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ABSTRACT
Time series modeling techniques based on deep learning have seen
many advancements in recent years, especially in data-abundant
settings, and with the central aim of learning global models that
can extract patterns across multiple time series. While the crucial
importance of appropriate data pre-processing and scaling has of-
ten been noted in prior work, most published work focusses on
improved model architectures. In this paper we empirically inves-
tigate the effect of data input and output transformations on the
predictive performance of several neural forecasting architectures.
In particular, we investigate the impact of several forms of data
binning, i.e. converting real-valued time series into categorical ones,
on prediction performance, when combined with feed-forward, re-
current, and convolution-based models. We find that binning can
significantly improve performance when combined with certain
model architectures (compared to scaling techniques), but that the
particular type of binning chosen is of lesser importance.

CCS CONCEPTS
• Mathematics of computing → Time series analysis; • Ap-
plied computing → Forecasting; • Computing methodolo-
gies → Neural networks.
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1 INTRODUCTION
Neural forecasting methods have seen many advancements in re-
cent years, especially in data-abundant settings and with the central
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aim of learning a single global model over a panel of time series
to then extract patterns across multiple time series. Global mod-
els produce univariate forecasts, i.e. they forecast each time series
member of the panel of time series independently, but parameters
of the model are estimated over the entire panels.

Many deep learning architectures that have seen success in other
domains (e.g. computer vision or natural language processing) have
been adapted to and evaluated in the global forecasting setting,
ranging from simple feed forward models, convolutional neural
networks (CNNs), in particular using 1-dimensional dilated causal
convolutions [2, 3, 16, 25], recurrent neural networks (RNNs) [15,
19, 21], and attention-based models [11, 12, 23].

While some prior work has only considered the point forecast-
ing setting, we focus on models that can produce probabilistic
forecasts, i.e. forecasts that quantify the uncertainty over future
events by estimating a probability distribution over future trajecto-
ries. Such probabilistic forecasts can be used for decision making
under uncertainty, which is typically the ultimate goal in prac-
tical applications. To that end, the various aforementioned deep
learning architectures have been combined with techniques for
modeling probabilistic outputs. These techniques range from para-
metric distributions and parametric mixtures [15, 19], over quantile
regression-based techniques like quantile grids [25], to parametric
quantile functions models [6], semi-parametric probability integral
transform / copula based techniques [18, 24], and approaches based
on discretization/bucketing [16].

Recent developments in neural time series forecasting have
mostly focused on improving model architectures [10–12, 17, 20],
and developing strategies for modeling the probabilistic outputs
in these models [6, 18, 24] (see Faloutsos et al. [5] for a recent
overview). The work on global neural models for time series fore-
casting [19] has often hinted at (but not explored in detail) the
importance of careful data pre-processing for learning across time
series. To our knowledge, a thorough and systematic empirical
evaluation of the impact on predictive performance and training
stability that input and output representations have relative to
the core forecasting model has not been performed to date. The
study presented in this paper shines some light on this question
by performing an empirical comparison of multiple different in-
put and output transformation techniques—with a particular focus
on discretizing transformations—when combined with commonly-
used neural forecasting architectures. It complements empirical
studies evaluating the impact of other architectural choices, e.g.
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the extensive study of RNN models for forecasting conducted by
Hewamalage et al. [8].

The main finding and core contribution of our empirical study is
the effectiveness of discretization of inputs and outputs as a general
technique for neural forecasting models. Our experimental results
show that such binning techniques can improve the accuracy of
forecasting models across multiple architectures.

2 PRELIMINARIES
Our study considers the following setting: We are given a set Z =
{zi,1:Ti }

N
i=1 of N univariate time series. Each time series zi,1:Ti =

(zi,1, zi,2, . . . , zi,Ti ) is composed of Ti consecutive values zi,t ∈ R
which are assumed to be equally spaced. In addition to the target
time series zi,t (i.e. the ones we are trying to predict the future
of), the methods we consider can optionally make use of a set of
associated covariates X = {xi,1:Ti+τ } with xi,t ∈ RD , which are
required to be available until time point Ti + τ with τ being the
prediction horizon of the forecast.1

Our goal is to model the joint conditional probability distribution
over zi,Ti+1:Ti+τ for each time series i , given its past values zi,1:Ti
and the observed additional covariates xi,1:Ti+τ . Global neural fore-
casting models achieve this by parametrizing this conditional dis-
tribution using a neural network MΘ, whose parameters Θ are
learned jointly from the entire data set (Z ,X ). In particular, for each
time series i we have,

p(zi,Ti+1:Ti+τ | zi,1:Ti ,xi,1:Ti+τ ) =MΘ(zi,1:Ti ,xi,1:Ti+τ ), (1)

and the parameters Θ are learned by optimizing some scoring rule
L (often negative log-likelihood) measuring the compatibility of
the model with the observed data over the training data set, i.e.
Θ⋆ = argminΘ

∑
i L(MΘ, (zi,1:Ti ,xi,1:Ti )).

Note that in Eq. (1) the values of the target time series zi appear
in both the conditioning set and the predicted variables. We refer to
a transformation that is applied to the variables in the conditioning
set as an input transformation ϕ(·), and to a transformation that af-
fects the predicted distribution as an output transformationψ (·). The
resulting transformed values are input and output representations,
respectively. Also note that while using the same transformation for
both input and output is commonly done (e.g. by pre-processing the
data before applying the model), this is not necessary. In particular,
the input transformation is not required to be invertible in general.
See Figure 1 for a setup overview.

3 METHODS
Next, we introduce the main objects in our study, the input and
output transformations, and the neural network models.

3.1 Transformations
The transformations of data that we apply in our empirical study
range for schemes to rescale the time series in the panel to dis-
cretization and other transformations. We describe these next in
detail.

