
Statistical Evaluation of Anomaly Detectors for Sequences
Erik Scharwächter

scharwaechter@bit.uni-bonn.de
University of Bonn, Germany

Emmanuel Müller
mueller@bit.uni-bonn.de

University of Bonn, Germany

ABSTRACT
Although precision and recall are standard performance measures
for anomaly detection, their statistical properties in sequential de-
tection settings are poorly understood. In this work, we formalize
a notion of precision and recall with temporal tolerance for point-
based anomaly detection in sequential data. These measures are
based on time-tolerant confusion matrices that may be used to
compute time-tolerant variants of many other standard measures.
However, care has to be taken to preserve interpretability. We per-
form a statistical simulation study to demonstrate that precision
and recall may overestimate the performance of a detector, when
computed with temporal tolerance. To alleviate this problem, we
show how to obtain null distributions for the twomeasures to assess
the statistical significance of reported results.
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1 INTRODUCTION
Anomaly detection in sequential data is a highly active research
topic [3, 10, 13, 17, 18, 23]. Precision and recall are two measures
routinely used to evaluate the performance of anomaly detectors,
both for iid data and for sequential data. An important character-
istic of sequential data is that the decisions of a detector can be
imprecise [1, 2] without impairing its practical utility: if an anomaly
at time step 𝑡 is detected at time step 𝑡 + 1, this is still a useful result.
Recently, Tatbul et al. [19] pointed out that the classical precision
and recall measures, when applied to sequential detection problems,
may misrepresent the performance of the detector. They introduced
novel precision and recall measures for range-based anomaly detec-
tion. However, the problem persists even for point-based anomalies,
where the ground-truth anomaly label is a single time step. In this
work, we study in detail time-tolerant notions of precision and
recall for point-based anomaly detection in sequential data, with a
special focus on the statistical properties of these measures. Our
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input sequence (𝑥𝑡 )𝑡

anomaly score (𝑧𝑡 )𝑡

ground-truth anomalies (𝑒𝑡 )𝑡

Figure 1: The running example for earthquake detection.

work is closely related to recent advances in the statistical associa-
tion between event series and time series [4, 9, 14, 15, 20], and uses
results from event coincidence analysis (ECA) [7, 12, 16].

1.1 Anomaly detection problem
We are given an input sequence (𝑥𝑡 )𝑡=1,...,𝑇 over an arbitrary input
domain. Furthermore, we are given an anomaly scoring function 𝑧

to compute a numeric sequence of anomaly scores (𝑧𝑡 )𝑡=1,...,𝑇 from
the input sequence. If the observation at time step 𝑡 is likely an
anomaly, the anomaly score 𝑧𝑡 should be high; if the observation
at time step 𝑡 appears normal, 𝑧𝑡 should be low. An anomaly is
predicted at time step 𝑡 if the anomaly score is larger than some
predefined threshold, 𝑧𝑡 ≥ 𝜏 . The exact notion of what constitutes
an anomaly is highly domain-specific and should be reflected in
the choice of the anomaly scoring function. Anomaly detectors of
this type are widely used across many disciplines. For example,
Wiedermann et al. [21] use the clustering coefficient as an anomaly
score for dynamic networks to detect El Niño events in climate
data, and Earle et al. [8] use an energy transient score [22] to detect
earthquakes from Twitter1 time series.

We use the problem of earthquake detection on Twitter as the
running example in this work. Figure 1 (top row) shows the daily vol-
ume of tweets that were posted in Germany between 2010 and 2017
and contain the word “earthquake,” translated to various languages.
The plot also shows all severe earthquakes that occurred globally
in the same time period (bottom row). We obtained the Twitter data
using the ForSight platform from Crimson Hexagon/Brandwatch2,
and the earthquake data from the International Disaster Database
EM-DAT, provided by the Centre for Research on the Epidemiology
of Disasters3. Our goal is to evaluate whether an anomaly detector
on the Twitter time series has the potential to detect earthquakes
globally. For this purpose, we stick to Earle et al. [8] and use the

1https://www.twitter.com/
2https://www.brandwatch.com/
3https://www.emdat.be/
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Figure 2: Precision and recall by threshold and tolerance 𝛿 .

energy transient score as the anomaly score (middle row), i.e., we
set 𝑧𝑡 = STA𝑡/(LTA𝑡 + 1), where STA is the short-term average of
the input sequence over the past 3 days, while LTA is the long-term
average over the past 14 days. The energy transient score reacts to
drastic changes in the level of the time series.

