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ABSTRACT
The monitoring and management of numerous and diverse time
series data in many real-world applications calls for an effective
and scalable time series anomaly detection service. In this paper,
we propose RobustTAD, a Robust Time series Anomaly Detection
framework by integrating time series decomposition and convo-
lutional neural network for time series data. The robust seasonal-
trend decomposition can effectively handle complicated patterns
in time series, and meanwhile significantly simplifies the archi-
tecture of the neural network. In order to effectively capture the
multi-scale information from time series for the purpose of anom-
aly detection, we apply an encoder-decoder architecture with skip
connections. Due to the limited labeled data in time series anom-
aly detection, we systematically investigate data augmentation
methods in both time and frequency domains for the decomposed
components. We also introduce label-based weight and value-based
weight in the loss function by utilizing the underlying unbalanced
nature of the problem where anomaly samples are rare. Compared
with the widely used forecasting-based anomaly detection algo-
rithms, decomposition-based algorithms, traditional statistical al-
gorithms, as well as recent neural network based algorithms, our
proposed RobustTAD algorithm performs significantly better on
public benchmark datasets.
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•Mathematics of computing→ Time series analysis; • Com-
puting methodologies→ Anomaly detection.
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1 INTRODUCTION
As the rapid increase of time series data due to the developments
of Internet of Things (IoT) and many other connected data sources,
real-time time series anomaly detection is a required capability
in many real-world applications, such as predictive maintenance,
intrusion detection, fraud prevention, cloud platform monitoring
and management, business data monitoring, etc. For example, in the
monitoring of a data center, usually we need to monitor metrics at
different levels, ranging from physical machine, docker, to service
hosted on each docker. Another example is the tracking of sales vol-
ume as some unusual high amounts may be caused by some bogus
transactions. In this paper we focus on the anomalies in univari-
ate time series. Specifically, we define an anomaly in a time series
as an observation which is significantly different from previous
normal observations, which we call its “context”. Formally, given a
sequence · · · , 𝑥𝑡−𝑤 , 𝑥𝑡−𝑤+1, · · · , 𝑥𝑡−1, 𝑥𝑡 , our goal is to determine
whether the newest observation 𝑥𝑡 is an anomaly by considering
the current and previous observations up to a window size𝑤 .

Time series anomaly detection has been researched for over a
long time [2, 6]. However, challenges still remain in order to achieve
the optimal performance. Firstly, the time series data in real-world
scenarios is quite diverse. It does not only contain the temporal
dependency, but may also exhibit more complicated patterns, such
as abrupt change of trend, seasonality shift and fluctuation. Sec-
ondly, the labeling of anomalies is challenging and thus very limited
labeled data is available. In time series anomaly labeling, we need
to compare each sample with its previous context, thus it is quite
time-consuming to label all samples in a time series manually. In
addition, the definitions of anomaly may vary in different scenar-
ios. Thirdly, almost all time series anomaly detection systems are
required to respond in real time. Therefore, the anomaly detection
algorithm should be efficient and can handle a large number of time
series in parallel with low latency.

Recent years witness the advances in deep learning [5]. Com-
pared with the wide success of deep learning in computer vision
and natural language processing, it only has limited applications in
time series. When processing time series data, a key challenge is
how to consider temporal dependency and extract features from the
original time series effectively. In particular, in time series anomaly
detection the multi-scale information is very important as it effec-
tively helps to define the context so anomaly can be compared and
determined. When more complex patterns in seasonality and trend
are present in time series, it is even more challenging to build a
deep learning model. In addition, deep learning models generally re-
quire a lot of labeled data for training. Thus, data augmentation is a
crucial step in model training given the limited labeled data. Unlike
data augmentation for image [17] and speech [11], few work has
been done on data augmentation for time series [23]. Specifically,
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as recurrent neural network (RNN) and long short-term memory
(LSTM) network are ideal tools to model temporal dependency,
several works [10, 14] have been proposed for time series anomaly
detection. However, a challenge for these networks is how to deal
with the seasonality especially long seasonality in a general man-
ner. For example, [12] proposes to create a shortcut connection to
learn seasonal pattern directly by assuming that there is only single
seasonality with known seasonal length, however, its generality
is harmed by time series data with multiple seasonalities without
prior seasonal lengths. Meanwhile, convolutional neural networks
(CNN) only have limited applications in time series classification
, clustering [27], and anomaly detection [25]. How to encode the
temporal dependency and complicated time series patterns in CNN
still remains an open problem.

