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ABSTRACT
In this paper, we investigate the optimal modality selection prob-

lem for time-series data in the context of late fusion. Multimodal

emotion or action recognition is used as a testbed. Widely-used

features and classifier are used for each modality drawn from five

benchmark datasets. We experimented with four widely-used late

fusion methods. From the classification accuracies obtained for all

possible combinations of modalities in each dataset, we observe

that the accuracy does not always improve with increase in num-

ber of modalities. We further show that expected information gain

increases monotonically with classification accuracy in an useful

interval and hence, can be used for selecting a subset of modalities

for late fusion to achieve a high classification accuracy.
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1 INTRODUCTION
Real-world time-series data is often multimodal. Learning frommul-

tiple modalities facilitates learning a richer representation which

helps to make more accurate inference [7, 33]. Each modality is

expected to provide unique information, otherwise it would be

redundant. A challenge associated with multimodal data classifica-

tion is to select a subset of modalities to maximize accuracy. This

optimal modality selection problem is investigated in areas such

as multimedia [2, 20, 45] and wireless sensor networks [18, 27, 36].

This problem has been explored for early fusion (see [1] for review)

but rarely for decision or late fusion.

In this paper, we investigate the optimal modality selection prob-

lem for time-series data in the context of late fusion. We exper-

imentally evaluate the effect of combining different modalities
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on emotion recognition accuracy using two benchmark datasets

(DEAP [25], HCI Tagging [41]) containing physiological signals, and

on action classification accuracy using three benchmark datasets

(PAMAP2 [40], UTD MHAD [9], Berkeley MHAD [35]) containing

inertial, motion capture and depth data. Several methods have been

reported for action or emotion recognition using these benchmark

datasets (see for example [6, 10, 25, 35, 43, 44]). However, they did

not report on how to select a subset of modalities, and their ex-

periments are limited to a few datasets. Modality selection criteria,

such as independence of classifiers [26] and classifier correlation

[15], have been used in late fusion models, but were not evaluated

on a number of benchmark datasets.

We compare emotion or action recognition accuracy from four

late fusion methods and all possible subsets of modalities from

each of the five benchmark datasets. We selected candidates for

the different components of a late fusion model from the literature

based on their wide usage: (1) features extracted from the signal in

eachmodality, (2) classifier, (3) late fusionmethods, and (4) modality

selection criterion. These candidates allow us to experiment with

multiple late fusion models and draw general conclusions.

The contributions of this paper are as follows:

(1) Our experimental results reveal that, contrary to expecta-

tion, emotion or action classification accuracy does not always

increase with increase in number of modalities for different late

fusion methods. More data might confuse a model as data is not

always informative.

(2) We empirically show that information gain increases mono-

tonicallywith classification accuracy in the accuracy interval [𝑎, 1]×
100% where 𝑎 ∈ [0, 0.5] for two or more classes.

(3) Our experimental results show that information gain is an

useful metric for selecting the optimal subset of modalities for

late fusion. For the five benchmark datasets and both action and

emotion recognition, subsets selected using information gain yield

results comparable to the highest classification accuracy.

2 MODELS AND METHODS
Our recognition model consists of four functions: feature extraction,

classification, modality selection, and late fusion (see Fig. 1). We use

widely-used feature extraction, classification and fusion methods,

and modality selection metrics.

Let {𝑀1, . . . , 𝑀𝑛} be 𝑛 modalities (or signals), and 𝑥𝑖 be the fea-

ture vector and 𝜆𝑖 be the classifier for modality 𝑀𝑖 (𝑖 = 1, . . . , 𝑛).

Let there be𝑚 classes, {𝜔1, . . . , 𝜔𝑚}, such that 𝑃 (𝜔𝑘 |𝑥𝑖 ) represent
the posterior probability for class 𝜔𝑘 from classifier 𝜆𝑖 .

1

1
Typically late fusion models, including the one in this paper, ignore temporal de-

pendencies across modalities as they fuse modalities only after the classifiers have

made their decisions. As a result, late fusion models are to some extent indifferent to

the heterogeneity of and synchronicity between the different modalities. They allow

modality-specific parameters (e.g., sampling rate, window length, feature vector di-

mension) and representation (e.g., space-time vs. frequency-time) to be chosen for each
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Figure 1: Block diagram for multimodal time-series classifi-
cation using late fusion. ‘FE’ refers to feature extraction.