1In this paper we exclusively focus on applying transformations to the target time
series values zi,t , considering the covariates xi,t given and fixed. In practice, the
covariates are often synthetically constructed (e.g. date-dependent dummy variables)
and require no further processing or similar normalization techniques.

3.1.1 Scaling. When training global forecastingmodels on datasets
with heterogeneous scales, accounting for the difference in scales
between time series in some way is of critical importance for ob-
taining good predictive performance. Firstly, it is desirable for the
models to learn scale-invariant patterns, especially seasonal behav-
ior. Secondly, neural networkmodels with saturating non-linearities
are very sensitive to the scale of their inputs, leading to numeri-
cal issues and slow convergence (or convergence to undesirable
optima) if the scale of their inputs is not carefully controlled.

A common approach for addressing the challenge of heteroge-
neous scales is to apply an affine transformation to each time series,
i.e. z′i,t = (zi,t − bi )/ai , where the parameters for the transfor-
mation are chosen for each time series independently. Here, as a
representative member of this family of transformations, we use
the mean scaling (ms) scheme employed e.g. by DeepAR [19], which
seems to be effective in many practical settings. In particular, we
set ai = 1

Ti
∑Ti
t=1 |zi,t | and bi = 0.

3.1.2 Probability Integral Transform. The probability integral trans-
form (PIT) is the transformation that maps a random variable X
through its cumulative distribution function, i.e. Y = FX (X ), re-
sulting in a transformed variable Y with uniform distribution. An
(approximate) probability integral transform (pit) can be used as
an effective pre-processing technique to make the empirical mar-
ginal distribution of values in each time series (approximately)
uniform [18]. In our comparison we consider the transformation
z′i,t = F̂i (zi,t ), where F̂i is the empirical cumulative distribution
function estimated from zi,1:Ti .

3.1.3 Discretizing Transformations. Binning is a form of data dis-
cretization (also called quantization) into a set of buckets with
disjoint support, that is widely used in machine learning as a fea-
ture engineering technique. Formally, we define a function b : R→

{1, 2, . . . ,B} which maps a real-valued input to a discrete output
with B ∈ N distinct bin values. Each of the possible output values
b ∈ {1, . . . ,B} is tied to a specific interval (“bucket”) Sb = [lb−1, lb )
into which real-valued inputs can fall, with edge cases l0 = −∞

and lB = ∞. The quantization transform b then maps a real-valued
input to its bucket index, i.e. b(x) = b iff x ∈ Sb . If the input domain
happens to be a subset of R we can adjust these edges accordingly.

In order to also define a reconstruction function s : {1, 2, . . . ,B} →
R which transforms a discrete bucket value back to the original
real-valued domain, we associate each bucket b ∈ 1, . . . ,B with
a value reconstruction value cb ∈ R and set s(b) = cb . Given such
reconstruction values c1 ≤ c2 ≤ . . . ≤ cB and assuming squared
error as the loss function, it can be shown that the reconstruction
error is minimized by choosing the bin edges as lb = (cb + cb+1)/2.

We consider two strategies for selecting appropriate bin edges in
this paper: equally-spaced binning and quantile binning. In equally-
spaced (linear) binning, a part of the input I = [xmin,xmax] ⊂ R is di-
vided into B−2 intervals with equal width, i.e. forb ∈ {1, . . . ,B−1},
lb = xmin + (b − 1)(xmax − xmin)/(B − 2). In contrast to linear
binning, quantile binning makes use of the underlying cumula-
tive distribution function (CDF) FZ to construct a binning such
that the number of data points falling into each bin is (approxi-
mately) equal. In quantile binning, we first create a list of equally
spaced quantiles q = (q1,q2, . . . ,qB ) where qj − qj+1 =

1
B and
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Figure 1: General setup graphwithϕ and
ψ (the input and output transformation)
being the core elements of this study.

(a) Local Absolute Binning

msmsms

(b) Global Relative Binning

Figure 2: Conceptual depictions of the two main binning strategies we use.

qj ∈ [0, 1] ∀j ∈ {1, 2, . . . ,B}. Then, we can obtain the quantile-
based bin representations cb by evaluating the quantile function
F−1Z for each qb , i.e. cb = F−1Z (qb ) ∀b ∈ {1, 2, . . . ,B}, ensuring that
all buckets contain approximately the same number of samples.

The resulting categorical values are fed through an embedding
layer as the first layer in the model, which maps each categorical
input b ∈ {1, 2, . . . ,B} to a vector eb ∈ RE that is learned together
with theweights of the network using gradient descent.We consider
two different binning strategies (conceptually shown in Figure 2):

Local Absolute Binning (lab). In local absolute binning, each time
series is binned independently. This involves computing the the bin
edges li = (li,1, li,2, . . . , li,B ) for each time series and then binning
each time series z′i,t = b(zi,t |li ). Since each time series is binned
using its own set of bin edges and each time series is mapped to
the same set of bin identifiers {1, 2, . . . ,B}, local absolute binning
effectively acts as a scaling mechanism.

Global Relative Binning (grb). In global relative binning, all time
series are first rescaled and then binned with one global binning.
In particular, we use the mean scaling approach described before
to scale each time series. We can then estimate one single set of
bin edges l = (l1, l2, . . . , lB ) over the entire collection of scaled
time series and bin every time series according to these bin edges
z′′i,t = b(z

′
i,t |l) where z

′
i,t corresponds to the scaled time series. A

visual example of the transformations performed by global relative
binning is shown in Figure 3.

Hybrid Binning (hyb([· · · ])). We also consider composing multiple
binnings by concatenating the resulting embeddings before passing
them to the model. This allows us to combine local and global
binnings, and enables us to provide the model with multi-scale
inputs by combining binnings with varying bin sizes and bin edges.

