetrisation that is able to take into account edge
direction information. Clusters produced by this method are ex-
pected to group together nodes that have a relatively large number
of parent and children nodes in common [43].

DI-SIM co-clustering. Rohe et al. [39] propose a co-clustering
algorithm for directed networks. The co-clustering algorithm first
computes a regularised graph Laplacian using A; this initial step
is performed so that algorithm may deal with heterogeneous and
sparse data. Then, co-clustering is performed by applying k-means
on the k-largest of each of the left and right normalised singular
vectors of the Laplacian; in the plots, we shall abbreviate these two
methods by DI-SIM-L and DI-SIM-R, respectively.

A.2 Synthetic data experiment
The purpose of this section is to validate our method in synthetic
experiments in which the ground truth lead-lag relationships and
clusters are known. It will also give an indication of the relative per-
formance of each of our lead-lag metrics and clustering components
under different data generating settings.

A.2.1 Synthetic data generating process. We introduce two differ-
ent lagged latent variable synthetic generating processes to test our
method. The general form of these synthetic generating processes
is a latent variable model whereby the lagged dependence on the
latent variable z induces the clustering amongst the different times
series {yit }. Mathematically, the synthetic data generating processes
take the form

zt
i .i .d .
∼ Fz ∀t ∈ {1, . . . ,T }, zt := 0∀t ≤ 0,

yit = дli (zt−li ) + ϵ
i
t , ϵ

i
t
i .i .d .
∼ N (0,σ 2)

∀t ∈ {1, . . . ,T }, i ∈ {1, . . . ,p},

where the lag corresponding to time series variable i is li ∈ L and
L is the set of lag values. The choice of the shared latent variable
distribution Fz and the functional dependencies дl , l ∈ L on the
latent variable z determines the data generating process. The two
particular forms that we will consider are as follows

(1) Linear

Fz = N (0, 1),

yit = zt−li + ϵ
i
t ,

(2) Cosine

Fz = U (−π , π ),

yit =
1
√
π
cos(li · zt−li ) + ϵ

i
t .
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The factor-based form of the synthetic data generation is motivated
by our application to US equity markets [18]; see Section 5 for
a discussion of hypothesised clustered lead-lag return structure
in the US equity market. The synthetic data generating process
considered in this section is a toy model that is designed to test
whether our method can correctly detect and cluster time series in
a factor-driven scenario.

In these two data generating process scenarios, by design, the
cross-covariance at lag k ∈ N between any two time series i, j ∈
{1, . . . ,p} is E

[
(yit−k − E[y

i
t−k ])(y

j
t − E[y

j
t ])

]
= 0 whenever k ,

lj − li due to the independence of zt across time. In the linear data
generating case, setting (1), when k = lj − li , then we have that
E
[
(yit−k − E[y

i
t−k ])(y

j
t − E[y

j
t ])

]
= E[(zt−lj )

2] ≥ 0. This induces a
linear dependence between time series i and time series j through
the single non-zero value in the cross-covariance function between
these two time series. Considering the whole network of lead-lag
relations, we find that i → j (i is a leader of j) if and only if li <
lj . Since multiple time series share the same lag, this network is
clustered: time series i and j share the same cluster if and only
if li = lj . Our synthetic experiments test our method’s ability to
correctly detect lead-lag relationships and recover the underlying
ground-truth clustering structure of the lead-lag network.

The non-linear data generating case, setting (2), engenders ad-
ditional challenges for our lead-lag extraction method. Due to the
orthogonality of the cosine functions {cos(mx)}m∈N, the linear
cross-covariance evaluated at lag k between two time series i and
j is zero even when k = lj − li . Thus we expect metrics based on
linear cross-covariance methods to perform poorly in these set-
tings5. Non-linear lead-lag metrics are required in order to detect
the non-linear dependence of time series j on time series i at lag
k = lj − li .

In our simulation studies, we consider the performance of dif-
ferent configurations of our method as the noise level σ of the
idiosyncratic error increases. The following experiment parameter
choices are considered

• Number of data points per time series: T = 250,
• Number of time series: p = 100,
• The standard deviation of the idiosyncratic noise: σ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4},
• Latent variable lag dependence for each time series by ex-
periment setting:
– Linear: li = ⌊ i−110 ⌋ for i = 1, . . . , 100,
– Cosine: li = ⌊ i−110 ⌋ + 1 for i = 1, . . . , 100.

