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ABSTRACT
Although deep networks have been widely adopted, one of their
shortcomings has been their blackbox nature. One particularly diffi-
cult problem in machine learning is multivariate time series (MVTS)
classification. MVTS data arise in many applications and are becom-
ing ever more pervasive due to explosive growth of sensors and
IoT devices. Here, we propose a novel network (IETNet) that iden-
tifies the important channels in the classification decision for each
instance of inference. This feature also enables identification and
removal of non-predictive variables which would otherwise lead to
overfit and/or inaccurate model. IETNet is an end-to-end network
that combines temporal feature extraction, joint variable interac-
tion and variable-class selection into a single learning framework.
IETNet utilizes 1D convolutions for temporal feature extraction,
n attention layer to perform cross channel reasoning and a novel
channel gate layer for variable-class assignment and to perform
classification. To gain insight into the learned temporal features and
channels, we extract region of interest attention map along both
time and channels. The viability of this network is demonstrated
through multivariate time series data from N body simulations and
spacecraft sensor data.
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1 INTRODUCTION
Deep learning has become the dominant approach to supervised
learning of labeled data [6] [11]. One of the main drawbacks in
deep networks has been the difficulty in making the underlying
reasoning for their decision making human understandable. MVTS
encompasses many areas of science and engineering such as finan-
cial trading, medical monitoring, and event detection [1] and have
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become pervasive due to rise of sensors/IoT devices. Although AI
research in MVTS has lagged behind other areas such as computer
vision dealing with images or natural language processing of un-
structured data, there is growing interest in using neural networks
in time series applications [7] [3][12].

Recently, a general architecture for sequences model by convo-
lutional networks, the Temporal Convolution Network (TCN) [2],
was proposed. The paper empirically shows that CNN outperforms
LSTMs on a wide variety of benchmarks for timeseries applications.

Despite development of generalized architectures for univari-
ate time series, very few translate to MVTS. This is partly due to
the non-linear interaction among variables in MVTS. A common
approach to MVTS is to cast variables as separate channels into
a CNN-type architecture but the drawback is that such architec-
tures do not fully account for non-local and non-linear interactions
between channels. Recently, relational networks[10] and its vari-
ants including transformer [14] and non-local networks [15], have
become popular for reasoning tasks such as visual question answer-
ing. These architectures attain efficiency by reducing the number
of parameters by leveraging dot product and stability by using
normalization and skip connections. This efficient use of parame-
ters is ideal for multivariate applications which require pairwise
combinatorial reasoning (or higher order). Variants of this architec-
ture have been successfully applied to multi modal problems like
video-speech problems [18] [13] but not for MVTS.

Our contribution is two-fold. We have adapted the transformer
attention architecture to perform MVTS classification, modeling
the interaction between various channels. Secondly, we have in-
corporated this architecture into an end to end neural net that
provides not just instance specific but class specific heatmap of the
contributing channels. This latter feature provides a useful level
of explainability and insight into how the network is making its
decisions. Previously, [17] and [16] proposed attention based archi-
tectures to perform classification and to also gain some insights
into the inner workings of the network. However, in an important
distinction to our work, these networks do not provide class spe-
cific channels of interest. Our novel network, IETNet, provides not
just instance specific but class specific heatmap of the channels of
importance.

2 METHOD
2.1 Feature Extractor
The first element of the network consists of mapping the input
to feature representations. This is done using a shared Temporal
Convolution Networks (TCN) which extracts time domain features
of each channel independently. As described in [2], we make use
of causal 1D convolutions in the network. That means in each
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Figure 1: The feature extractor for proposed algorithm. The
temporal convolutional network is shared across all the vari-
ables.

layer, the outputs at a particular time 𝑡 are convolved only with the
inputs from time t and earlier. Moreover, the architecture consists
of dilated convolutions which exponentially expand the receptive
field of the network. When dilation 𝑑 = 1, the network reduces to a
regular convolution. Using larger𝑑’s enables the network to capture
a wide range of inputs. Standard practice is to stack exponentially
increasing dilations with 𝑑 = 2𝑖 along each layer. This ensures that
the top layer of the network is able to see all of the input. We also
make use of ReLU activations and skip connections tomake network
more stable. Finally, average pooling is used to collapse temporal
axis for each variable. Number of layers and complexity can be
adjusted based on the problem. Figure 1 illustrates the resulting
architecture. Note that each variable in MVTS shares the same TCN
network, which is fully convolutional, thereby effectively reducing
the number of parameters. This addresses the crucial problem of
over parametrization and resultant overfitting in MVTS data.