3.2 Output Distributions
We compare three different approaches for modeling the output
distributionp(zt |ht ): a parametric distribution, in particular a scaled
Student-t distribution (st) applied to the raw target values zi,t [19]);

the piecewise-linear spline quantile function approach of Gasthaus
et al. [6] (plqs); and a categorical distribution applied to the binned
values obtained through one of the described binning strategies,
where the forecasts are obtained by applying the reconstruction
function s(·) to samples from the predictive distribution.

3.3 Models
We consider three different models which we combine with the
aforementioned input/output transformations:

WaveNet (CNN). TheWaveNet [16] architecture is an auto-regressive
convolutional neural network which uses 1-dimensional dilated
causal convolutions. The specific model used in the experiments al-
ters the original architecture by using only a single stack of dilated
convolutions with exponentially increasing dilation factor.

DeepAR (RNN). DeepAR [19] is an auto-regressive recurrent neural
network architecture designed for time series forecasting. At its
core, DeepAR is a RNN consisting of LSTM cells, which additionally
receive auto-regressive inputs in the form of lagged target values.

Simple Deep Neural Network (Feed-Forward). The simple feed-forward
model is a deep neural network which directly maps the past in-
put sequence to the parameters of a multi-step output distribution
without any feedback loops or memory. The model used in the ex-
periments is a simple, plain two-layer model with 40 hidden units
per layer with ReLU activations and no additional regularization.

4 EXPERIMENTS
We evaluated the representation-model combinations on data sets
from the m4 forecasting competition [13], on the electricity
and traffic datasets [4], and on a sample of daily page hits of
Wikipedia subpages, wiki10k and report mean error metrics and
standard deviation over 10 random runs per configuration. Specif-
ically, we investigated the performance effect of fixing the input
representation while varying the output representation and vice
versa and also examined the effects of the binning and embedding
resolutions in detail. Although we do report results for m4_hourly,
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(c) Time series after global binning.
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(d) Original CDF. We can clearly see that
the distribution mostly consists of series
with small scales but contains a few time
series with very large scales.
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(e) CDF after mean scaling. While mean
scaling lessens the effect that large time se-
ries have on the CDF, outliers remain.
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(f) CDF after global binning. As quan-
tile binning uses the quantile function to
transform the series, the resulting CDF is
uniform over the bins.

Figure 3: Global relative binning example on m4_hourlywith 1024 bins and quantile binning. Plots (a)-(c) show how 3 randomly
picked time series pass through the scaling and binning transformations; plots (d)-(f) show the CDFs over the full training set.

we note that we specifically used this dataset for tuning hyper-
parameters and for generating deeper insights on representation
performance. Details on hyper-parameter tuning and accuracy met-
rics are discussed in the appendix.
The main results are shown in Table 1 (showing the effect of vary-
ing the output representation but keeping the input fixed), Table
2 (different discretizing input transformations while keeping the
output fixed), and Table 3 (performance with scaled input/output).
We performed additional experiments using the WaveNet model on
the m4_hourly data set to better understand the effect of the various
transformation hyper-parameters (grb vs. lab vs. pit; number of
bins used; embedding size). See Figure 4 for these results.

5 DISCUSSION
In the following we summarize the observations and conclusions
from our experiments.

Output Scaling vs. Binning. Our main results show (cf. first col-
umn in Table 1) that in particular the WaveNet model substantially
benefits from binned output representations when compared to
real-valued, scaled outputs modeled through a parametric Student-t
distribution (ms) or using the quantile spline output (ms-plqs). In
fact, WaveNet combined with global relative (quantile) binning for
the input and output transformation (grb(bin1024)) almost always
(m4_y being the exception) outperforms all other combinations in
our comparison across datasets. Interestingly, for DeepAR this effect

is reversed (cf. Table 1, col. 2) and mean-scaled, non-binned out-
put representations substantially outperform the discretized ones.
FeedForw shows no clear advantage for either of the representa-
tions, but generally performs worse than either of the other models
in their best configuration. These results underline our claim that
input/output representations in general and output representations
in particular can be equally (or even more) important for obtaining
good predictive performance than choosing a particular model class,
and more powerful models like WaveNet can be outperformed by
simpler models like the feed forward model if the representations
are not carefully chosen (e.g. on m4_h, FeedForw with mean-scaled
Student-t output (ms) outperforms WaveNet with the same output,
but is in turn outperformed by WaveNet with grb).

Input Scaling vs. Binning. Table 2 shows the performance of the
models when the input representation is variedwhile the output rep-
resentation is fixed (grb). While themulti-resolution hybrid binning
(hyb(16,128,1024)) often performs well, there is no clear domi-
nant strategy that outperforms the others across datasets and/or
models. However, the impact of the input transformation on the per-
formance is also less pronounced than for the output. One notable
exception is local-absolute binning (lab) which often performs
significantly worse than the other strategies in this setting. As ex-
pected, the pit strategy, being the continuous analogue of grb,
performs on par with it, though grb appears to have a slight edge.



The Effectiveness of Discretization in Forecasting MileTS ’20, August 24th, 2020, San Diego, California, USA

100 101 102 103 104

Number of input bins

0.03

0.04

0.05

0.06

0.07

M
ea

n
w

Q
L

GRB

LAB

PIT

(a) Performance effects of varying input
resolutions with respect to a fixed global
relative output with 1024 quantile bins. Al-
though LAB does first improve and then
deteriorate in performance,we see that the
number of input bins does play a lesser
role than the specified output distribution.
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(b) Performance effects of varying output
resolutions with respect to a fixed global
relative input with 1024 quantile bins. It
is clearly visible that the chosen output
representation plays a key role and that
increasing the number of output bins im-
proves performance.
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(c) Performance effects of varying embed-
ding sizes given a fixed global relative out-
put with 1024 quantile bins and fixed 1024
input bins across different input represen-
tations. Similar to the number of input
bins, the embedding size does not play a
major role w.r.t model performance.