In this paper, we propose RobustTAD, a Robust Time series
Anomaly Detection framework integrating seasonal-trend decom-
position with convolutional neural network. In the seasonal-trend
decomposition, we first apply RobustPeriod [22] algorithm to de-
tect if the time series is periodic and estimate its period lengths
for periodic time series, and then apply RobustSTL [21, 24] to de-
compose the input time series into different components. Next, we
build a convolutional neural network based on the decomposed
components to detect anomaly. Our network is based on U-Net [16],
an encoder-decoder architecture with skip connection to extract
multi-scale features from time series. Performing robust seasonal-
trend decomposition for time series before training the network has
several benefits: 1) as the seasonal component is explicitly extracted,
there is no need to build complex structure in the neural networks
to deal with it, which significantly simplifies the network structure
and meanwhile improves model performance; 2) it leads to a more
general anomaly detection framework for time series with different
characteristics, such as different seasonal lengths, different types of
trend, etc. As limited labeled data is available in typical time series
anomaly detection tasks, data augmentation is crucial to the suc-
cessful training of the neural network. In this paper, we investigate
different data augmentation methods for time series, in both time
domain and frequency domain for decomposed components. By
utilizing the unbalanced nature of time series anomaly detection
problem, we adjusted the loss function by introducing the label-
based weight and value-based weight. To the best of our knowledge,
our work is the first one which integrates the robust seasonal-trend
decomposition with deep neural networks for time series anomaly
detection. Our experiments on public benchmark datasets show that
our integrated framework RobustTAD outperforms other popular
algorithms, including forecasting-based methods, decomposition-
based methods, and methods based on deep learning but without
time series decomposition.

2 METHODOLOGIES
In this section, we introduce the proposed time series anomaly
detection framework taking advantage of both seasonal-trend de-
composition and deep convolutional neural network.

2.1 Decomposition
Usually the time series data contains different components. In this
paper, we assume a time series can be decomposed as the sum of

trend, seasonality (if the time series is periodic), and remainder
components:

𝑥𝑡 = 𝜏𝑡 + 𝑠𝑡 + 𝑟𝑡 , 𝑡 = 1, 2, · · · , 𝑁

where 𝑥𝑡 denotes the original signal at time 𝑡 , 𝜏𝑡 denotes the trend,
𝑠𝑡 denotes the seasonality, and 𝑟𝑡 is the remainder component. In
this paper, we apply RobustPeriod [22] to detect periodicity and the
corresponding period length. If the time series is periodic, we next
apply RobustSTL [21, 24] to decompose the time series; otherwise
we apply RobustTrend [20] to perform the decomposition. After the
decomposition, we feed the remainder component 𝑟𝑡 as the input
to the neural network.

2.2 Encoder-Decoder Network
2.2.1 Architecture. Time series anomaly detection is a point-wise
dense prediction problem. In other words, for a time series x =

{𝑥𝑡 }𝑡=1,2, · · · ,𝑁 , the goal is to produce a sequence of the same length
y = {𝑦𝑡 }𝑡=1,2, · · · ,𝑁 where 𝑦𝑖 ∈ {0, 1} denotes whether 𝑥𝑖 is an
anomaly or not. Notice that this dense classification problem shares
many similarities with the image segmentation problem in com-
puter vision where a pixel-wise inference is required. As reviewed
in [18], many state-of-the-art image segmentation approaches have
adopted an encoder-decoder network structure, which helps to
extract hidden features from the input. Meanwhile, to encode the
complex patterns of the time series, it is necessary to consider both
the local and global information (or multi-scale feature), which
leads to the use of a skip connection that preserves the local in-
formation from the encoder layer by concatenating to the decoder
input.