2.2 Channel Gate and Classification
The output of the previous layer is a time collapsed feature vector.
We now stack together these vectors for all channels to obtain
a tensor (𝑀), having dimensions batch size(𝑏) × channels(𝑐ℎ) ×
features(𝑓 )). Up to this point, there is no interaction between the
channels. We now want to condition each variable on every other
variable. To this end, we use scaled dot-product attention

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√
𝑑𝑘

)𝑉 (1)

Here 𝑄,𝐾,𝑉 are linear mapping of the channel vector (represent-
ing each variable), and a pairwise dot-product is performed. Then

a softmax on this would create a pairwise relation between each
variables in the form of a 𝑐ℎ × 𝑐ℎ matrix called 𝑃 . This when multi-
plied by 𝑉 , updates the variable vector to include all the pairwise
relationship information as illustrated below.

𝑀 ′
𝑖 =

𝑛∑
𝑗=1

𝑃𝑖, 𝑗 ∗𝑉𝑗 (2)

Here 𝑛 is the number of variables. We update each variable with a
linear sum of all variables with coefficients provided by 𝑃 . Stacking
all the updated variables would give an updated representation𝑀 ′.

Further, we want to know which channels represent a particular
class the most. To realize this, we pass𝑀 ′ through a feed forward
layer to collapse the features into a class score for each channel. We
next perform softmax along the channel axis to get the most useful
channels for each class. We call this tensor, channel gate 𝐺 with
dimensions (batch size𝑏, channels𝑐ℎ, class𝑐). Here channel scores
sum to 1 for each class. Since our example is binary classification
in figure 2, we have one row for channel gate. Now we use this
channel gate to filter the multivariate feature vector 𝑀 to obtain
𝑀 ′′ as shown in equation below

𝑀 ′′ = 𝐸𝑖𝑛𝑠𝑢𝑚(𝑀,𝐺) (3)
(𝑏, 𝑐ℎ, 𝑓 , 𝑐) < −(𝑏, 𝑐ℎ, 𝑓 ), (𝑏, 𝑐ℎ, 𝑐) (4)

𝑀 ′′ will be a 4D tensor. We can slice𝑀 ′′ along the class. dimension
to get a 3D tensor 𝑀 ′′

𝑐 for each class. Then we perform global
average pooling of𝑀 ′′

𝑐 to get final class score for each class 𝑐 . The
architecture is illustrated in Fig.2 for a binary classification problem.

3 EXPERIMENTS AND ANALYSIS
3.1 Implementation
The TCN layer has 16 filterswith kernel size of 2 alongwith dilations
of [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] and with skip connections. Each
variable in MVTS shares the same TCN network, making it quite
light weight, with only 27,648 total weights in our implementation.
As needed, deeper variants can be readily implemented due to the
modular structure of the network and skip connections that enable
stacking convolutions.

We used ReLU’s for the activations, glorot normal initialization
and adam optimizer with a learning rate which cycles between
(0.0001,0.001) using noam scheme [14]. A dropout of .5 was applied
during training. We have used publicly available implementation
of TCN[9]. For multiheaded attention, we used same feature size
of 16 with ReLU activation and 1 head. We adapted the following
publicly available code for attention architecture[5]. The code and
the data used will be publicly shared here 1.

3.2 Evaluation Metrics
For evaluation of the accuracy of the channel localization, we use
mean average precision at k retrieved objects, which is the stan-
dard evaluation metric in information retrieval. In our problem, we
want to evaluate whether given the predicted class, is the model
retrieving the relevant channels. We use the following equation to

1https://github.com/babel-publishing/IETNet
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Figure 2: Illustrates channel Gate and classification for the N body problem. The matrix in left represents time collapsed
multivariate features 𝑀 , where red (blue) represents higher (lower) magnitude of activation. The matrix in right represents
𝑀 ′′. We can see channel gate here has clearly picked fourth from last channel as shown in the matrix in the right.

compute the average precision at various 𝑘 .

𝐴𝑃@𝑘 =
1

𝐺𝑇𝑃
Σ𝑘𝑖=1

𝑇𝑃𝑠𝑒𝑒𝑛

𝑖

Here 𝑘 is the number of relevant channels to retrieve. This can
be set based on any prior knowledge of the problem or can be
determined by counting the number of highly precise channels and
ignoring the low precision ones. 𝐺𝑇𝑃 is the ground truth positives,
𝑇𝑃𝑠𝑒𝑒𝑛 is the number of observed hits/true positives, and 𝑖 is the
number of channels retrieved. We score the predictions by their
confidence and take top 𝑘 channels as the retrieved channels.