Figure 4: Insights into the performance effects incurred by altering the input/output bins, as well as the embedding size.

Binning resolution effects. Interestingly, we found that (cf. Figure
4), given a fixed global relative binning on the output with 1024
quantile bins, a surprisingly small number of input bins already
suffices to achieve good predictive accuracy and, more so, that
increasing the number of input bins does not significantly improve
performance. In contrast, given a fixed global relative binning on
the input with 1024 quantile bins, increasing the number of bins on
the output leads to steady improvements in performance. While the
latter effect mostly expected due to the reconstruction loss incurred
with a discretized output with less bins (cf. Figure 5), the former
effect is more surprising and hints at the fact the the models learn to
focus on coarse-grained effects in the input, rather than focussing
on fine details (that would be lost with a smaller number of bins).

Embedding size effects. Since the embedding size, which is governed
by a heuristic described in Section 4, is dependent on the number
of bins, we also explicitly assess the performance impact of varying
the embedding size in isolation, keeping the other parameters fixed
(Figure 4 c)). Similar to the results reported in Figure 4 a), we found
that altering the embedding size while keeping the number of
bins fixed does not significantly impact performance, and that a
relatively small embedding size is sufficient.

Global vs. Local Binning. The global relative binning strategy tends
to outperform local absolute binning for the output (especially e.g.
WaveNet on m4_m, m4_q, and m4_y in Table 1). Note that (grb) is
used for the input transformation here, so that there is a “mismatch”
between the input and the output binning, which seems to be
responsible for part of this effect. However, we performed additional
experiment with (lab) input transformation (not shown) where this
effect is somewhat alleviated, but does not vanish.

Hybrid vs. Single Binning. We also analyzed whether hybrid bin-
ning strategies used as an input transformation can improve per-
formance over a single binning. Specifically, we considered two
different kinds of hybrid binnings: hyb(16,128,1024) which in-
cludes multiple global relative binnings at different resolutions and

hyb(grb,lab) which combines a global relative and a local abso-
lute binning. Our results show that the multi-scale hybrid binning
does indeed improve performance in many instances and is in fact
the best-performing method reported for many datasets if used in
conjunction with the WaveNet. However, combining both local and
global information does not consistently lead to improvements over
the best performing method, but rather averages results reported
for global relative inputs and local absolute inputs.

Models. Overall, WaveNet does profit the most from the proposed
binning strategies, while the FeedForw model does not show any
meaningful gains from using binning. As already hinted at, while
DeepAR can make effective use of input binnings, it demonstrates
significantly worse performance when combined with a binned
output representation. The reason for this is not yet clear and
would benefit from further investigation.

6 CONCLUSIONS AND FUTUREWORK
We have conducted an empirical study which shines light on the
question to which extent input and output transformations affect
the predictive performance of different model architectures, with
the overarching conclusion that carefully choosing and tuning the
input and output transformations is important, as it has a large
impact on the models’ predictive performance, potentially larger
than the performance difference between model architectures.
Directions for future work include exploring additional kinds of
input and output transformations, e.g. hybrid binnings using multi-
ple scales, and using hybrid binnings also at the output (e.g. using
a multi-resolution approach similar to the “dual softmax” used in
[9]). On the methodological side, extensive and principled hyper-
parameter tuning would allow us to make stronger conclusions
about the effectiveness of particular model classes when combined
with different input/output representations.
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A HYPER-PARAMETER & ACCURACY METRIC DETAILS
Both the FeedForw and WaveNet model were trained using the Adam optimizer with a decaying initial learning rate of 10−2 (decay rate 1/2)
in batches of 32 samples over 150 epochs (where one epoch consists of 50 batches) on a p2.xlarge instance (NVIDIA K80 GPU) on Amazon
Web Services. DeepAR follows the same setting but starts with an initial learning rate of 10−3 and is trained over 100 epochs. All models with
the exception of FeedForw make use of supplementary covariates x encoding date-dependent features in the form of dummy variables in
addition to time series target values z. Moreover, DeepAR further utilizes lagged values at varying frequencies (hourly, daily, weekly, etc.) for
quicker convergence as it allows the model to pick up highly periodic patterns more easily.
By default, binnings are assumed to be quantile-based, utilize B = 1024 bins, and are embedded in a E = 4√B dimensional space [22] before
being fed into the model. Initially, we also experimented with linear binning, but found the quantile binnings to be generally more reliable.
When using quantile splines on the output, we default to a resolution of 20 knots.
We report predictive performance in the form of two commonly-used accuracy metrics: To evaluate the quality of the predictive distributions
we measure mean weighted quantile loss, which is an approximation to the continuous ranked probability score [7, 14]. In particular, we
compute,

mean wQL =

∑
i,t

2
|A |

∑
α ∈A(α − I [zi,t < qi,t (α)])(zi,t − qi,t (α))∑

i,t |zi,t |
,

where qi,t (α) is the α-quantile of the predictive distribution for zi,t , and A = {0.1, 0.2, . . . , 0.9} is the set of quantile levels we evaluate. To
evaluate the point forecasting performance, we evaluate the normalized deviation (ND), which is equivalent to wQL evaluated only at the
median, i.e. with A = {0.5}.
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Figure 5: Time series reconstruction using global relative binning on m4_hourlywith varying bin sizes. Plots (a)-(c) show quan-
tile binning results, plots (d)-(f) linear binning results.
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Table 1: Results with a fixed input global relative binning with 1024 quantile bins and varying output representations.