As a result, we adopt an encoder-decoder network architecture
with skip connections, as known as U-Net structure [16] shown in
Figure 1. The network is trained by feeding multiple samples of
time series segment along with the corresponding labels. It is worth
mentioning that utilizing U-Net structure for time series anomaly
detection has shown promising results in [25]. However, in this
paper, we would like to emphasize that applying a U-Net structure
directly without modification would still lead to a sub-optimal per-
formance. Besides the robust seasonal-trend decomposition, many
adjustments are required to achieve the optimal results, as described
in the following subsections.

2.2.2 Weight Adjusted Loss. We cast the time series anomaly detec-
tion problem as a supervised classification problem, which is highly
unbalanced. The unbalanced nature lies in the fact that typically
only a few anomalies exist in a long time series. Applying the most
commonly used pixel-wise cross entropy loss from U-Net would
lead to unsatisfying performance as equal weights are assigned to
normal samples and anomalous samples, yet the few anomalous
samples that contribute most to training the model have been over-
shadowed by the vast majority of normal samples. As a result, we
assign more weights to anomalous samples, and refer this as label-
basedweight. On the other hand, we notice that a point in the time
series with value different from its neighbors is more likely to be
anomalous. By considering the difference between each point and
its neighbours, we define the so-called value-based weight. More
specifically, for a time series x = {𝑥𝑡 }, with ground truth labels
y = {𝑦𝑡 }, we denote the predictions from the network as ŷ = {𝑦𝑡 },
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Figure 1: Architecture of the Encoder-Decoder network for
time series anomaly detection.

which are essentially the probabilities of 𝑥𝑡 being anomalies after
the soft-max layer. The original cross-entropy loss is defined as

𝐿𝑜𝑠𝑠 (ŷ, y) = −
∑
𝑡

𝑦𝑡 log(𝑦𝑡 ) + (1 − 𝑦𝑡 ) log(1 − 𝑦𝑡 ).

By applying the label-based and value-based weights, we define
the new weight adjusted loss as

𝑊𝐴𝐿𝑜𝑠𝑠 (ŷ, y) = −
∑
𝑡

𝑤𝑡 (𝛽 · 𝑦𝑡 log(𝑦𝑡 ) + (1 − 𝑦𝑡 ) log(1 − 𝑦𝑡 )),

where 𝛽 represents the label-based weight which typically has a

value greater than 1, and𝑤𝑡 =
1
𝑍𝑡

exp(
∑𝐻

𝑗=1 (𝑥𝑡−𝑥𝑡−𝑗 )2

2𝜎2
𝑡,𝐻

) is the value-
based weight, 𝐻 is the size of the neighborhood we considered in
value-based weight, 𝜎2

𝑡,𝐻
is the variance of a window size 𝐻 before

point 𝑡 , 𝑍𝑡 is a normalization term of weights over all points of the
current window.

The adjustment of weight is essential to ensure the network is
able to learn the patterns from anomalies and converge faster given
the unbalanced nature of the problem.

2.3 Data Augmentation
Data augmentation [5], which generates artificial data for training,
is an effective way to improve model performance in deep learn-
ing, especially when the amount of the training data is limited.
Currently, very few work has been done on data augmentation
for time series data [4, 19, 23]. Note that the labeled data in time
series anomaly detection is generally very limited. In this subsec-
tion, we present several practical and effective data augmentation
techniques specifically designed for time series after decomposition,
in both time domain and frequency domain.

2.3.1 Time Domain. We summarize several effective transforms
for time series anomaly detection in the time domain, including
flipping, downsampling, cropping, and label expansion. Assume we
have an input time series 𝑥1, · · · , 𝑥𝑁 :

Flipping. We generate a new sequence 𝑥
′
1, · · · , 𝑥

′
𝑁

where 𝑥
′
𝑡 =

−𝑥𝑡 with the same anomaly labels. It can be used when we care
anomalies in both directions. In the scenarios where we are inter-
ested in only one direction, this transform should not be applied.