The lag and factor structure implies that there are 10 clusters
in each setting. In each configuration of our method, we set the
clustering algorithm hyperparameter corresponding to the number
of clusters to be equal to the ground truth number of clusters.
The remaining hyperparameter choices for the different method
configuration components are

• ccf-auc: the maximum cross-covariance lag: L = 5.

5Yet, we note that even if the ground-truth cross-covariance is zero, this does not
imply that the expected value of the sample Pearson coefficient will be zero due to the
denominator of the Pearson coefficient.

• Hermitian RW, Naive symmetrisation and Bibliomet-
ric clustering: the number of eigenvectors used in the re-
spective spectral clustering projections is set equal to the
ground truth number of clusters.
• DI-SIM co-clustering: the regularisation parameter is set
equal to the average row sum of the adjacency matrix [39]
and the number of singular vectors used in the co-clustering
is set equal to the ground truth number of clusters in each
synthetic data generating setting.

A.2.2 Performance metrics. We define performance criteria to eval-
uate both components – the lead-lag detection component and
the clustering component – of our method. In order to evaluate
the lead-lag detection component of our method, we calculate the
proportion of correctly classified edges in the true underlying lead-
lag network (i.e. the accuracy of correctly classifying the direction
of the lead-lag relationship between two time series). In order to
evaluate the clustering component of our method, we calculate the
Adjusted Rand Index (ARI) between the ground-truth clustering
and the clustering recovered by our method.

A.2.3 Results. We present the results for the lead-lag metric and
clustering stages separately. For each experimental setting, we have
generated 48 samples from the synthetic data generating process
and applied our method to it.

We display the average value and confidence interval for the
lead-lag component detection accuracy over the 48 samples in the
linear setting in Figure 3, and the cosine setting in Figure 4. The
confidence interval is a 95% Gaussian for the accuracy computed
on a sample from the data-generating process.
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Figure 3: Average and confidence interval for accuracy by
lead-lag detection method in the linear setting.

We observe from Figure 3 that the proposed lead-lag detection
components are able to detect linear lead-lag associations, and
that their performance decreases to random chance performance
as the level of noise in the synthetic data experiment increases.
The ccf-auc method performs better than the ccf-lag 1 method.
Within the ccf-auc method, the non-linear Kendall and distance
correlation metrics are able to maintain similar performance to
the linear metric. The outperformance of the ccf-auc method over
the ccf-lag1 method shows the advantage of considering a larger
number of lags in the cross-correlation function when pairs of time
series depend on each other through large lag values.
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Figure 4: Average and confidence interval for accuracy by
lead-lag detection method in the cosine setting.

The performance of the methods is worse in the cosine setting:
the noise level at which the performance of all methods drops to
that of random chance around σ = 0.5 (compared with σ = 4 in
the linear setting). The ccf-lag1 method performs poorly: this is
not a surprise since this method cannot deal with negative associa-
tions. The ccf-auc method using mutual information or distance
correlation is able to achieve the highest accuracy; this illustrates
the use of methods that are able to take into account negative and
non-linear associations.

In order to compare the performance of different clustering meth-
ods, we compute, for each clustering method and experimental
repetition, the marginal of ARI over the different lead-lag detection
metrics. The mean and confidence interval for the ARI values over
the experimental repetitions is shown in Figures 5 and 6.
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Figure 5: Average and confidence interval for the ARI by
clustering method in the linear setting.

We see that the (non-naive) implementations of our method are
able to recover almost perfectly (ARI of 1) the clustering in both
settings (1) and (2) when σ is low. The performance of our methods
decrease as σ increases – the performance in the cosine setting
decreases faster than the performance in the linear setting. The
Hermitian RW and the DI-SIM clustering methods perform best in
the settings considered. The Hermitian RW method targets clusters
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Figure 6: Average and confidence interval for the ARI by
clustering method in the cosine setting.

with high imbalance [14] and is therefore particularly suited to
the task of clustering time series according to directed imbalances
in their lead-lag relations. The importance of edge direction is
illustrated by the relatively poor performance of the naive method
which relies solely on the magnitude and not the direction of the
edges.