WaveNet DeepAR FeedForw

Dataset Output Mean wQL ND Mean wQL ND Mean wQL ND

m4_h ms 0.0988 (± 0.0871) 0.1135 (± 0.0940) 0.0566 (± 0.0096) 0.0676 (± 0.0102) 0.0407 (± 0.0028) 0.0519 (± 0.0015)
ms-plqs 0.0453 (± 0.0110) 0.0557 (± 0.0106) 0.1462 (± 0.0257) 0.1618 (± 0.0289) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.0371 (± 0.0092) 0.0487 (± 0.0132) 0.0953 (± 0.0176) 0.1071 (± 0.0152) 0.0428 (± 0.0006) 0.0539 (± 0.0010)
grb(bin1024,iqF) 0.1292 (± 0.0083) 0.1518 (± 0.0170) 0.0779 (± 0.0155) 0.0890 (± 0.0120) 0.0468 (± 0.0007) 0.0588 (± 0.0009)
lab(bin1024) 0.0372 (± 0.0029) 0.0463 (± 0.0028) 0.0979 (± 0.0134) 0.1123 (± 0.0177) 0.0419 (± 0.0004) 0.0528 (± 0.0004)

m4_d ms 0.0260 (± 0.0030) 0.0321 (± 0.0040) 0.0282 (± 0.0009) 0.0338 (± 0.0012) 0.0298 (± 0.0001) 0.0304 (± 0.0001)
ms-plqs 0.0237 (± 0.0013) 0.0289 (± 0.0019) 0.0300 (± 0.0021) 0.0363 (± 0.0030) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.0228 (± 0.0004) 0.0280 (± 0.0005) 0.2134 (± 0.0181) 0.2235 (± 0.0214) 0.0307 (± 0.0001) 0.0353 (± 0.0000)
grb(bin1024,iqF) 0.0530 (± 0.0009) 0.0629 (± 0.0012) 0.2103 (± 0.0184) 0.2187 (± 0.0195) 0.0283 (± 0.0000) 0.0330 (± 0.0001)
lab(bin1024) 0.0359 (± 0.0003) 0.0412 (± 0.0002) 0.1675 (± 0.0033) 0.2132 (± 0.0017) 0.0316 (± 0.0000) 0.0367 (± 0.0001)

m4_w ms 0.0547 (± 0.0039) 0.0686 (± 0.0049) 0.0455 (± 0.0016) 0.0565 (± 0.0026) 0.0705 (± 0.0002) 0.0811 (± 0.0002)
ms-plqs 0.0502 (± 0.0038) 0.0626 (± 0.0045) 0.0477 (± 0.0031) 0.0570 (± 0.0056) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.0447 (± 0.0016) 0.0569 (± 0.0021) 0.1746 (± 0.0142) 0.1947 (± 0.0133) 0.0725 (± 0.0002) 0.0851 (± 0.0002)
grb(bin1024,iqF) 0.0641 (± 0.0024) 0.0799 (± 0.0029) 0.1724 (± 0.0150) 0.1899 (± 0.0133) 0.0707 (± 0.0002) 0.0832 (± 0.0001)
lab(bin1024) 0.0623 (± 0.0013) 0.0770 (± 0.0018) 0.2140 (± 0.0036) 0.2446 (± 0.0028) 0.0764 (± 0.0002) 0.0885 (± 0.0002)

m4_m ms 0.1313 (± 0.0046) 0.1576 (± 0.0049) 0.1376 (± 0.0123) 0.1639 (± 0.028) 0.1227 (± 0.0009) 0.1589 (± 0.0007)
ms-plqs 0.1378 (± 0.0013) 0.1595 (± 0.0028) 0.1471 (± 0.0149) 0.1648 (± 0.0062) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.1177 (± 0.0031) 0.1447 (± 0.0030) 0.1755 (± 0.0223) 0.2046 (± 0.0048) 0.1273 (± 0.0004) 0.1466 (± 0.0003)
grb(bin1024,iqF) 0.1429 (± 0.0034) 0.1749 (± 0.0054) 0.1727 (± 0.0220) 0.2049 (± 0.0020) 0.1268 (± 0.009) 0.1454 (± 0.0007)
lab(bin1024) 0.1507 (± 0.0003) 0.1819 (± 0.0022) 0.1931 (± 0.0254) 0.2257 (± 0.0089) 0.1231 (± 0.0006) 0.1470 (± 0.0006)

m4_q ms 0.0936 (± 0.0032) 0.1148 (± 0.0036) 0.1067 (± 0.0039) 0.1299 (± 0.0047) 0.1097 (± 0.0007) 0.1299 (± 0.0002)
ms-plqs 0.0987 (± 0.0028) 0.1188 (± 0.0035) 0.1267 (± 0.0117) 0.1439 (± 0.0108) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.0908 (± 0.0015) 0.1126 (± 0.0018) 0.1673 (± 0.0060) 0.1903 (± 0.0044) 0.1146 (± 0.0011) 0.1318 (± 0.0003)
grb(bin1024,iqF) 0.0998 (± 0.0014) 0.1237 (± 0.0017) 0.1591 (± 0.0092) 0.1819 (± 0.0073) 0.1131 (± 0.0013) 0.1291 (± 0.0003)
lab(bin1024) 0.1195 (± 0.0019) 0.1412 (± 0.0022) 0.1647 (± 0.0103) 0.1980 (± 0.0087) 0.1197 (± 0.0004) 0.1374 (± 0.0002)