3.3 N-body
We created MVTS data using a two-dimensional N-body gravita-
tional simulation. The data consists of 8 channels and 2 classes:

(1) class 0 All 8 channels are positions sampled from a 4 body
problem (𝑥41 , 𝑥

4
2 , 𝑦

4
1, 𝑦

4
2, 𝑥

4
3 , 𝑥

4
4 , 𝑦

4
3, 𝑦

4
4).

(2) class 1 First 4 channels are positions of 2 bodies sampled
from a 2-body simulation. Next 4 channels are positions of 2
bodies sampled from a 4 body simulation (𝑥21 , 𝑥

2
2 , 𝑦

2
1, 𝑦

2
2, 𝑥

4
3 , 𝑥

4
4 ,

𝑦43, 𝑦
4
4).

With this data construct, the important channels in class 1
are the first 4 channels and provides a way for us to assess
the accuracy of the channel localization of IETNet.

The Data is generated by simulations for 2-body with masses =
[1, 1𝜋 ] and 4-body with masses = [1, 1𝜋 ,

1√
2
, 1𝑒 ], respectively. The

positions and velocities are randomly initialized with coordinates
between [−1, 1]. Further, we compute the positions for 2000 times
steps using a gravitational constant of 1. This forms the individual
simulations. From these, the multivariate time series consisting
of various classes is created. The training, test and validation sets
consist of samples sizes of 183, 244, and 183, respectively. The goal
is to determine the efficacy of the channel localizer when the data
is from a 2-body class.

Localization performance of channel gate results of IETNet are
shown in figure 3. Each horizontal bar shows the relative impor-
tance of the variables/channels for each class as picked by the
channel gate, aggregated over the entire test set. As shown in the
bottom horizontal bar in figure 3, the network has correctly picked
𝑥2 and 𝑦2 for the test set when the predicted class is 1 (2-body
class). In the case of class 0 (4-body class), the network has picked
𝑥2, 𝑥3, 𝑦4. The ground truth for this class is less clear but the cho-
sen channels do make physical sense in that one needs to look at
channels beyond the first four to identify the class.
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Figure 3: We obtained the illustrated matrix by perform av-
erage of the channel gate activations over the test set and
then normalize the values by the test set size. As we can see,
IETNet can separate variables by strongly picking first few
channels which correspond to 2-body as shown in bottom
panel. Likewise for class 0 the network is using all of the
channels to classify it as a background class.
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Figure 4: We plot mean average precision at various 𝑘’s. The
model is seen to align with the ground truth, especially at
the first few 𝑘’s. class 1 has 4 ground truth channels and
therefore it varies from 1-4

Next, we use the mean average precision at k retrieved objects to
further assess the efficacy of the channel localizer. This is shown in
figure 4 along with standard deviation of the retrieved channels. We
included 𝑥21 , 𝑥

2
2 , 𝑦

2
1, 𝑦

2
2 as a part of ground truth channels in case of

class 1. The model is observed to have a very high precision when
retrieving top few channels, with the score gradually decreasing
as we retrieve more number of channels. The trend shows high
agreement of retrieved channels to ground truth channels.

3.4 Spacecraft Data
In the previous section, we demonstrated the technique using syn-
thetic planetary data. Here, we apply the technique to a challenging
MVTS data that were collected fromNASA’s recent Magnetospheric
Multiscale Mission which is obtaining high resolution data of the
Earth’s space environment.
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Figure 5: An FTE Event. The image
shows 15 variables in the following order
𝐵𝑥 ,𝐵𝑦 ,𝐵𝑧 ,𝐵𝐿 ,𝐵𝑀 ,𝐵𝑁 ,𝐵𝑚𝑎𝑔 ,𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 ,𝑉𝑚𝑎𝑔 ,𝑛𝑝 ,𝑇𝑝𝑎𝑟 ,𝑇𝑝𝑒𝑟 ,𝑇𝑝 . The
figure shows an example of flux transfer event (FTE), most
visible due to its bipolar signature in 𝐵𝑁 . 𝐵𝑁 is represented
in second block in blue as shown in zoomed part.

