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ABSTRACT
Printer manufacturers become more service-oriented companies.
This shift generates a new need of management of maintenance for
machines on a large scale. In this paper, we propose an approach to
Predictive Maintenance of multifunctional printers (MFP). First, we
analyze the process of maintenance of MFPs and propose how to
include a predictive decision-support system in it. Afterward, we
propose a general method for modeling features of MFPs and select
supervised machine learning algorithms for experiments on the
industry-based case study at Konica Minolta. Finally, we present
the results of the experiment that compare the selected methods by
analyzing confusion matrices of the resulting models.

CCS CONCEPTS
•Hardware→ Failure prediction; •Mathematics of comput-
ing → Time series analysis.
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PredictiveMaintenance, Time-series Analysis, Industrial case-study,
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1 INTRODUCTION
Transition fromproduct-oriented to service-oriented approaches [9]
is a current business trend. IBM is a mature example of such tran-
sition in the IT industry [1]. Printing as a traditionally product-
oriented market where printers and copy machines have been sold
to end-customers also follows the trend of delivering services [3].

The extended scope and scale of the service needs more robust
maintenance of devices. The usual maintenance type at customer
premises is the Reactive Maintenance where customer engineer is
dispatched whenever customers request maintenance. Its draw-
back is the time customer has to wait for the printer to become

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MiLeTS ’20, August 24th, 2020, San Diego, California, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

operational again with two major impacts: decrease in customer sat-
isfaction and lower income for the provider (the customer pays for
printed pages). Moreover, Service Level Agreements might cause ad-
ditional costs for the provider. The other types of maintenance are
Preemptive Maintenance and Predictive Maintenance (PdM) where
both approaches use early customer engineer dispatching strategy
to prevent printer failures. The Preemptive Maintenance focuses
on minimization of printer downtime by regular precautionary re-
placements of printer parts. The disadvantage is loss of value of the
components before their expected lifetime. PdM allows to optimize
the trade-off between (1) printer downtime and (2) costs of repair.

The challenge of PdM is the most accurate identification of de-
vices that will fail in a very near future. In terms of supervised
machine learning (ML) methods, the objective is to learn a map-
ping f : X → Y that predicts the state yi ∈ [0, 1] (0: no er-
ror, 1: error) of unseen example Xi . The training set is defined
as T = {(X1,y1), (X2,y2), ...(Xt ,yt )} where t is the training time.
The aim is to predict printer part states after time t . Xi is a feature
vector described in detail in Section 4.2.

The main contributions of PdM are two:

• Knowledge about the future state (healthy/unhealthy) of
the machine helps to identify devices that require customer
engineer attention before a problem occurs. PdM therefore
reduces downtime of printers which means a great benefit
for the customer.

• High precision prediction (avoiding predictions that a printer
component fails but in fact, it does not) does not cause addi-
tional costs to the provider: the cost of the printer part and
expenses for the engineer.

2 RELATEDWORK
Mobley in [19] describes management aspects of PdM, introduces
basic techniques based on monitoring and expert knowledge, and
defines PdM as an attitude that uses the actual operating conditions
of plant equipment and systems to optimize total plant operations.

Schmidt et al. describe PdM according to the ISO/EN standards
and propose a framework for use of detailed data not only about the
maintained device but also about its components such as manufac-
tured product specification, production environment, and geomet-
rical setup [23]. The same authors conducted review of algorithms,
architectures and approaches to PdM [24].

Various PdM systems use information on vibrations [21], tem-
perature [18], electrical conditions [5] or system logs [25] and are
applied in many industries, e.g. railways [22].

Sipos et al. present the most similar approach [25] to ours. They
also use binary classification and they point out the problem of
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imbalanced classes. Nevertheless, the work on medical devices is
not detailed enough in the description of used algorithms.

3 PREDICTIVE MAINTENANCE IN CONTEXT
OF MULTIFUNCTIONAL PRINTERS

Predicting failures of any device can be tackled using various tech-
niques. We follow a data-driven decisions strategy where we base
all predictions on the model trained on historical data. However,
PdM has overlaps with logistics, customer engineers management,
device manufacturing, and business strategy of the company. In
this section, we focus on aspects of PdM for MFPs together with a
description of processes necessary for maintenance execution.