Definition 2.1. Correlation degree. The correlation-based clas-

sifier selection criteria for 𝑛 classifiers is [15, 34]:

𝜌𝑛 =
𝑛𝑁 𝑓

𝑁 − 𝑁 𝑓 − 𝑁 𝑟 + 𝑛𝑁 𝑓
(1)

where 𝜌𝑛 is the correlation degree, 𝑁 𝑓
is the number of samples

misclassified by all classifiers,𝑁 𝑟
is the number of samples classified

correctly by all the classifiers, and 𝑁 is the total number of samples.

Definition 2.2. Information gain. If 𝑇 ′ denotes the predicted

class labels (might be from a set of modalities after fusion or the

individual modalities before fusion) and 𝑇 the true class labels, the

information gain of 𝑇 ′ relative to 𝑇 can be defined as [29]:

𝐺 (𝑇,𝑇 ′) ≡ 𝐻 (𝑇 ) −
∑

𝑣𝜖𝑉𝑎𝑙𝑢𝑒𝑠 (𝑇 ′)

|𝑇𝑣 |
|𝑇 | 𝐻 (𝑇𝑣) (2)

where 𝑉𝑎𝑙𝑢𝑒𝑠 (𝑇 ′) is the set of all possible values for 𝑇 ′ and 𝑇𝑣 is
the subset of𝑇 for which𝑇 ′ has value 𝑣 and 𝐻 (𝑇 ) is the entropy of

𝑇 and

∑
𝑣𝜖𝑉𝑎𝑙𝑢𝑒𝑠 (𝑇 ′)

|𝑇𝑣 |
|𝑇 | 𝐻 (𝑇𝑣) = 𝐻 (𝑇 |𝑇 ′).

Theorem 2.1. Expected information gain is a convex function of
classification accuracy. Given the number of classes 𝑐 , there exists a
unique positive real number 𝑎 such that the minimum of expected
information gain occurs at classification accuracy 𝑎. As 𝑐 → ∞,
𝑎 → 0.

For the trivial case 𝑐 = 1, 𝑎 = 1. For the nontrivial case 𝑐 =

2, 𝑎 = 0.5 (computed from Eq. 2). Given a particular 𝑐 , for each

classification accuracy {0, 0.1, 0.2, ..., 1}, we randomly generated at

least 10
6
confusion matrices and computed the corresponding mean

(or expected) information gain. The expected information gain as a

function of classification accuracy is shown in Fig. 2 for 𝑐 = 2, 3, 7, 25.

In each case, the expected information gain is a convex function of

classification accuracy. As 𝑐 increases, the unique location of the

minimum of this function decreases. Since classification accuracy

cannot be negative, the location is lower bounded by zero.

modality independently. One way to exploit temporal dependencies across modalities

in late fusion models is by learning a mapping between the representations of each

pair of modalities, either directly (e.g., [30]) or via intermediate joint representations

(e.g., [17]), such that the signal in each modality can be generated from the signal in

another. These features can then be used for classification in each modality. Relevant

topics include challenges of learning features from time series [21], generative models

for learning features from time series [3, 12–14, 31, 32], generative models for learning

joint representations from multimodal time series [4, 5], and opportunistic sensor

selection [22, 23]. Exploiting temporal dependencies across modalities is beyond the

scope of this paper.

Figure 2: Expected information gain as a function of clas-
sification accuracy is shown for 2, 3, 7 and 25 classes from
randomly generated confusion matrices.

This theorem entails that, for any given 𝑐 , in the accuracy in-

terval [𝑎, 1], expected information gain increases monotonically

with classification accuracy. Hence, information gain is probabilis-

tically a sound measure of classification accuracy in [𝑎, 1] where 𝑎
decreases as 𝑐 increases.

We experiment with four methods to fuse the posterior proba-

bilities obtained from each classifier at the decision level: product,

average, Bayesian, and majority voting. Let 𝑍 be the pattern to be

assigned to one of the𝑚 classes after fusion.