m4_y ms 0.1235 (± 0.0030) 0.1476 (± 0.0032) 0.1733 (± 0.0073) 0.1940 (± 0.0072) 0.1262 (± 0.0014) 0.1497 (± 0.0014)
ms-plqs 0.1271 (± 0.0033) 0.1486 (± 0.0039) 0.1758 (± 0.0200) 0.1973 (± 0.0206) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.1538 (± 0.0112) 0.1860 (± 0.0140) 0.2765 (± 0.0076) 0.3073 (± 0.0110) 0.2131 (± 0.0008) 0.2295 (± 0.0002)
grb(bin1024,iqF) 0.1407 (± 0.0116) 0.1712 (± 0.0122) 0.3001 (± 0.0148) 0.3264 (± 0.0124) 0.2100 (± 0.0009) 0.2254 (± 0.0002)
lab(bin1024) 0.2024 (± 0.0110) 0.2237 (± 0.0169) 0.2596 (± 0.0081) 0.3034 (± 0.0135) 0.2300 (± 0.0003) 0.2399 (± 0.0006)

elec ms 0.0610 (± 0.0018) 0.0774 (± 0.0028) 0.0551 (± 0.0011) 0.0678 (± 0.0016) 0.0668 (± 0.0010) 0.0826 (± 0.0017)
ms-plqs 0.0540 (± 0.0028) 0.0681 (± 0.0036) 0.0582 (± 0.0029) 0.0707 (± 0.0030) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.0475 (± 0.0016) 0.0588 (± 0.0024) 0.0647 (± 0.0018) 0.0821 (± 0.0020) 0.0677 (± 0.0013) 0.0841 (± 0.0020)
grb(bin1024,iqF) 0.0512 (± 0.0015) 0.0641 (± 0.0013) 0.0712 (± 0.0064) 0.0905 (± 0.0088) 0.0661 (± 0.0007) 0.0817 (± 0.0008)
lab(bin1024) 0.0527 (± 0.0009) 0.0647 (± 0.0007) 0.0791 (± 0.0001) 0.1013 (± 0.0002) 0.0671 (± 0.0010) 0.0793 (± 0.0012)

traff ms 0.1437 (± 0.0044) 0.1721 (± 0.0050) 0.1185 (± 0.0089) 0.1401 (± 0.0014) 0.2111 (± 0.0008) 0.2527 (± 0.0008)
ms-plqs 0.1237 (± 0.0034) 0.1510 (± 0.0040) 0.1369 (± 0.0045) 0.1680 (± 0.0016) 0.3185 (± 0.1331) 0.3849 (± 0.1646)

grb(bin1024) 0.1209 (± 0.0016) 0.1455 (± 0.0019) 0.1883 (± 0.0012) 0.2323 (± 0.0005) 0.2218 (± 0.0010) 0.0252 (± 0.0015)
grb(bin1024,iqF) 0.1229 (± 0.0017) 0.1495 (± 0.0022) 0.1835 (± 0.0034) 0.2245 (± 0.0012) 0.2210 (± 0.0017) 0.0341 (± 0.0050)
lab(bin1024) 0.1261 (± 0.0006) 0.1536 (± 0.0007) 0.1632 (± 0.0051) 0.2005 (± 0.0028) 0.3820 (± 0.0832) 0.0206 (± 0.0058)

wiki ms 0.2204 (± 0.0021) 0.2480 (± 0.0027) 0.2284 (± 0.0012) 0.2577 (± 0.0012) 0.2721 (± 0.0015) 0.3349 (± 0.0014)
ms-plqs 0.2336 (± 0.0097) 0.2654 (± 0.0118) 0.2305 (± 0.0040) 0.2561 (± 0.0033) NaN (± NaN) NaN (± NaN)

grb(bin1024) 0.2156 (± 0.0020) 0.2439 (± 0.0021) 0.8465 (± 0.0199) 0.9459 (± 0.0270) 0.2930 (± 0.0013) 0.3316 (± 0.0010)
grb(bin1024,iqF) 0.2224 (± 0.0037) 0.2524 (± 0.0044) 0.7919 (± 0.0019) 0.9086 (± 0.0076) 0.2961 (± 0.0015) 0.3346 (± 0.0009)
lab(bin1024) 0.2564 (± 0.0016) 0.2901 (± 0.0021) 0.6996 (± 0.0009) 0.8200 (± 0.0007) 0.2540 (± 0.0004) 0.2858 (± 0.0005)
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Table 2: Results with a fixed output global relative binning with 1024 quantile bins and varying input representations.

WaveNet DeepAR FeedForw
Dataset Input Mean wQL ND Mean wQL ND Mean wQL ND

m4_h ms 0.0391 (± 0.0057) 0.0506 (± 0.0083) 0.0931 (± 0.0093) 0.1066 (± 0.0090) 0.0463 (± 0.0005) 0.0588 (± 0.0011)
lab(bin1024) 0.0577 (± 0.0075) 0.0736 (± 0.0099) 0.1114 (± 0.0078) 0.1255 (± 0.0101) 0.0517 (± 0.0035) 0.0643 (± 0.0034)
pit(bin1024) 0.0296 (± 0.0001) 0.0370 (± 0.0002) 0.0902 (± 0.0089) 0.1120 (± 0.0095) 0.0721 (± 0.0392) 0.0912 (± 0.0491)

hyb(16,128,1024) 0.0375 (± 0.0009) 0.0504 (± 0.0003) 0.1020 (± 0.0057) 0.1189 (± 0.0109) 0.0435 (± 0.0004) 0.0549 (± 0.0006)
hyb(grb,lab) 0.0369 (± 0.0061) 0.0475 (± 0.0089) 0.1057 (± 0.0088) 0.1201 (± 0.0110) 0.0421 (± 0.0017) 0.0537 (± 0.0021)