MFP is a complex electro-mechanical device consisting of several
autonomously working parts. Each part is equipped with its own
set of sensors and controllers that send gathered information from
sensors to central database. Each part of the device is able to run
self-diagnostics and evaluate health status. Corrective actions can
be initiated automatically if the device is not able to return to the
functioning state. Information about the error is reported to central
database and the device itself is set to the out-of-order state.

Records from the central database are distributed to responsible
service departments and customer engineers who can (1) analyze
collected measurements, (2) connect to the device, (3) collect more
diagnostic data, and (4) optionally remotely repair the device. If
the remote repair fails, the engineer is dispatched to the customer.
Depending on the root cause, the engineer orders necessary spare
parts. With the next visit, the problem is finally solved.

In real life, the collected data is not optimal for PdM modeling.
One reason is the evolution of processes at Konica Minolta (KM),
other reason is the fact the central database storing device mea-
surements is not designed for analytical purposes. Further, having
incomplete information about engineers interventions poses chal-
lenge for PdM modeling, however this information can be inferred
by observing usage counters of particular parts and look for sudden
drops, i.e., part replacements. Another obstacle is aggregation of
measurements in the device since the diagnostic data are sent to
central database in batches that span from half-days to several days.

3.1 Counters and States
The MFP produces signals about its current state. To define transfor-
mation of each signal type to extract features for ML models would
be exhausting. Thus, we defined abstract categories of signals as
transformations extracting ML features from raw data. We realized
each signal can be classified as one of the following:

• State: firmware version, temperature, humidity, etc.
• Counter : number of printed (black / color) and copied pages,
number of paper jams, etc.

Counters are monotonic, expressed by natural numbers. States can
be numbers (e.g. temperature) or categories (e.g. software version).
The dependency between previous and current state can be de-
scribed by transition graph or there is no dependency.

3.2 Global aspects of data and processes
The possibility of using history of more than one device for failure
prediction considered by [23] is necessary for this case since the

Figure 1: Building of time-window for time-series data

number of failures in the historical data (see Table 2) is very small.
We used data from multiple divisions (in different countries).

This approach has to deal with problems such as the integra-
tion of data from various logging systems in each KM division or
the range of temperature and humidity in different geographical
regions. ML offers at least three approaches for such specific data:

(1) Get data as is, having better coverage of feature space but
less similarity of examples between countries;

(2) Normalize data to [0, 1] range according to the yearly tem-
peratures in each region;

(3) Exclude that information from the dataset to keep similarity
between examples over divisions but lose some information
on the state of a machine.

We use the data as is to limit the scope of the described experiment.
The transformations (2) and (3) are planned for future experiments.
The current model decides whether to use temperature/humidity
for each division separately or globally or not at all.

4 MODELING OF FAILURES PREDICTION –
APPLIED METHODS

4.1 Dataset description
In the dataset spanning several years of reporting signals by MFPs
at KM, we selected one type of printer to limit the variety of behav-
ior which depends on the different models of MFPs. The dataset
contains States, Counters and signals of errors (CCodes).

The distribution of the target class (failures and normal state) is
strongly imbalanced which makes the problem different from other
data analytics problems with more balanced classes [26].

4.2 Time-series modeling
Signals from MFPs are time-series data of variable frequency, i.e.,
the distance between two consecutive data points can vary from one
second to days. It depends on the type of communication between
MFP and the service center, power-offs of aMFP, on-premise reports
of the health status of a MFP.

We applied a grouping method – windowing [13, 27] – in the
sequential data analysis that produce a constant number of features
from the raw data.

For this experiment, we decided to use fixed-size, overlapping
windows (see Figure 1). We defined aggregation functions for trans-
formation of multiple data points to one week aggregations to have
a constant number of features from a single window of data. Ag-
gregations were defined for each category of data (see Section 3.1),
according to their specific properties.