Definition 2.3. Product [6, 16, 24]. Assign 𝑍 → 𝜔 𝑗 if∏𝑛
𝑖=1 𝑃 (𝜔 𝑗 |𝑥𝑖 ) = max

𝑚
𝑘=1

∏𝑛
𝑖=1 𝑃 (𝜔𝑘 |𝑥𝑖 ) [24]. The product rule for

fusion assumes that the joint probability distribution of themeasure-

ments obtained from the classifiers are conditionally independent.

Definition 2.4. Average [6, 16, 24, 38]. Assign 𝑍 → 𝜔 𝑗 if

1

𝑛

∑𝑛
𝑖=1 𝑃 (𝜔 𝑗 |𝑥𝑖 ) = max

𝑚
𝑘=1

1

𝑛

∑𝑛
𝑖=1 𝑃 (𝜔𝑘 |𝑥𝑖 ) [24]. The average rule

for fusion assumes that the prior is equal.

Definition 2.5. Bayesian [19].Assign𝑍 → 𝜔 𝑗 if 𝑃 (𝜔 𝑗 |𝑥1, . . . , 𝑥𝑛)
≈ max

𝑚
𝑘=1

∑𝑛
𝑖=1

∑𝑚
𝑙=1

𝑃 (𝜔𝑘 |𝜔𝑙 , 𝜆𝑖 )𝑃 (𝜔𝑙 |𝜆𝑖 , 𝑥𝑖 )𝑃 (𝜆𝑖 |𝑥𝑖 ) [19], where
𝜔𝑙 denotes the predicted class. The probabilities, 𝑃 (𝜔𝑘 |𝜔𝑙 , 𝜆𝑖 ) and
𝑃 (𝜆𝑖 |𝑥𝑖 ), can be approximated from the confusion matrix of 𝜆𝑖 .

Definition 2.6. Majority voting [24, 28]. Assign 𝑍 → 𝜔 𝑗 if∑𝑛
𝑖=1 Δ 𝑗𝑖 = max

𝑚
𝑘=1

∑𝑛
𝑖=1 Δ𝑘𝑖 [24]. The term

∑𝑛
𝑖=1 Δ𝑘𝑖 adds the votes

for the class𝜔𝑘 from the individual classifiers. In case of equal votes

for multiple classes, the class with the highest posterior probability

is selected.

3 EXPERIMENTAL SETUP
3.1 Experiments
3.1.1 Classification accuracy with respect to number of modalities.
To evaluate classification accuracy with increase in number of

modalities through an exhaustive comparison, we construct a tree

with 𝑛 leaf nodes, each represents a set containing one modality,

and the root node represents the set of 𝑛 modalities. The tree has

𝑛 levels. The 𝑖𝑡ℎ level has

(𝑛
𝑖

)
nodes, 𝑖 = 1, . . . , 𝑛. A non-leaf node

representing a set 𝑄 containing 𝑞 modalities has 𝑞 child nodes,
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Algorithm 1 Selecting modalities using information gain

1: Inputs: 𝑃1, . . . , 𝑃𝑛 .
2: Output: Set 𝑠 .
3: Initialize: 𝑆 ←− {𝑀𝑏𝑒𝑠𝑡 }, 𝑆 ′ ←− {𝑀1, 𝑀2, . . . , 𝑀𝑛} −𝑆 ,𝑀𝑏𝑒𝑠𝑡

is the modality yielding highest recognition accuracy.

4: Compute 𝐺𝑆 (1) ←− 𝐺 (𝑇 ′,𝑇 ) using Eq. 2, where 𝑇 ′ are the

predicted class labels from𝑀𝑏𝑒𝑠𝑡 .

5: for 𝑖 = 2 𝑡𝑜 𝑛 do
6: for 𝑗 = 1 𝑡𝑜 |𝑆 ′ | do
7: Compute predicted class labels, 𝑇 ′ ←− 𝑓 ({𝑃𝑀𝑖

:

𝜆𝑀𝑖
𝜖𝑆

⋃
𝑆 ′
𝑗
}) such that 𝑓 represents any late fusion operation

and 𝑆 ′
𝑗
denotes the 𝑗𝑡ℎ element in set 𝑆 ′.

8: Compute information gain 𝐺𝑆′ ( 𝑗) ←− 𝐺 (𝑇 ′,𝑇 ) using
Eq. 2.