Downsampling.We downsample the original time series of length
𝑁 with a specific downsampling rate 𝑘 , to get a shorter time series
with length ⌊𝑁 /𝑘⌋. The label series are also dow sampled, or diluted,
in the same rate 𝑘 as values series.

Cropping. Similar to random crop in computer vision, we crop
samples with replacement from the original time series of length 𝑁

to get shorter time series with length 𝑁 ′. The label series are also
cropped, with the same time stamp as values series.

Label Expansion. In time series anomaly detection, the anomalies
generally occur sequentially. As a result, a data point which is
close to a labeled anomaly in terms of both time distance and value
distance is very likely to be an anomaly. We select those data points
and label as anomalies in our training dataset.

2.3.2 Frequency Domain. To further increase the labeled data and
utilize the periodical properties of time series data, we explore the
data augmentation methods in the frequency domain. Specifically,
we have developed several different policies, i.e., magnitude and
phase augmentation, to generate more artificial labeled data.

To perform data augmentation in the frequency domain, we first
transform the data into the frequency domain by applying the fast
Fourier transform, where we can get real and imaginary parts at
corresponding frequency. In the frequency domain, our intuitive
idea is to make perturbations in magnitude and phase in selected
segments in the frequency domain, after which the perturbed signal
is mapped back to the original time domain.

In magnitude augmentation, we make perturbations in the mag-
nitude spectrum. Specifically, we replace the values of all points in
the selected segment with 𝜐, where 𝜐 has Gaussian distribution as
𝜐 ∼ 𝑁 (𝜇𝐴, 𝑞𝐴𝛿2

𝐴
), where 𝜇𝐴 can be set as zero or 𝜇𝐴 based on con-

figuration, and 𝜇𝐴, 𝛿
2
𝐴
is the sample mean and variance of the time

series in the segment, respectively, and 𝑞𝐴 is adopted to control the
degree of perturbation.

Similarly, we can make perturbation in the phase spectrum in
phase augmentation. Specifically, the values of all points in the
selected segment are increased by a small perturbation 𝜃 , which
is sampled from Gaussian distribution as 𝜃 ∼ 𝑁 (0, 𝛿2

𝜃
) where 𝛿2

𝜃
represents the variance.

As illustration, the proposed frequency-domain time series aug-
mentation methods on a sample data is plotted in Figure 2.

2.4 Online Inference for Streaming Time Series
In the online inference stage, we need to perform both decomposi-
tion and the inference of the deep network.

For the decomposition algorithms RobustSTL, an online version
can be adopted to process the streaming data efficiently. We present
some details of the trend extraction in the online setting, the most
computationally expensive step here. Firstly, we assume that the
change of trend is slow most of the time. Hence, we do not need to
re-estimate trend every time a new point streams. We pick a small
step size 𝑞 and only solve the optimization problem every 𝑞 data
points arrive. When the trend has an abrupt change, there will be a
delay at most 𝑞 points to estimate it in detecting such an anomaly,
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Figure 2: Plots of time series usingmagnitude augmentation
and phase augmentation.

which is typically not a concern for most users especially when
𝑞 is quite small (e.g., 𝑞 = 5). Secondly, when we need to solve the
optimization problem to estimate trend difference ∇𝜏 , we can use
the time series with the most recent 𝑤̂ points instead of the whole
time series. Additionally, we use the “warm start” technique where
the solution at time 𝑡 − 1 is treated as the initial solution at time 𝑡 ,
leading to a faster convergence speed.

Although training the network with a large amount of aug-
mented samples is time-consuming, the online inference of the
neural network is quite efficient as only matrix multiplications are
needed. We are aware that the new patterns of anomaly might show
up as time series stream and keep on coming. Hence, we update the
trained model regularly by re-training with the new data to encode
the latest information.