m4_d ms 0.0315 (± 0.0057) 0.0378 (± 0.0065) 0.2128 (± 0.0182) 0.2216 (± 0.0188) 0.0305 (± 0.0000) 0.0352 (± 0.0000)
lab(bin1024) 0.0317 (± 0.0007) 0.0369 (± 0.0008) 0.2189 (± 0.0124) 0.2244 (± 0.0130) 0.0305 (± 0.0000) 0.0352 (± 0.0001)
pit(bin1024) 0.0286 (± 0.0053) 0.0345 (± 0.0061) 0.2204 (± 0.0144) 0.2283 (± 0.0141) 0.0305 (± 0.0002) 0.0352 (± 0.0000)

hyb(16,128,1024) 0.0227 (± 0.0003) 0.0278 (± 0.0004) 0.2196 (± 0.0137) 0.2267 (± 0.0135) 0.0306 (± 0.0001) 0.0353 (± 0.0001)
hyb(grb,lab) 0.0272 (± 0.0004) 0.0318 (± 0.0003) 0.2222 (± 0.0156) 0.2301 (± 0.0157) 0.0307 (± 0.0001) 0.0353 (± 0.0000)

m4_w ms 0.0848 (± 0.0327) 0.1026 (± 0.0371) 0.1651 (± 0.0113) 0.1830 (± 0.0111) 0.0750 (± 0.0005) 0.0839 (± 0.0001)
lab(bin1024) 0.1061 (± 0.0023) 0.1244 (± 0.0033) 0.1838 (± 0.0070) 0.1995 (± 0.0083) 0.0760 (± 0.0002) 0.0834 (± 0.0001)
pit(bin1024) 0.0467 (± 0.0022) 0.0585 (± 0.0028) 0.1884 (± 0.0099) 0.2082 (± 0.0103) 0.0724 (± 0.0005) 0.0848 (± 0.0004)

hyb(16,128,1024) 0.0443 (± 0.0010) 0.0561 (± 0.0014) 0.1792 (± 0.0047) 0.1980 (± 0.0042) 0.0723 (± 0.0002) 0.0854 (± 0.0002)
hyb(grb,lab) 0.0500 (± 0.0012) 0.0627 (± 0.0015) 0.1815 (± 0.0072) 0.1975 (± 0.0074) 0.0719 (± 0.0003) 0.0849 (± 0.0002)

m4_m ms 0.1373 (± 0.0143) 0.1655 (± 0.0137) 0.2080 (± 0.0102) 0.2412 (± 0.0098) 0.1392 (± 0.0009) 0.1470 (± 0.0000)
lab(bin1024) 0.2055 (± 0.0021) 0.2136 (± 0.0012) 0.2395 (± 0.0154) 0.2891 (± 0.0101) 0.1396 (± 0.0005) 0.1463 (± 0.0001)
pit(bin1024) 0.1213 (± 0.0024) 0.1481 (± 0.0029) 0.1921 (± 0.0097) 0.2287 (± 0.0084) 0.1332 (± 0.0049) 0.1462 (± 0.0009)

hyb(16,128,1024) 0.1187 (± 0.0037) 0.1463 (± 0.0046) 0.1944 (± 0.0098) 0.2294 (± 0.0057) 0.1267 (± 0.0023) 0.1459 (± 0.0001)
hyb(grb,lab) 0.1206 (± 0.0010) 0.1468 (± 0.0008) 0.2018 (± 0.0105) 0.2388 (± 0.0083) 0.1264 (± 0.0014) 0.1454 (± 0.0002)

m4_q ms 0.1272 (± 0.0006) 0.1488 (± 0.0003) 0.1507 (± 0.0037) 0.1698 (± 0.0021) 0.1256 (± 0.0009) 0.1501 (± 0.0008)
lab(bin1024) 0.1299 (± 0.0017) 0.1486 (± 0.0013) 0.1689 (± 0.0025) 0.1861 (± 0.0016) 0.1174 (± 0.0011) 0.1320 (± 0.0004)
pit(bin1024) 0.1278 (± 0.0014) 0.1488 (± 0.0002) 0.1748 (± 0.0028) 0.1958 (± 0.0021) 0.1180 (± 0.0011) 0.1324 (± 0.0002)

hyb(16,128,1024) 0.0893 (± 0.0011) 0.1108 (± 0.0012) 0.1743 (± 0.0052) 0.1972 (± 0.0035) 0.1152 (± 0.0019) 0.1314 (± 0.0007)
hyb(grb,lab) 0.1137 (± 0.0032) 0.1372 (± 0.0034) 0.1722 (± 0.0029) 0.1974 (± 0.0008) 0.1152 (± 0.0021) 0.1308 (± 0.0007)

m4_y ms 0.1308 (± 0.0039) 0.1562 (± 0.0034) 0.2663 (± 0.0177) 0.2907 (± 0.0123) 0.2162 (± 0.0016) 0.2326 (± 0.0008)
lab(bin1024) 0.2812 (± 0.0144) 0.3171 (± 0.0094) 0.3062 (± 0.0140) 0.3248 (± 0.0085) 0.2143 (± 0.0004) 0.2309 (± 0.0002)
pit(bin1024) 0.1844 (± 0.0523) 0.2202 (± 0.0621) 0.3058 (± 0.0077) 0.3280 (± 0.0086) 0.2151 (± 0.0019) 0.2324 (± 0.0022)

hyb(16,128,1024) 0.1337 (± 0.0033) 0.1618 (± 0.0045) 0.2925 (± 0.0028) 0.3219 (± 0.0024) 0.2129 (± 0.0006) 0.2295 (± 0.0001)
hyb(grb,lab) 0.2065 (± 0.0149) 0.2505 (± 0.0195) 0.3184 (± 0.0050) 0.3576 (± 0.0052) 0.2235 (± 0.0068) 0.2388 (± 0.0020)