9: end for
10: 𝐺𝑆 (𝑖) ←− max𝐺𝑆′

11: 𝑘 ←− arg𝑗 max𝐺𝑆′

12: 𝑆 ←− 𝑆
⋃
𝑆 ′
𝑘

13: 𝑆 ′ ←− 𝑆 ′ − 𝑆 ′
𝑘

14: end for
15: 𝑘 ←− arg𝑖 max𝐺𝑆

16: Return 𝑠 ←− 𝑆
1:𝑘 .

each representing a set 𝑄 ′
𝑗
⊂ 𝑄 ( 𝑗 = 1, . . . , 𝑞) containing 𝑞 − 1

modalities. Therefore, the total number of children of all nodes is:

#𝐶𝑎𝑠𝑒𝑠 =
∑𝑛−1
𝑖=1

(𝑛
𝑖

)
(𝑛 − 𝑖).

3.1.2 Selection of modalities. The selection of modalities is carried

out in three ways using information gain and correlation:

1) Use information gain, 𝐺 , (Eq. 2) as a measure to compute the

optimal combinations of 1, 2, . . . , 𝑛 modalities adding one at a time

(ref. Algorithm 1). This is a greedy approach where the combination

with the highest value of 𝐺 is always selected.

2) Use correlation degree, 𝜌 , [15, 34] as a measure to compute the

optimal combinations of 1, 2, . . . , 𝑛 modalities adding one at a time.

Select the subset with lowest 𝜌 , similar to the approach in [15].

3) Assign a score,𝐺𝑠 , equal to its information gain (Eq. 2) to each

modality and select the modalities with score greater than an ap-

propriate threshold (0.2) which is determined experimentally and

applies to all the datasets.

3.2 Training procedure
A total of 33 multilayer perceptron (MLP) classifiers (7×2 for DEAP,
5×2 for HCI Tagging, 3 for PAMAP2, 3 for UTD MHAD and 3 for

BerkeleyMHAD) are trained, one for eachmodality for each dataset.

The hyperparameters (batchsize, number of layers, activation func-

tions (tanh, relu), number of neurons in each layer, learning rate,

dropout (for MLPs with more than one hidden layer)) for each MLP

are fixed experimentally. We use a softmax classifier at the final

layer and binary cross entropy as the cost function during training.

DEAP [25]: As in [42], the individual rated scales (1-9) are

mapped to two levels of each valence and arousal states such that 1-

5 is mapped to low and 5-9 to high emotion labels. The valence and

arousal classification is done separately. As in [25, 42], the train/test

set split is obtained by leaving one subject out cross-validation such

that data from 31 subjects constitute the train set and data from the

remaining subject constitute the test set. The mean classification ac-

curacy from 32-fold cross-validation is reported. The preprocessed

dataset available in MATLAB format in the downloaded dataset is

used in our experiments. We extract six statistical features for all

the 7 modalities considered in our experiments: means and standard

deviations of the raw signals, means of absolute values of the first

and second differences of the raw signals, and means of absolute

values of the first and second differences of the normalized signals

[37], from a 6-second window without overlap [42] such that each

window constitutes a datapoint.

HCI Tagging [41]: The individual rated scales (1-9) are mapped

to three levels of each valence and arousal states such that 1-3 is

mapped to low, 4-6 to medium and 7-9 to high, as in [44]. The va-

lence and arousal classification is performed separately. Two-third

of the dataset is used for training, as in [43]. The experiments are

repeated 10 times. The mean classification accuracy is reported.We

extract 11 statistical features for all the 5 modalities considered in

our experiments: the six features as in the DEAP dataset, skewness,

kurtosis, min, max, and median [37, 42] from 6-second windows

without overlap [42] such that each window constitutes a datapoint.

PAMAP2 [40]: We consider 12 actions for recognition, as in

[40]. The train/test set split is obtained by leaving one subject out

cross-validation; data from 8 subjects constitute the train set, as in

[40]. The mean classification accuracy from 9-fold cross-validation

is reported. We extract features from a 2-second window without

overlap. Six statistical features as in the DEAP dataset are extracted

from sensors 1 and 2. Three features are extracted from sensor

3 as in [9]: mean, variance, and standard deviation. The features

are extracted for each dimension of the inertial signals and then

concatenated.

