
Interpreting Deep Temporal Neural Networks by
Selective Visualization of Internally Activated Nodes

Sohee Cho
∗

Wonjoon Chang

sohee.cho@kaist.ac.kr

one_jj@kaist.ac.kr

KAIST

Daejeon, Republic of Korea

Ginkyeng Lee
∗

gin908@unist.ac.kr

UNIST

Ulsan, Republic of Korea

Jaesik Choi
†

jaesik.choi@kaist.ac.kr

KAIST

Daejeon, Republic of Korea

Figure 1: The process of CPHAP

ABSTRACT
Recently deep neural networks have demonstrated competitive per-

formance in classification and regression tasks for sequential data.

However, it is still hard to understand which temporal patterns the

internal channels of deep neural networks see in sequential data.

To address this issue, we propose a new framework to visualize

temporal representations learned in deep neural networks without

hand-crafted segmentation labels. Our framework extracts highly
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activated temporal regions and characterizes them as representative

temporal patterns. Furthermore, our framework shows the repre-

sentative temporal pattern with the uncertainty. It enables users

to identify whether the input has been observed frequently in the

training data.
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1 INTRODUCTION
The amount of temporal data has greatly increased due to the

use of efficient and diverse automatic-information systems such

as manufacturing sensors, stock database systems and healthcare

wearable devices. Recent deep learning models enable users to

extract appropriate features from such data and make decisions

with high accuracy. As a result, to utilize such vast amounts of

temporal data, demand for the application of deep learning models

in the industry has grown rapidly. However, most industrial fields

require transparency in decision-making when using deep learning

models. Thus, they are still hesitant to adopt AI systems due to the

lack of interpretability in their internal processes.

Nowadays many AI researchers have tried to understand the

decision process of deep learning models. Interpretable artificial

intelligence methods explain and interpret decisions of complex

systems with illustrative or textual descriptions. These approaches

for deep learning are classified into explaining input attribution

methods based on relevance score [4, 9, 11, 12] , gradient-based

methods [15–17] , explaining internal nodesmethods [2, 3] , explain-

ing through attention methods [5, 7] and generating explanations

methods [1].

However, those methods mainly focus on the image domain

and there have been few efforts to apply interpretation techniques

to time series data. Objects in images can be easily recognized

visually, since there is a lot of human-annotated segmentation

information for image datasets, which are not provided for most

time series datasets. Thus, it is hard to find semi-global shapes that

a neural network is looking at in a time series input due to a lack

of temporally segmented annotation data.

To address this issue, we suggest a new framework to visualize

temporal representations by clustering temporal patterns of highly

activated nodes. Our framework has the following contributions:

• Without hand-crafted segmentation labels, our framework

identifies representative temporal patterns that activate each

channel of convolutional neural networks most.

• Our framework matches perceived sub-sequences and the

closest representative temporal patterns; It makes users easy

to verify whether the patterns are commonly observed or

deviated from trained data.

• Our framework provides the uncertainty of the representa-

tive temporal patterns. This uncertainty implies the potential

variance of input shapes that activate the channel.

Consequently, our framework can provide insight into the decision-

making process of internal channels in the neural network through

visualization. This visualization shows general shapes that the net-

work recognizes with uncertainty. To the best of our knowledge,

this is first attempt to extract and visualize patterns that highly ac-

tivate interval nodes. It helps users to understand how deep neural

networks learn time series data intelligibly.

2 CLUSTERED PATTERN OF HIGHLY
ACTIVATED PERIOD (CPHAP)

2.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) [8] can learn features

from the input considering spatial correlation using filters. Chan-

nels from different learned filters reflect the features of the input

with activation maps. A partial region of each channel receives

information from only a restricted subset of the output of previous

layers. This input subset is called a receptive field, which represents

what the channel capture from the input.

The CNN architecture is widely known to be used for image

domains, but it can also be utilized for time series data in order

to extract local information from close data points which are se-

quentially correlated. In fact, Recurrent Neural Networks (RNNs),

which share weight parameters over temporal steps, have been

successfully used in natural language processing where data of

interest has discrete values. However, CNN-based methods, such as

ST-GCN [19] and WaveNet [13], have demonstrated outstanding

performance on classification and regression tasks of time series

data with continuous values. Furthermore, analyzing the role of

hidden units in a RNN is difficult and complicated due to RNN’s

recursive structure. Therefore, we choose CNN-based models to

figure out the roles of channels.

2.2 Extracting important input sub-sequences
We think that analyzing highly activated parts of activation

maps play an important role to understand temporal patterns in

neural networks. So, our algorithm interprets the decisions of neural

networks by extracting highly activated nodes in a channel
1
and

visualizing sub-sequences of the input data that contribute to the

highly activated nodes.

Highly Activated Period (HAP): Highly Activated means that

certain nodes in a channel have bigger values than the channel’s

threshold. We calculate a threshold 𝑇𝑗,𝑘 satisfying 𝑃 (𝑎 𝑗,𝑘 > 𝑇𝑗,𝑘 ) =
0.05 to select the highly activated nodes for each channel 𝑘 at layer

𝑗 , where 𝑇𝑗,𝑘 is a threshold of channel 𝑘 at hidden layer 𝑗 , and 𝑎 𝑗,𝑘
is the distribution of the 𝑘th channel activations at hidden layer 𝑗 .