1.2 Evaluation measures
While the anomaly score encodes the feature of interest that the
anomaly detector should react to, the detection threshold 𝜏 controls
the precision and recall of the anomaly detector. Let (𝑒𝑡 )𝑡=1,..,𝑇 be
a ground-truth sequence of actual anomalies, with value 𝑒𝑡 = 1 if
there is an actual anomaly at time step 𝑡 , and 𝑒𝑡 = 0 if there is no
anomaly. In our example, actual anomalies correspond to reported
earthquakes. We define precision 𝑃0 and recall 𝑅0 as

𝑃0 =
∑
𝑡 𝑒𝑡 · I(𝑧𝑡 ≥ 𝜏)∑
𝑡 I(𝑧𝑡 ≥ 𝜏) and 𝑅0 =

∑
𝑡 𝑒𝑡 · I(𝑧𝑡 ≥ 𝜏)∑

𝑡 𝑒𝑡
. (1)

The function I(𝑐) evaluates to 1 if and only if the condition 𝑐 is
true. The numerator is the number of true positives, while the
denominator is either the number of predicted anomalies or the
number of actual anomalies. The relationship between the threshold
and precision and recall for the earthquake detection problem is
visualized in Figure 2. The values for 𝑃0 and 𝑅0 from Equation 1
correspond to the lines labeled 𝛿 = 0 in the plots. The results are
not particularly good: we can obtain acceptable recall values at
low thresholds, but the cost is an unacceptably low precision. We
observe that recall is a monotonically decreasing function of the
threshold 𝜏 : the number of true positives in the numerator decreases
with increasing 𝜏 while the denominator stays constant. Precision,
on the other hand, is a non-monotone function of the threshold,
since both the numerator and the denominator change with 𝜏 .

2 TIME-TOLERANT MEASURES
2.1 Precision and recall
In sequential data, a predicted anomaly can often be considered a
true positive if there is an actual anomaly close to the predicted time
point. The higher the temporal tolerance, the higher the number
of true positives, and the higher will be both precision and recall.
We follow ECA [7, 14, 16] and define measures for precision 𝑃𝛿 and

recall 𝑅𝛿 with temporal tolerance 𝛿 as:

𝑃𝛿 =

∑
𝑡 I

(∑𝑡+𝛿
𝑡 ′=𝑡−𝛿 𝑒𝑡 ′ > 0

)
· I(𝑧𝑡 ≥ 𝜏)∑

𝑡 I(𝑧𝑡 ≥ 𝜏) (2)

𝑅𝛿 =

∑
𝑡 𝑒𝑡 · I

(∑𝑡+𝛿
𝑡 ′=𝑡−𝛿 I(𝑧𝑡 ′ ≥ 𝜏) > 0

)∑
𝑡 𝑒𝑡

. (3)

If 𝛿 = 0, the tolerant measures are equivalent to the standard
measures. If 𝛿 > 0, the definition of a true positive in the numerator
changes. In fact, there are now two different types of true positives:
In the case of precision, a true positive is a predicted anomaly at
time step 𝑡 with an actual anomaly within the range [𝑡 − 𝛿, 𝑡 + 𝛿].
In the case of recall, a true positive is an actual anomaly at time
step 𝑡 with a predicted anomaly within the range [𝑡 − 𝛿, 𝑡 + 𝛿].