UTDMHAD [9]: There are 27 action classes. Data from subjects

{1, 3, 5, 7} is used for training and subjects {2, 4, 6, 8} for testing,
as in [9]. The experiments are repeated 10 times and the mean

of the classification accuracy over all the experiments is reported.

We extract 8 statistical features from each 6-second window, as in

[9], for inertial data across all the dimensions: mean, median, max,

min, standard deviation, variance, skewness, kurtosis. Variance

is extracted from 8 windows, as in [9], for each video for each

dimension of the motion capture data. The features are computed

over all dimensions, then concatenated over all the dimensions

and windows. Depth motion map (DMM) features, as in [9] are

extracted from the depth videos.

Berkeley MHAD [35]: There are 11 action classes. Data from

the first 7 subjects are used for training and the last 5 for testing,

as in [11, 35]. The experiments are repeated 10 times and mean

classification accuracy is reported. Each inertial sequence is divided

into 30 windows and each accelerometer sequence into 60 windows,

as in [8]. Variance is extracted for inertial and accelerometer data

from each window and across all the dimensions which is then

concatenated over all the dimensions and windows. As in [8], DMM

features constitute our feature vector for the depth videos.

4 EXPERIMENTAL RESULTS
Classification accuracy with respect to number of modali-

ties. Our results show that an increase in the number of modalities
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Table 1: Classification accuracy (%) reported for the best subset of modalities (i.e. the combination of modalities that yields
highest accuracy fromall fusionmethods) for each of the threemodality selectionmethods (𝐺 , 𝜌 ,𝐺𝑠 ). The “Exhaustive” column
reports the highest classification accuracy obtained by considering all possible combinations of modalities (total # combina-
tions =

∑𝑛
𝑖=1

(𝑛
𝑖

)
). All modalities present in a dataset are mentioned below the dataset name. The fusion method and the subset

of modalities yielding the highest accuracy are reported. The baselines for similar experimental conditions as ours are shown.
The highest accuracy for each dataset is highlighted.

Dataset Exhaustive 𝐺 𝜌 𝐺𝑠 Baseline

DEAP (valence) 75.72 - Product 75.72 - Product 75.41 - Bayesian 75.72 - Product 57.6 [25]

eeg, gsr, resp, temp, plet, emg, eog eeg, eog, emg, resp eeg, eog, emg, resp eeg, eog, emg, plet eeg, eog, emg, resp

DEAP (arousal) 66.41 - Bayesian 66.40 - Bayesian 65.30 - Bayesian 66.31 - Bayesian 62 [25]

eeg, gsr, resp, temp, plet, emg, eog eeg, eog, emg, gsr, resp eeg, eog, gsr eeg, eog, emg eeg, eog

HCI Tagging (valence) 68.63 - Product 68.63 - Product 68.63 - Product 68.63 - Product 56.83 [44]

eeg, ecg, gsr, resp, temp eeg, ecg, gsr, resp eeg, ecg, gsr, resp eeg, ecg, gsr, resp eeg, ecg, gsr, resp

HCI Tagging (arousal) 66.36 - Average 66.36 - Average 66.19 - Average 66.36 - Average 54.73 [44]

eeg, ecg, gsr, resp, temp eeg, ecg, gsr, resp eeg, ecg, gsr, resp eeg, ecg, gsr, temp eeg, ecg, gsr, resp

PAMAP2 90.98 - Product 83.57 - Product 90.98 - Product 90.98 - Product 89.24 [39]

s1, s2, s3 s1, s2, s3 s1, s2 s1, s2, s3 s1, s2, s3

UTD-MHAD 92.40 - Product 92.40 - Product 78.39 - Product 92.40 - Product 79.1 [9]

depth, skel, iner depth, skel, iner depth, skel, iner skel, iner depth, skel, iner

Berkeley MHAD 97.05 - Average 97.05 - Average 94.22 - Product 97.05 - Average 98.23 [8]

depth, skel, iner depth, skel, iner depth, skel, iner depth, skel depth, skel, iner

Table 2: Percentage of #𝐶𝑎𝑠𝑒𝑠 (ref. Section 3.1.1) where classification accuracy decreases as a modality is added. The range of
accuracy (%), stated within parentheses, is obtained from all possible combination of modalities (# combinations =

∑𝑛
𝑖=1

(𝑛
𝑖

)
).