We note that even as the number of lags considered in the
cross-correlation function by the ccf-lag1 and ccf-auc component
method (1 and 5 lags, respectively) is lower than the largest lag
dependence between any two pairs of time series (e.g. l100 − l1 = 9
in the linear setting), our overall two-stage method using these
component methods is still able to leverage enough similarities
in the dependence structure between the time series to correctly
recover the ground-truth clustering.

To summarise this section, we have validated our pipeline on two
synthetic data generating processes. While the choice of particular
correlation components should be driven by the application in
mind, we find that the ccf-auc method using distance correlation
achieves relatively strong performance both in the linear and in the
cosine synthetic data generating settings. The clustering component
methods that were found to perform best were the DI-SIM and
Hermitian RW methods.

A.3 US equity data experiment
A.3.1 US equity data preparation description. We consider the uni-
verse of 5325 NYSE equities spanning from 04-01-2000 to 31-12-2019
from Wharton’s CRSP database [1] – restricting our attention to
equities trading on the same exchange to avoid spurious lead-lag ef-
fects due to non-synchronous trading [8]. The data consists of daily
closing prices from which we compute daily log-returns. We also
compute the average daily dollar volume that is traded for each eq-
uity. We subset to the equities that have the largest average volume
(ranking 500th or better) and the least number of missing values (at
least 2.5 years’ worth of non-missing data). This results in a data
set of 434 equities. Filtering to the most traded equities with the
least number of missing prices reduces the risk of spurious lead-lag
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effects due to non-synchronous trading [8]. Any remaining missing
prices are forward-filled prior to the calculation of log-returns.

A.3.2 Comparing industry and data-driven Hermitian RW clustering.

Table 1 shows the number of equities in each SIC sector. Most
sectors have a relatively large number of equities, with Agriculture,
Forestry and Fisheries and Services being quite small.

Retail 90
Manufacturing 67
Construction 66
Mining 58
Trans., Util. & other 54
Fin., Ins. & RE 46
Wholesale 43
Services 9
Agri., Forest. & Fish. 1

Table 1: Number of equities in each SIC sector.

Figure 7 compares the edge weights of the Hermitian RW and
SIC clustering meta-flow networks. It illustrates that the Hermitian
RW deviates from the SIC clustering and thus captures a clustering
with greater net flow imbalance between pairs of clusters.
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Figure 7: Histogram of Hermitian RW and SIC clustering
meta-flow network edge weights. We see that the edge
weights for the meta-flow network corresponding to a Her-
mitianRWclustering tend to be larger than the edgeweights
for the meta-flow network corresponding to a SIC cluster-
ing.

A.3.3 Comparing data-driven clustering with market capitalisation
and volume-based explanations. Figures 8 and 9 display the average
daily dollar volume and market capitalisation averaged across all
stocks in a given cluster.

In order to understand the association between the tendency for
an equity to lead and its daily dollar volume or market capitalisa-
tion at a sub-cluster level, we compute the Spearman correlation
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Figure 8: The average daily dollar volume for each Hermit-
ian RW cluster.
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Figure 9: The averagemarket capitalisation for eachHermit-
ian RW cluster.

between the row-sums of the lead-lag matrix – which provides a
metric for the tendency of each cluster to lead – and these equity
characteristics (trading volume and market capitalisation). This
results in a Spearman correlation of 0.01 and -0.15 between the
lead-lag row-sums and the equity trading volume and market capi-
talisation, respectively.

These results are not consistent with a positive association be-
tween a cluster’s tendency to lead and the trading volume or market
capitalisation of its constituents. Therefore, the results obtained
by our data-driven clustering method cannot be explained by the
previously hypothesised mechanisms outlined in Section 5.

A.3.4 Time-variation in clusters. Figure 10 displays the adjusted
Rand index between clusters which are computed on yearly snap-
shots of the data. The similarity between the partitions is strongest
for the first 6 years of the data. This figure shows that while there
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Figure 10: Adjusted Rand index between clusters computed
on yearly snapshots of data.

is some similarity between the partitions across adjacent years, the
partitions vary considerably over the 20 year period.
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