For number-like states (e.g. temperature), we calculate the av-
erage by day, afterwards, aggregate the results by the window,
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Figure 2: Types of windows: (1) regular window with one
event per day, (2) no events during a week, (3) extra events,
aggregated by day then window

calculating min, max, median and percentiles of averages from
daily aggregations. The initial aggregation by day helps to not to
be impacted by values from extra events, e.g. measuring temper-
ature increasing each day, i.e. 20, 21, 22, ...26 degree, the average
is 23. However, if at the first day 100 extra events came (with the
value 20), then the average for the window is 20.2, while for our
aggregation (day, then window) the value is still 23.

Aggregations of counters and states listed below are prepared
for data evenly distributed in time. In case of our data, we took a
value from early morning (around 3 AM), where we only expect
the reporting system to generate signals. In our system, the data is
available also on premise. Therefore, any aggregations like average,
median etc. are skewed by values generated on premise.

(1) first – for counters first is the min. This value is to know the
absolute value at the beginning of the window of state.

(2) last – for counters last is the max. This value is to know the
absolute value on the end of the window of state.

(3) deltaFirstLast – a relative value that defines the progress of
counter within the window.

(4) lagMin – the minimum difference between two consecutive
signals in the window. In our case – between days.

(5) lagPercentile25 – 25th percentile of the above difference.
(6) lagMedian – a median of the difference.
(7) lagPercentile75 – 75th percentile of the difference.
(8) lagMax – maximum of the difference
Using first and last instead ofmin andmax respectively decrease

computation effort of calculation of metrics.
States:
(1) min – minimum value in the window.
(2) max – maximum value in the window.
(3) sd – standard deviation of values in the window.
(4) quantile25 – 25th percentile of values in the window.
(5) median – median of values in the window.
(6) quantile75 – 75th percentile of values in the window.

For binary states, we sum the number of their occurrences within
the window and the number of days the state was active. For states,
the frequency is more important than their dynamics since states
(e.g. temperature) repeat. Counters, in contrast, have only unique
values, thus dynamics is more important in their features. The above
proposed features reflect this idea. Percentiles of values reflect the
dynamics between the start and the end of the window.

The missing values were imputed [29] for windows with missing
data in the whole time of single window, see Figure 2. Then, we
used the last three windows (three weeks) as feature vectors and
predicted the error for the next week. The window size was selected
because of business reasons (maintenance planning). We extracted
5, 349 features from the raw data,most of them resulting from trans-
formations of counters and states. We also used the output values of

previous states. Namely, we used information whether a particular
CCode appeared in the previous time window. Each CCode was used
as input for a separate feature. This approach refers to nonlinear
auto-regressive model with exogenous inputs (NARX) [17] which
was reported in [31] used for fault detection of chillers.

The dataset has been split into training and test sets (800,000/
250,000) with the most recent data placed in the test set.

4.3 Target class
The decision question was formulated asWill MFP return a CCodeX
next week? Such problem representation (multiple output classes for
one example of feature) is a multilabel classification problem [28].

The cardinality of a single CCode is low, thus we have to solve the
imbalanced classes problem [16], similarly to e.g. online banking
frauds (below 1%) [30]. A detailed distribution of classes is presented
in Table 2 (see Supplementary Data).

The proportion of class distribution between the training and
test sets is in the same order of magnitude. The split based on time
have minor impact on the proportion which means the distribution
of CCodes in time does not change significantly.

4.4 Machine learning methods
The methods selected for the experiment are based on supervised
and unsupervised ML [7]: random forests and deep autoencoder.

To detect anomalies, we used the variational autoencoder [2, 4]
where the output (the reconstruction probability) is a probabilistic
measure reflecting the variability of the distribution of variables.
This approach requires to have a training dataset consisting purely
of no-failure samples. The aim of the autoencoder is to create a
function for encoding and decoding samples of no-failure with
minimal reconstruction error. As a consequence, samples that break
the variability of the variables distribution have reconstruction
error larger than the samples and can be marked as anomalies. For
experiments, we used implementations from [14], v3.16.0.2.