Method DEAP DEAP HCI Tagging HCI Tagging PAMAP2 UTD Berkeley

(valence) (arousal) (valence) (arousal) -MHAD MHAD

Product 47.85 (15.68) 64.17 (8.35) 18.67 (25.83) 16 (23.56) 0 (20.26) 0 (29.19) 0 (16.66)

Average 47.85 (15.60) 64.40 (8.35) 18.67 (25.44) 14.67 (23.72) 33.33 (13.32) 0 (24.08) 33.33 (18.91)

Bayesian 34.01 (15.66) 48.30 (8.66) 6.67 (22.62) 6.67 (20.62) 22.22 (11.69) 0 (23.87) 22.22 (17.57)

Voting 47.39 (15.15) 49.21 (8.41) 46.67 (19.9) 41.33 (20.15) 0 (9.16) 0 (22.50) 0 (14.19)

may not increase the classification accuracy, especially for emotion

recognition from physiological signals (ref. Table 1 and Table 2).

Adding more modalities for fusion might add noise and create con-

fusion leading to misclassification. The decrease in classification

accuracy with increasing modalities is observed for all the fusion

methods and all datasets except UTD-MHAD dataset, as shown

in Table 2. Of the four fusion methods, Bayesian fusion yields the

smallest decrease in accuracy with increase in number of modali-

ties compared to other fusion methods for all the datasets. This is

because Bayesian fusion takes into account the uncertainty of the

classifiers for each class by combining the classifiers as a weighted

combination of the error distribution over the classes.

Evaluation of differentmetrics for selectingmodalities. Our
results (ref. Table 1) show that, for all the datasets, the classification

accuracy obtained from the subset of modalities selected using in-

formation gain is closer to the highest accuracy than that selected

using correlation degree. Hence, information gain outperforms cor-

relation degree as a criterion for modality selection. The lowest

absolute difference between the true highest accuracy (“Exhaus-

tive”) and the accuracy obtained using selected modalities, added

over all datasets, is 1.79 for product fusion, 1.7 for average fusion,

0.03 for Bayesian fusion, and 0.01 for majority voting, obtained

using metrics 𝐺𝑠 , 𝐺 , 𝐺 and 𝐺 respectively. Since information gain

increases monotonically with classification accuracy (ref. Theorem

1), it is a useful metric for selecting a subset of modalities that will

yield high accuracy. As shown in Table 1, the subset of modali-

ties selected using different metrics always yields a classification

accuracy comparable, if not equal, to the highest accuracy.

The correlation degree criteria initially selects the modality

highly correlated with the true class labels, then it selects modal-

ities least correlated with the selected modalities. This helps in

reducing redundancy. However, it can reduce relevant information

as well which can lower the classification accuracy, as observed

from our results. On the other hand, selecting modalities based on

their individual score using information gain and filtering them

using a threshold, allows selection of modalities highly correlated

with the true class labels. This preserves relevant information but

might have high redundancy. However, it outperforms correlation

degree as a selection criteria, as seen from our experiments.

Information gain modality selection method (ref. Algorithm 1)

selects the combination of modalities after fusion that has the high-

est correlation with the true class label. This yields the highest

classification accuracy, comparable with the true best combination

in our experiments. Algorithm 1 requires fusing the modalities
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before computing the information gain. Hence, it depends on the

fusion method while the other two, correlation degree and filtering

using information gain, are independent of the fusion method.

5 CONCLUSIONS
In this paper, we investigated the optimal modality selection prob-

lem for time-series data in the context of late fusion. We analyzed

multimodal emotion or action classification using four late fusion

methods and five benchmark datasets. Our experimental analysis

on product, average, Bayesian and majority voting late fusion meth-

ods show that the fusion methods perform differently based on the

posterior distribution estimated by each modality. Our results show

that for different fusion methods, increasing the number of modali-

ties might not necessarily increase the classification accuracy. We

analyze multiple methods for selecting a subset of modalities for

late fusion and observe that information gain is an useful measure

for selecting modalities which is consistent for all the datasets.

The classification accuracy obtained from the selected subset of

modalities is comparable to the highest accuracy in all cases.
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