In situ measurements of this multi-spacecraft mission, made
through magnetometer and plasma instruments on-board the space-
craft, serve as probes in the space environment surrounding the
spacecraft. This sensor data is challenging since the space envi-
ronment is turbulent and has many embedded transients that can
mask the events of interest. One of the event types of interest is the
so-called flux transfer events (FTEs) [8] which are formed due to
the magnetic reconnection process, a main driver of space weather
effects.

Space physicists identify the FTEs in the data by first transform-
ing the raw magnetic field data into the boundary normal coordi-
nates based on the model of the Earth’s magnetopause. The three
components of the magnetic field (𝐵𝑥 , 𝐵𝑦, 𝐵𝑧 ) are transformed into
(𝐵𝑁 , 𝐵𝑀 , 𝐵𝐿) where 𝐵𝑁 is the component along the magnetopause
normal, 𝐵𝑀 is tangential to the magnetopause, and 𝐵𝐿 forms the
third orthogonal coordinate. In this transformed frame, FTEs ex-
hibit a bipolar signature in 𝐵𝑁 which makes it easier to identify
the FTEs visually (Fig. 5). It is important to note that it would be
difficult to visually identify FTEs in the original frame as evident
in Fig. 5. As such, this data set is ideal for testing and validation of
our approach for identification of important channels. The most
important channel for identification of FTEs is 𝐵𝑁 and the model
should highlight that as such. For the relative importance of various
variables to the classification of FTEs, we refer the reader to [4]

Our data consists of 15 variables in the following order
𝐵𝑥 ,𝐵𝑦 ,𝐵𝑧 ,𝐵𝐿 ,𝐵𝑀 ,𝐵𝑁 ,𝐵𝑚𝑎𝑔 ,𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 ,𝑉𝑚𝑎𝑔 ,𝑛𝑝 ,𝑇𝑝𝑎𝑟 ,𝑇𝑝𝑒𝑟 ,𝑇𝑝 . The 𝑉 ’s
refer to components of the ion velocity in the original frame and its
magnitude, 𝑛 is the plasma density, 𝑇𝑝𝑎𝑟 ,𝑇𝑝𝑒𝑟 refer to ion tempera-
ture parallel and perpendicular to the magnetic field, respectively,
and𝑇𝑝 refers to the total ion temperature. Data is labeled bywhether
a given time window has FTE events (class 1) or no events (class
0). We do not specify the beginning or end of the event. A given
interval with FTEs may have one or more FTEs. The labels were
created by space physicists through visual inspection of the data.

B x B y B z B L B M B N
B m

ag V x V y V z
V m

ag n p T p
ar

T p
er T p

Channel Gate for class 0

B x B y B z B L B M B N
B m

ag V x V y V z
V m

ag n p T p
ar

T p
er T p

Channel Gate for class 1

0.02
0.04
0.06
0.08
0.10
0.12
0.14

Figure 6: We perform average activation of the channel gate
over the test set and then normalize the values by the test set
size. Aswe can see, IETNet can separate variables by strongly
picking first few channels which correspond to 2 body as
shown in bottom panel. Likewise for class 0, the network is
using all of the channels to classify it as a background class.
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Figure 7: We plot mean average precision at various 𝑘’s. The
model’s agreement to the ground truth, specially at first few
𝑘’s, is evident. We have the six magnetic field channels as
part of ground truth

Data consists of 184 samples of class 0 and 227 samples of class
1 time series with an equal length of 5440. This data is divided into
295 train samples (169 class 1’s), validation size of 33 (20 class 1’s),
and test size of 83 (38 class 1’s). During training we down sample
the time-series from 5440 to 1440 for computational efficiency.

In figure 6 we show the channel localization by the model aggre-
gated over the entire test set. The top and bottom bars show the
aggregated channel localization for class 0 (no event) and class 1
(event), respectively. For class 1, the network has picked the mag-
netic field channels with the strongest importance given to 𝐵𝑁 as
expected. Note that the second highest importance is given to 𝐵𝑥
which is the closest to 𝐵𝑁 in the original frame. In class 0 cases,
there would be nothing unique about 𝐵𝑁 or other magnetic field
components and correctly the network has selected channels with
plasma variables such as density and temperature as the most im-
portant.

The importance of the magnetic field variables in class 1 events,
as identified by the model, is further illustrated in 7. We included
𝐵𝑥 , 𝐵𝑦, 𝐵𝑧 , 𝐵𝐿, 𝐵𝑀 , 𝐵𝑁 , 𝐵𝑚𝑎𝑔 as a part of ground truth channels in
case of class 1. As we can see the model has high precision when
it retrieves top few channels and the score gradually decreases
as we look at more number of channels. The trend shows high
agreement of retrieved channels to ground truth channels. We also
map the standard deviation of hit rate across test set of the retrieved
channels to have a better understanding of model performance.
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Figure 8: Classification performance shows very high degree
of agreement between ground truth and predicted labels for
N-body simulation dataset.