3 EMPIRICAL RESULTS
3.1 Datasets
Weuse 367 time series from the public Yahoo benchmark datasets [13].
These time series are hourly sampled data with a duration of two
months, which are collected from the real production traffic to some
of the Yahoo website properties and represent the complex patterns
such as seasonality and trends in real-world time series data quite
well. Yahoo data set has a good coverage of different varieties of
anomalies in time series, such as seasonality, level change, variance
change and their combinations.

3.2 Evaluation Metrics
We compute the following evaluation metrics:

• Precision: 𝑇𝑃
𝑇𝑃+𝐹𝑃 , represents the ratio of TP in all the data

points which are predicted/detected as anomaly.
• Recall: 𝑇𝑃

𝑇𝑃+𝐹𝑁 , represents the ratio of TP in the all the data
points which are truly anomaly.

• F1 score: 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, an overall measure of accu-
racy that combines both precision and recall. Perfect accu-
racy is achieved when F1 is 1, and 0 otherwise.

In addition to the metrics mentioned above, we also report a
relaxed version of F1 score [3], which could serve better on the test
datasets where pattern anomalies exist. Pattern anomalies happen

when a segment of consecutive points are labeled as anomalies.
Instead of requiring an exactly point-wise match between a true
anomaly and a detected anomaly for a point to be counted towards
TP, it is reasonable to give some leeway by allowing a lag up to
a window size𝑚. This corresponds to the scenario where the de-
tected anomaly points might be earlier or delayed by a few points
compared with the labeled anomaly points. We would still count
these detected points as TP. We choose𝑚 = 3 to allow a mismatch
up to 3 adjacent points. During the experiment, TP, FP, FN will be
aggregated over multiple time series for one dataset and be used to
produce a single micro-precision/recall/F1 score.

3.3 Experimental Setup
The following state-of-the-art methods are used for comparison:

• ARIMA1: ARIMAmodels [1] are well known for its versatility
to forecast time series.We label a prediction point as anomaly
if its true value lies outside the prediction intervals;

• SHESD2: SHESD [8] is an extension of both ESD and S-ESD.
It decomposes and extracts the seasonal component, and
then applies robust statistics including median and median
absolute deviation (MAD) to calculate the anomaly score;

• Donut3: Donut [26] is an unsupervised, variational auto-
encoder (VAE) based algorithm for detecting anomalies in
seasonal KPIs in DevOps domain. It has competitive experi-
mental results and a solid theoretical explanation.

In additional to these methods, we also investigate the perfor-
mance of our framework in different settings:

• U-Net-Raw: Apply U-Net on raw time series data directly.
• U-Net-De: Apply U-Net on decomposed remainder.
• U-Net-DeW : Adopt weight adjusted loss for U-Net-De.
• U-Net-DeWA: Adopt data augmentation for U-Net-DeW.

Throughout our experiments, we split each time series into left
half and right half, corresponding to the train part and test part,
respectively. We feed the training parts from all samples to train the
network/model together. Then we predict and test the results using
all the test parts. During the training and testing, we use the online
mode, i.e., the sliding windowmode, with window size at 240 points.
In each sliding window, the model predicts the label of last point or
right most point, then progresses one point at a time to the right.
To make a relative fair comparison, for unsupervised algorithms,
labels in the training part are used to tune hyper parameters, such
as probability threshold, which is chosen by matching predicting
scores with the true labels to maximize F1 within training data.

3.4 Results
Table 1 summarizes the performance of different methods, including
both F1 score and the relaxed version. SHESD achieves acceptable
result. Donut, as it was designed for DevOps data, has good recall
but low precision. For the architecture based on U-Net, we can see
that a naive version of the U-Net without any adjustments only
achieves a 0.403 F1 score and 0.533 relaxed F1 score. However, once
we include the decomposition, we can see a significant 0.22 increase
in F1. By adopting the aforementioned loss adjustment, as well as
1https://www.rdocumentation.org/packages/forecast/versions/8.5/topics/auto.arima
2https://github.com/twitter/AnomalyDetection
3https://github.com/haowen-xu/donut
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(a) Plot of raw values with detected anomaly.
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Figure 3: Performance of each method on a specific time series. The values before the vertical black dashed line represent the
training data, and those after represent the testing data.

data augmentation, we are able to further increase F1 up to 0.693,
and relaxed F1 up to 0.812, which is significantly better than the
other state-of-the-art methods.