Figure 2 shows the impact of various choices for the temporal
tolerance 𝛿 on the measured values for precision and recall. De-
pending on the choice of the threshold and the temporal tolerance,
the reported values for precision and recall vary drastically. The
adoption of temporal tolerance in the evaluation is undoubtedly
valid in many applications. However, the example shows that the
use of moderate temporal tolerances may already lead to overstated
performance measures that do not necessarily reflect the actual
utility of the results. In Section 3, we perform a simulation study to
further investigate this issue.

2.2 Confusion matrices
The extension of precision and recall to time-tolerant measures via
relaxed notions of true positives is intuitive, but has some subtleties
not discussed before. In fact, these two measures are computed
from two distinct confusion matrices, where temporal tolerance is
allowed either in the ground-truth time steps or in the predicted
time steps. The general structure of a confusion matrix is:

AA AnA
PA 𝑇𝑃 𝐹𝑃

∑
PnA 𝐹N 𝑇𝑁

∑∑ ∑
𝑇

It contains the numbers of observations that fall into the four cat-
egories true positives (𝑇𝑃 ), false positives (𝐹𝑃 ), false negatives (𝐹𝑁 )
and true negatives (𝑇𝑁 ), along with marginal sums. The row and
column headings define the marginal conditions: actual anomaly
(AA), actually no anomaly (AnA), predicted anomaly (PA), predicted
no anomaly (PnA). The confusion matrix partitions the observa-
tions so that every observations falls in exactly one category. Many
performance measures can be computed from confusion matrices
[11], typically by normalizing individual entries by marginal sums.
The measures are interpretable because all entries and marginals
have straightforward interpretations.

When introducing temporal tolerance in the confusion matrix,
we have to make sure that the result is still a partition with in-
terpretable entries and marginals. Tables 1 and 2 show the confu-
sion matrices obtained when introducing temporal tolerance either
into the ground-truth time steps or the predicted time steps, using
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Table 1: Relaxed confusion matrix for sequential data, with tolerance in ground-truth

AA𝛿 AnA𝛿

PA
∑
𝑡

I
(

𝑡+𝛿∑
𝑡′=𝑡−𝛿

𝑒𝑡′ > 0
)
I(𝑧𝑡 ≥ 𝜏)

∑
𝑡

(
1 − I

(
𝑡+𝛿∑

𝑡′=𝑡−𝛿
𝑒𝑡′ > 0

))
I(𝑧𝑡 ≥ 𝜏)

∑
𝑡

I(𝑧𝑡 ≥ 𝜏)

PnA
∑
𝑡

I
(

𝑡+𝛿∑
𝑡′=𝑡−𝛿

𝑒𝑡′ > 0
)
(1 − I(𝑧𝑡 ≥ 𝜏))

∑
𝑡

(
1 − I

(
𝑡+𝛿∑

𝑡′=𝑡−𝛿
𝑒𝑡′ > 0

))
(1 − I(𝑧𝑡 ≥ 𝜏))

∑
𝑡

(1 − I(𝑧𝑡 ≥ 𝜏))

∑
𝑡

I
(

𝑡+𝛿∑
𝑡′=𝑡−𝛿

𝑒𝑡′ > 0
) ∑

𝑡

(
1 − I

(
𝑡+𝛿∑

𝑡′=𝑡−𝛿
𝑒𝑡′ > 0

))
𝑇

AA𝛿 : actual anomaly with tolerance 𝛿 , AnA𝛿 : actually no anomaly with tolerance 𝛿 , PA: predicted anomaly, PnA: predicted no anomaly; we use zero-padding at the boundaries

Table 2: Relaxed confusion matrix for sequential data, with tolerance in predictions

AA AnA

PA𝛿
∑
𝑡

𝑒𝑡 I
(

𝑡+𝛿∑
𝑡′=𝑡−𝛿

I(𝑧𝑡′ ≥ 𝜏) > 0
) ∑

𝑡

(1 − 𝑒𝑡 )I
(

𝑡+𝛿∑
𝑡′=𝑡−𝛿

I(𝑧𝑡′ ≥ 𝜏) > 0
) ∑

𝑡

I
(

𝑡+𝛿∑
𝑡′=𝑡−𝛿

I(𝑧𝑡′ ≥ 𝜏) > 0
)