4 DISCUSSION
4.1 Classification Performance
For classification, we use ROC curves and confusion matrix. Clas-
sification performance of the IETNet on the N-body problem is
shown using the confusion matrix in figure 8. The model is seen to
have very high accuracy with only one misclassified example.

In the first experiment on this data, we keep all 15 variables and
then check whether the network selects 𝐵𝑁 as the most important
channel. One can imagine that the accuracy of the classifier could
impact the accuracy of the channel importance component. To
disentangle this effect, we first plot the ROC of the classifier on
the test set. This is shown in figure 9 where the optimal operating
point is marked in green(obtained using validation set). The AUC
is 0.84 and is significantly better than AUC of 0.72 for a standard
LSTM.
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Figure 9: classification performance shows very high degree
of agreement between ground truth and predicted labels for
NASA data.

5 CONCLUSION
Here we proposed a new neural network, IETNet, capable of identi-
fying the most importance channels for each classification instance
of multivariate time series data. The efficacy of this network was
demonstrated through two examples, N body problem and in situ
spacecraft measurements from a recent NASA mission. Detailed
analysis of the model on N body simulation and NASA spacecraft
sensor data reveals high degree of agreement between our prior
knowledge of important channels and channels picked by themodel.
As most natural stimuli are time-continuous and multivariate, the
approach promises to be of great utility in real-world applications.
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eral experiments where we judiciously removed certain channels,
retrained and reran the model, and examined the impact on the rela-
tive importance of the remaining channels. We saw that 𝐵𝑁 and 𝐵𝑥
are the two most important channels. Removing 𝐵𝑥 , the new model
still selects 𝐵𝑁 as the most prominent channel as shown in 11a.
Similarly, removing 𝐵𝑁 , the new model correctly selects 𝐵𝑥 as the
most prominent channel. In our third experiment, we remove both
𝐵𝑁 and 𝐵𝑥 . Interestingly, the model now selects plasma variables

http://arxiv.org/abs/arXiv:1801.04503
https://github.com/Kyubyong/transformer
https://github.com/Kyubyong/transformer
https://github.com/philipperemy/keras-tcn
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(a) Low threshold
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(b) Optimal threshold
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(c) High threshold

Figure 10: Impact of operating point
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(a) Removed 𝐵𝑥 , one of the prominent channels.
The model still picks 𝐵𝑁 as the top informative
channel.
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(b) Removed 𝐵𝑁 , the most prominent channel.
Themodel selects the previously secondmost im-
portant channel 𝐵𝑥 as the top informative chan-
nel.
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(c) Removed both 𝐵𝑥 and 𝐵𝑁 . The model picks
on 𝑛𝑝 and other plasma variables as well as 𝐵𝑚𝑎𝑔

which are the next most informative channels.

Figure 11: Variable Persistence

such as 𝑛𝑝 and 𝐵𝑚𝑎𝑔 as the most informative channels as shown
in figure 11c. This makes sense from physical understanding of
FTEs. In the absence of highly informative magnetic field compo-
nents, one has to rely more on plasma variables for identification
of FTEs. Note that all 15 variables have predictive power but the
most prominent ones are the magnetic field variables.

7.2 Impact of Operating Point
Next, we examine the impact of operating point selection on the
channel localization. Figure 9 shows the results at three operating
points marked in Fig. 10. The channel importance for each instance
would be affected by the accuracy of the classifier on that instance.
And similarly, we would expect the aggregated channel importance

to be a mix of channel importance for class 0 and 1, with the balance
dependent on the operating point. The operating point selects the
balance between the true positive and false positive rates. At low
threshold, the classifier has high sensitivity at the expense of higher
false positive rate. In such a case, one would expect the aggregated
channel importance to have a stronger influence from class 0, with
the opposite expected at high threshold (low sensitivity but low
false positive rate). This is exactly what is observed. Recall that for
class 0 the plasma variables are the most prominent, whereas for
class 1, 𝐵𝑁 and 𝐵𝑥 are the most prominent channels. 𝐵𝑁 becomes
increasingly dominant in aggregated test set as one moves up the
ROC curve and then starts to decrease in importance relative to
plasma variables, while remaining an important variable, past the
optimal threshold.
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