Table 1: Performance comparison of different methods.
Acronyms in U-Net section: De - decomposition, W - weight
adjustment, A - augmentation

Precision Recall F1 Score Relax F1 Score
ARIMA 0.513 0.144 0.225 0.533
SHESD 0.501 0.488 0.494 0.557
Donut 0.015 0.829 0.029 0.030

U-Net-Raw 0.473 0.351 0.403 0.533
U-Net-De 0.651 0.594 0.621 0.710
U-Net-DeW 0.793 0.569 0.662 0.795
U-Net-DeWA 0.859 0.581 0.693 0.812

To further compare how these methods perform, we demon-
strate their performance on a real-world dataset from Yahoo A1 in
Figure 3, where it includes seasonality combined with level changes
and spikes. The original U-Net-Raw fails to detect anomalies in this
time series. However, as we include decomposition, loss adjustment,
and data augmentation in our framework, the network has demon-
strated significant learning capabilities, being able to identify those
anomalies correctly in Figure 3a. We further examined the anomaly
scores generated by each method in Figure 3b. As we can see, for
ARIMA and Donut, an appropriate threshold needs to be picked
in order to identify anomalies correctly. Note that the U-Net-Raw
generates many false negatives. As we apply the adjustments we
discussed in Section 2, more anomalies are being identified cor-
rectly. It is worth mentioning that for the anomalies showing at
index position 1200 where there is a level change combined with
seasonality, U-Net-De and U-Net-DeW all fail to identify correctly
despite the probabilities of being anomaly is very close to 0.5. On
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the other hand, as we incorporate data augmentation from both
time domain and frequency domain, such anomalies could be easily
identified with U-Net-DeWA.

Additionally, we report the time cost of the online inference for
RobustTAD. For each streaming sample with a window size of 240,
it takes 6𝑚𝑠 for the online decomposition and 1𝑚𝑠 for the network
inference on a MacBook Pro with a 2.3GHz Intel i5 CPU and 8GB
RAM. When we test on a NVIDIA Tesla V100 GPU card, the net-
work inference time can be further reduced to 3𝜇𝑠 per sample. The
efficient inference of RobustTAD sheds light into the feasibility of
handling a large number of streaming time series with low latency.

4 DISCUSSION AND CONCLUSION
The empirical comparison on the Yahoo datasets clearly demon-
strates the promising performance of decomposition and encoder-
decoder structure for time series anomaly detection. In particular,
robust seasonal-trend decomposition significantly improves deep
model’s performance; while U-Net encoder-decoder structure can
effectively extract multi-scale features. Intuitively, in anomaly de-
tection we need to compare each observation with its context to
determine its label. The multi-scaled features learned actually de-
scribe the context from different levels quite well, thus leading to
good anomaly detection performance. Also note that the general
framework integrating both time series decomposition and deep
network with some modifications can be applicable for many other
time series tasks such as forecasting.

In summary, in this paper we propose RobustTAD, a Robust
Time series Anomaly Detection framework based on time series
decomposition and convolutional neural network. Combined with
both of their advantages, this algorithm does not only achieve high
performance and high efficiency, but also can handle complicated
patterns and lack of sufficient labels, which makes it practical and
effective approach to serve cloud and IoT monitoring.

More future work can be done to extend RoubstTAD, includ-
ing: 1) explore more network architectures for better learning of
multi-scale features. For example, we can impose a loss function on
each decoder layer [9] for a better representation learning; 2) multi-
channel study by feeding three decomposed components directly to
the network (in other words, 𝐶 = 3 in Figure 1); 3) a joint learning
framework to learn the time series decomposition and anomaly
labels at the same time. Similar work has been done on object de-
tection and image segmentation, such as Faster R-CNN [15] and
Mask R-CNN [7]. It is also worth exploring more effective data aug-
mentation methods for different machine learning tasks involving
time series.
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