PnA𝛿
∑
𝑡

𝑒𝑡

(
1 − I

(
𝑡+𝛿∑

𝑡′=𝑡−𝛿
I(𝑧𝑡′ ≥ 𝜏) > 0

)) ∑
𝑡

(1 − 𝑒𝑡 )
(
1 − I

(
𝑡+𝛿∑

𝑡′=𝑡−𝛿
I(𝑧𝑡′ ≥ 𝜏) > 0

)) ∑
𝑡

(
1 − I

(
𝑡+𝛿∑

𝑡′=𝑡−𝛿
I(𝑧𝑡′ ≥ 𝜏) > 0

))
∑
𝑡

𝑒𝑡

∑
𝑡

(1 − 𝑒𝑡 ) 𝑇

AA: actual anomaly, AnA: actually no anomaly, PA𝛿 : predicted anomaly with tolerance 𝛿 , PnA𝛿 : predicted no anomaly with tolerance 𝛿 ; we use zero-padding at the boundaries

the formal notation introduced above. Both confusion matrices
partition the observations, but not all entries and marginals have
straightforward interpretations. Some of the measures usually com-
puted from confusion matrices are therefore uninformative. The
tolerant precision from Equation 2 is the 𝑇𝑃 entry from Table 1
(PA-AA𝛿) normalized by the marginal row sum (PA), whereas the
tolerant recall from Equation 3 is given by the𝑇𝑃 entry from Table 2
(PA𝛿-AA) normalized the marginal column sum (AA). In both cases,
the 𝑇𝑃 entries and normalization terms are interpretable and yield
informative evaluation measures. We thus restrict our analysis to
these two cases and defer other measures to future work.

2.3 Statistical significance
They key question when analyzing evaluation measures from a
statistical point of view is whether the reported values are statisti-
cally significant. To assess statistical significance, we have to treat
the quantities in the confusion matrix as random variables that fol-
low some probability distribution. Only if the reported number of
true positives (or any other entry of the confusion matrix) is much
larger (or smaller) than expected due to random coincidences, the
result should be considered statistically significant. Donges et al.
[7] have derived the probability distribution of the two types of
true positives (PA-AA𝛿 and PA𝛿-AA) from Tables 1 and 2, under
the assumption that the ground-truth anomalies and the predicted
anomalies follow independent Bernoulli processes. In this case, both
quantities follow simple binomial distributions. Scharwächter and
Müller [14] have generalized the formal analysis for a larger class of
problems, where the anomaly score is a strictly stationary process.
They show that in this case PA𝛿-AA from Table 2 also follows a

binomial distribution, where the success probability can be approxi-
mated using a result from Extreme Value Theory [5]. Unfortunately,
there is no analogous derivation for PA-AA𝛿 from Table 1 under
the strict stationarity assumption. In this work, we do not use the
existing analytical results, but perform Monte Carlo simulations to
estimate the required probability distributions without potentially
limiting assumptions on the data generating processes.

3 SIMULATION STUDY
We now use the anomaly score (𝑧𝑡 )𝑡=1,...,𝑇 from the earthquake
detection example in Section 1 and compute time-tolerant con-
fusion matrices, as well as the time-tolerant precision and recall
measures, for randomized ground-truth sequences of anomalies.
We evaluate the anomaly score against 10,000 random permutations
of the ground-truth sequence of anomalies (𝑒𝑡 )𝑡=1,...,𝑇 from the ex-
ample. In doing so, we keep the number of ground-truth anomalies
constant and assume that they follow a Bernoulli process. We be-
lieve that this assumption is reasonable for ground-truth anomalies,
which typically occur rarely and are not clustered.