We also experimented with decision trees due to their inter-
pretability. We selected random forest (RF) with gradient boosting
machine (GBM) since it is based on ensemble bagging [10, 20], easy
to scale [8], and robust against very large number of variables with-
out overfitting [6]. We use the output of variable importance for
the interpretation of the classification.

5 RESULTS OF EXPERIMENTS ON MFPS
5.1 Anomaly detection
For the purpose of anomaly detection, we created a model based on
deep convolutional neural network with tanh as activation function.

The root mean square error (RMSE) on the training set was 0.0036.
The same metrics on the test set yielded 0.0040. It is slightly higher
since MFP failures are present in the test set. For a threshold of
RMSE = 0.01, the number of predicted anomalies is 33 + 673 = 706
where only 33 are real failures. See the Table 1 for detailed results on
how true positive rate (TPR), false positive rate (FPR), and precision
(prec.) depend on the threshold of RMSE (thr.).
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Table 1: Test set results of anomaly detection algorithms

thr. TP FP TPR FPR prec.

0.2 4 32 0.00054 0.00012 0.111
0.1 5 72 0.00067 0.00027 0.065
0.05 6 92 0.00081 0.00034 0.061
0.01 33 673 0.00444 0.00252 0.047
0.005 1559 37235 0.20966 0.13927 0.040
0.002 6829 237020 0.91837 0.88652 0.028
0.001 7410 265468 0.99650 0.99292 0.027

Figure 3: ROC curve for the
general error classifiers

Figure 4: Precision-recall
curve for the general error
classifiers

5.2 Supervised learning
The cost of false positive (superfluous component replacement)
is higher than false negative (non-alerted MFP breakdown) and
much higher than a gain of a true positive (MFP breakdown alert).
We tuned hyperparameters to achieve true positives (predict the
failures) with a small rate of false positives. The RF and GBM pa-
rameters are described in Tables 3 and 4 (see Supplementary Data).
The RF model was easier to tune in order to reduce false positives
than gradient boosting (see Section 6).

The receiver operating characteristics (ROC) curves presented
in Figure 3 are very similar for both classifiers, slightly better for
GBM than for RF. The precision-recall ROC (PRROC) curve (Figure
4) shows the difference between the classifiers. N.B. that the curve
is convex because of the imbalanced classes.

6 DISCUSSION OF THE RESULTS
Autoencoder reconstruction error on the training set is acceptably
low. Nevertheless, for the validation set, 706 samples were marked
as an anomaly, while only 33 of them were real errors. There were
7, 436 failure samples in the validation set (0.93% TPR and 673 FP).
Our interpretation is that anomalies do not signify MFP failures.

RF and GBM are able to balance false negatives by parametriza-
tion of class balance during training, and by setting the binarization
threshold of the decision. The default threshold is 0.5. For higher
threshold, the number of false positive cases is reduced in cost of a
lower number of true positives.

The optimal parameters for RF and GBM are different but cor-
respond to the main characteristics of the bias-variance reduc-
tion [11, 12, 15] of these algorithms. Model parameters reflect the

complex structure of trained classifiers so according to [11], we
can expect roots of the error mainly in the high variance of models.
On the other hand, this high variance of models shows that MFP
failure examples are similar to MFP no-failure examples (have a
similar position in the feature space). Variance reduction causes
higher bias related to the extreme imbalance of the classes.

GBM detects failures better than RF due to the ability to reduce
bias during the learning process [15]. On the other hand, RF is more
careful with false alarms than GBM. The area under the curve (AUC)
calculated on the test set was used to estimate the efficiency of
the predictive models and is presented in Figure 5. For 19 out of
the 23 CCode classes, RF has better AUC than GBM. For 4 CCode
classes, GBM is performing better than RF. Nevertheless, the AUC is
biased by an extreme imbalance of classes, so it reflects the impact
of correct prediction of MFP no-failure. [10] shows that even if
GBM performs the best for a clean dataset, RF outperforms GBM
for noisy data and handle that noise relatively well.