elec ms 0.0501 (± 0.0010) 0.0607 (± 0.0017) 0.0732 (± 0.0007) 0.0923 (± 0.0004) 0.0800 (± 0.0038) 0.1004 (± 0.0056)
lab(bin1024) 0.1389 (± 0.0070) 0.1677 (± 0.0096) 0.0986 (± 0.0023) 0.1107 (± 0.0067) 0.1269 (± 0.0033) 0.1632 (± 0.0034)
pit(bin1024) 0.0484 (± 0.0010) 0.0598 (± 0.0015) 0.4210 (± 0.1192) 0.4924 (± 0.1078) 0.0705 (± 0.0026) 0.0875 (± 0.0041)

hyb(16,128,1024) 0.0495 (± 0.0004) 0.0612 (± 0.0007) 0.1143 (± 0.0028) 0.1339 (± 0.0055) 0.0678 (± 0.0018) 0.0843 (± 0.0026)
hyb(grb,lab) 0.0472 (± 0.0005) 0.0585 (± 0.0005) 0.1528 (± 0.0072) 0.1801 (± 0.0089) 0.0687 (± 0.0009) 0.0856 (± 0.0011)

traff ms 0.1251 (± 0.0013) 0.1507 (± 0.0013) 0.1974 (± 0.0088) 0.2423 (± 0.0339) 0.2280 (± 0.0005) 0.0287 (± 0.0021)
lab(bin1024) 0.2571 (± 0.0174) 0.3200 (± 0.0246) 0.2535 (± 0.0246) 0.3131 (± 0.0632) 0.2456 (± 0.0010) 0.0070 (± 0.0021)
pit(bin1024) 0.1275 (± 0.0008) 0.1539 (± 0.0010) 0.5953 (± 0.1299) 0.7266 (± 0.2040) 0.2258 (± 0.0017) 0.0254 (± 0.0037)

hyb(16,128,1024) 0.1242 (± 0.0008) 0.1498 (± 0.0009) 0.1886 (± 0.0072) 0.2316 (± 0.0290) 0.2184 (± 0.0011) 0.0249 (± 0.0016)
hyb(grb,lab) 0.1245 (± 0.0011) 0.1505 (± 0.0018) 0.1885 (± 0.0091) 0.2315 (± 0.0387) 0.2182 (± 0.0007) 0.0217 (± 0.0028)

wiki ms 0.2183 (± 0.0028) 0.2472 (± 0.0033) 0.8156 (± 0.0176) 0.9170 (± 0.0234) 0.3027 (± 0.0007) 0.3381 (± 0.0008)
lab(bin1024) 0.3071 (± 0.0030) 0.3478 (± 0.0026) 0.8143 (± 0.0112) 0.9115 (± 0.0130) 0.3066 (± 0.0005) 0.3408 (± 0.0004)
pit(bin1024) 0.2177 (± 0.0043) 0.2465 (± 0.0047) 0.9238 (± 0.2095) 0.9981 (± 0.3049) 0.2935 (± 0.0014) 0.3304 (± 0.0014)

hyb(16,128,1024) 0.2163 (± 0.0017) 0.2447 (± 0.0019) 0.8140 (± 0.0129) 0.9075 (± 0.0090) 0.2927 (± 0.0012) 0.3311 (± 0.0008)
hyb(grb,lab) 0.2342 (± 0.0035) 0.2631 (± 0.0037) 0.8191 (± 0.0150) 0.9238 (± 0.0198) 0.2931 (± 0.0012) 0.3316 (± 0.0011)

Table 3: Results with mean scaling on both inputs and outputs. This is the standard scaling setting in GluonTS [1].

WaveNet DeepAR FeedForw

Dataset Mean wQL ND Mean wQL ND Mean wQL ND

m4_h 0.1517 (± 0.0904) 0.2008 (± 0.1334) 0.0533 (± 0.0012) 0.0645 (± 0.0009) 0.0463 (± 0.0010) 0.0580 (± 0.0012)
m4_d 0.0334 (± 0.0088) 0.0401 (± 0.0102) 0.0318 (± 0.0029) 0.0384 (± 0.0036) 0.0247 (± 0.0005) 0.0296 (± 0.0008)
m4_w 0.0574 (± 0.0036) 0.0716 (± 0.0042) 0.0460 (± 0.0011) 0.0565 (± 0.0012) 0.0521 (± 0.0006) 0.0614 (± 0.0006)
m4_m 0.1481 (± 0.0170) 0.1674 (± 0.0152) 0.1362 (± 0.0089) 0.1480 (± 0.0083) 0.1159 (± 0.0011) 0.1260 (± 0.0023)
m4_q 0.0983 (± 0.0019) 0.1196 (± 0.0017) 0.1030 (± 0.0031) 0.1176 (± 0.0027) 0.0869 (± 0.0010) 0.1030 (± 0.0010)
m4_y 0.1236 (± 0.0055) 0.1458 (± 0.0057) 0.1570 (± 0.0088) 0.1757 (± 0.0085) 0.1262 (± 0.0014) 0.1497 (± 0.0014)
elec 0.0724 (± 0.0151) 0.0923 (± 0.0194) 0.0571 (± 0.0012) 0.0695 (± 0.0018) 0.0649 (± 0.0011) 0.0793 (± 0.0015)
traff 0.1450 (± 0.0065) 0.1720 (± 0.0073) 0.1222 (± 0.0077) 0.1456 (± 0.0082) 0.2144 (± 0.0008) 0.2558 (± 0.0009)
wiki 0.2295 (± 0.0063) 0.2601 (± 0.0072) 0.2378 (± 0.0070) 0.2694 (± 0.0091) 0.2594 (± 0.0026) 0.3030 (± 0.0036)
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