3.1 Monte Carlo precision and recall
First, we visualize the precision and recall values obtained from a
subset of 100 random permutations for various temporal tolerances
and thresholds in Figure 3. The visualization also shows the per-
formance measures observed on the non-permuted ground-truth
sequence of anomalies.

The observed precision and recall values on the non-permuted
sequence are generally higher than the values from the randomly
permuted sequences, especially at larger thresholds. This confirms
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Figure 3: Simulated and observed values for the precision 𝑃𝛿
and recall 𝑅𝛿 , for 𝛿 ∈ {0, 1, 2, 4} and various thresholds.

that the anomaly score contains useful information on earthquake
occurrences. However, when the temporal tolerance is increased,
the gap between the simulated and the observed performance mea-
sures tends to shrink: the performance measures on the simulated
sequences increase to a stronger degree than the performance mea-
sures on the observed sequence. The consequence is that reported
performance measures, in particular when computed with a high
temporal tolerance, may not reflect the actual performance of the
anomaly detector. In the worst case, one might conclude that the
anomaly score allows detection of anomalies that are statistically
independent of the anomaly score.
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Figure 4: Cumulative distribution functions of the two types
of true positives required for precision and recall.

3.2 Null distributions
The simulations clearly show that assessment of the statistical
significance of the observed performance measures is imperative.
For this purpose, we fix the temporal tolerance to 𝛿 = 2 and set
the threshold 𝜏 to the .9-quantile of the anomaly score. We observe
PA𝛿-AA = 80 (recall 𝑅𝛿 = .49) and PA-AA𝛿 = 145 (precision 𝑃𝛿 =

.56) on the non-permuted ground-truth anomaly sequence from
our example. To assess the statistical significance of the reported
numbers, we now have a closer look at the null distributions for the
performance measures obtained in the Monte Carlo simulations.

Figure 4 (simulated) shows the cumulative distribution functions
for the numbers of true positives obtained from 10,000 simulations
for the specific choice of 𝛿 and 𝜏 mentioned above. Given the simu-
lated distributions, we can easily compute Monte Carlo 𝑝-values
[6] for the numbers of true positives: The 𝑝-value is the probability
that we obtain a value for the true positive at least as high as the
observed one. Since the performance measures were smaller than
the reported values in all of the simulated runs, we have 𝑝 < .0001
for both precision and recall, which is highly significant.

The analytical null distributions derived in the literature [7, 14]
are all binomial. To complete our analysis, we now check whether
our simulations also yield binomial distributions. Figure 4 (bino-
mial) shows the cumulative distribution functions of binomial ran-
dom variables when the binomial success probabilities are esti-
mated from our Monte Carlo simulations. The plots suggest that
the true positive PA𝛿-AA for the recall follows a binomial distribu-
tion, whereas the true positive PA-AA𝛿 for the precision seems to
be overdispersed with respect to the binomial distribution (it has a
larger variance). We have repeated the experiment with different
thresholds and temporal tolerances and observed the same behav-
ior across all experiments. The exact form of the overdispersed
distribution should be investigated more deeply in future work.

4 CONCLUSION
We have presented time-tolerant variants of the precision and recall
measures routinely used to evaluate anomaly detectors for sequen-
tial data. We have shown that these measures are computed from
two distinct time-tolerant confusion matrices. Time-tolerant con-
fusion matrices can, in principle, be used to derive time-tolerant
variants of other well-known measures. However, care has to be
taken to preserve interpretability. We applied the time-tolerant
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precision and recall measures on an example anomaly detection
problem, and analyzed their statistical behaviors in a simulation
study. Our experiments suggest that reported values for precision
and recall can overestimate the performance of an anomaly detector
even with moderate temporal tolerances. We have demonstrated
how to obtain Monte Carlo 𝑝-values to assess the statistical signifi-
cance of reported performance measures, using randomly permuted
ground-truth sequences. We believe that establishing the statistical
significance of reported precision and recall values should become
a community standard. Future work should improve the analytical
understanding of the null distributions required for this task.
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