Figure 3 presents the characteristics of the probability of detec-
tion of an error (TPR) in relation to the false alarm (FPR) probability.
This characteristics can be misleading because of the large impact
of false positive examples on the FPR. For this reason, we use the
PRROC characteristics (Figure 4). It shows the rate of positive pre-
dictive value to the probability of detection. The results for GBM
and RF are different for only a part of the chart. It is at the minimum
values of recall (0–0.03), where the precision of RF is higher than
GBM. It can be interpreted as the RF is better for “cherry picking”
of failures, the precision 1.0 can be achieved for RF for a very small
fraction of failures. GBM even for zero recall generates some mis-
classified examples that is reflected in precision (value below 1).
However, for recall between 0.03–0.4, the GBM has a better pre-
cision rate which means the number of false alarms is lower than
with RF. RF has higher precision than GBM for recall between 0 and
0.03 that allows RF to detect tiny amount of errors with a smaller
number of false alarms than with GBM. Such situation is preferable
in case of PdM for MFPs.

7 CONCLUSIONS AND FURTHERWORK
It is possible to create an automated model-based decision support
system for PdM of MFPs where supervised ML methods provide
more flexibility on parametrization like the balance of classes to
meet business requirements on the cost of misclassification. Anom-
aly detection algorithms do not work well for the presented use
case because anomaly does not mean failure in this case-study.

The number of cases with MFP failure is crucial in the context of
training of good models. Predictions of any failure are better than
predictions for a specific CCode. The extreme imbalance of classes
is the most challenging feature of PdM for MFPs. This aspect will
be researched in the future work.

Further work will focus on the handling of imbalanced classes a
more general method than the sampling of classes in the RF. Namely,
we plan to use PCA for dimensionality reduction, undersampling,
and oversampling (SMOTE). Also, we are discussing the possibility
to enhance the sensor data collected from MFPs in order to serve
better data analytics tasks.
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Table 2: Cardinality of the most frequent CCodes (the target
labels) in the dataset.
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5 6355 0.767% 1523 0.554%
8 4209 0.508% 975 0.355%
1 2092 0.252% 705 0.257%
21 1949 0.235% 606 0.221%
22 1069 0.129% 307 0.112%
3 1067 0.129% 302 0.110%
2 689 0.083% 232 0.084%
15 519 0.063% 180 0.066%
14 515 0.062% 176 0.064%
4 226 0.027% 80 0.029%
20 375 0.045% 155 0.056%
7 373 0.045% 99 0.036%
17 371 0.045% 65 0.024%
19 201 0.024% 46 0.017%
10 159 0.019% 51 0.019%
18 162 0.020% 95 0.035%
12 156 0.019% 53 0.019%
11 152 0.018% 101 0.037%
6 150 0.018% 69 0.025%
13 117 0.014% 28 0.010%
9 113 0.014% 47 0.017%
any 25809 3.114% 7436 2.706%
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Figure 6: Comparison of sensitivity (TPR) of the GBM and
RF algorithms on the validation set for each CCode

Figure 7: Comparison of false-positive rate (FPR) of theGBM
and RF algorithms on the validation set for each CCode

Figure 5: Comparison of AUCof theGBMandRF algorithms
on the validation set for each CCode

Table 3: Parameters of the RF algorithm for the best results
of predictions

number of trees 370
max tree depth 26
minimum split improvement 10-11
rows sample rate 0.632

Table 4: Parameters of the GBM for the best results of pre-
dictions

number of trees 120
max tree depth 5
minimum split improvement 10-11
min rows in leaf 1
learn rate 0.025
learn rate annealing 0.995
sample rate per class 0.4, 0.8
columns sample rate 0.7
columns sample rate change per tree level 1.04


	Abstract
	1 Introduction
	2 Related work
	3 Predictive Maintenance in context of Multifunctional Printers
	3.1 Counters and States
	3.2 Global aspects of data and processes

	4 Modeling of failures prediction – applied methods
	4.1 Dataset description
	4.2 Time-series modeling
	4.3 Target class
	4.4 Machine learning methods

	5 Results of experiments on MFPs
	5.1 Anomaly detection
	5.2 Supervised learning

	6 Discussion of the results
	7 Conclusions and Further Work
	References
	A Supplementary data