Then, we define Highly Activated Nodes (HAN) as a set of nodes

of channel 𝑘 at layer 𝑗 that satisfy𝐴 𝑗,𝑘 [𝑖] > 𝑇𝑗,𝑘 where 𝑖 is a node in

channel 𝑘 and 𝐴 𝑗,𝑘 [𝑖] is the activation value of a node 𝑖 . The union

of the input receptive fields of nodes in HAN isHighly Activated
Period (HAP). This period is the important sub-sequence that we

are looking for. The detailed process is described in Algorithm 1.

Note that 𝑁 𝑗,𝑘 in Algorithm 1 denotes the number of nodes in

channel 𝑘 at hidden layer 𝑗 .

2.3 Patternizing representative sub-sequences
by clustering

So far, we have found important sub-sequences to figure out

what the individual channels in CNNs are looking at in the time

series data. Now, we characterize these sub-sequences and assign

the general shapes to them. In this paper, we use Self Organizing

Map (SOM) to characterize temporal patterns in a HAP
2
.

SOM is an unsupervised learning method by mapping high-

dimensional data to a low-dimensional map. During the training

procedure, theweight vectors in themap are trained tomove toward

1
Network Dissection[2] and CAM call this channel as "unit". In this paper, we need

to distinguish between a channel and the basic elements in a channel, so we call an

activation map as a "channel" and an element of channel as a "node".

2
We experimentally try various clustering methods, including comparing several

clustering methods, including K-means clustering, Gaussian Mixture Models (GMMs),

K-shape clustering [14] and SOM. The outputs of each method are provided in the

appendix.
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Algorithm 1 Extract important input sub-sequences

Input: data X, Trained CNN model

for 𝑗 do
for 𝑘 do
Compute 𝑎 𝑗,𝑘 = the distribution of the 𝑘th channel activa-

tions at hidden layer 𝑗 in the CNN model for data X
Find a threshold 𝑇𝑗,𝑘 satisfying 𝑃 (𝑎 𝑗,𝑘 > 𝑇𝑗,𝑘 ) = 0.05

Define HAP_list𝑗 = [ ] for all 𝑗

for 𝑥 ∈ X do
for 𝑗 do

for 𝑘 do
𝐴 𝑗,𝑘 = the activation values of the 𝑘th channel at hidden

layer 𝑗 in the CNN model

HAN𝑗,𝑘 (𝑥) = {𝑖 ∈ [1, 𝑁 𝑗,𝑘 ] | 𝐴 𝑗,𝑘 [𝑖] > 𝑇𝑗,𝑘 } where 𝑖 is
a node in channel 𝑘

HAP𝑗,𝑘 (𝑥) = {Temporal indices in input receptive

field(𝑖) | 𝑖 ∈ HAN𝑗,𝑘 (𝑥)}
HAP_list𝑗 .append(HAP𝑗,𝑘 (𝑥))

Train SOM clustering with HAP_list

Choose data 𝑥 , layer 𝑗 , channel 𝑘

Compute 𝑝 = HAP𝑗,𝑘 (𝑥)
Compute cluster 𝑐𝑝 = SOM(𝑝)

CPHAP𝑝 = mean({𝑝 ′ ∈ HAP_list𝑗 | SOM(𝑝 ′) = 𝑐𝑝 })

UNCERTAINTY𝑝 = variance({𝑝 ′ ∈ HAP_list𝑗 | SOM(𝑝 ′) = 𝑐𝑝 })

the input data with keeping the topology of the map space. The

trained weight vectors works as cluster groups. We use a 8 × 8

map, so a total of 64 groups show various patterns and each group

has low variance among elements in the same group. Furthermore,

SOM represents the relationship among cluster groups because near

cluster groups show similar patterns on the map. After clustering,

we compute an average of each cluster group to assign a pattern.

CPHAP: A Clustered Pattern of Highly Activated Period is an

average over time axis of a cluster group 𝐶 given HAP_list which

means a list of temporal sequences that activates nodes.

CPHAP =𝑚𝑒𝑎𝑛({𝑝 ∈ HAP_list | 𝑆𝑂𝑀 (𝑝) = 𝐶}) (1)

Note that HAP_list should be defined by layer, since channels in

different layer have different lengths of input receptive field.

Our framework also illustrates the uncertainty in CPHAP. The

uncertainty in CPHAP is the variance for the posterior probability

of the corresponding the input sub-sequences. It indicates the de-

gree of certainty from the cluster that the detected sub-sequence

belongs to. Thus, given new data, the user can determine whether

the detected sub-sequence is a common pattern or an abnormal

case. The detailed process is described in Algorithm 1 and shown

in Figure 1.

3 EXPERIMENTAL RESULTS
Dataset We use three time series open dataset for experiments;

UWaveGestureLibraryAll [10] is a set of eight simple gestures gener-

ated from accelerometers, Smartphone Dataset for Human Activity
Recognition (HAR) [6] is a smartphone sensor dataset recording

human perform eight different activities.

Model We use a temporal CNN which is composed of three

convolution layers followed by pooling layers, and one fully con-

nected layer. ReLU function is used as the activation function in

each hidden layer. Batch size and training epoch are 64 and 500

respectively. We also apply our framework to ResNet [18] with 9

layers. Above figures show CPHAP results for various models and

datasets. Further details are provided in the appendix.

Figure 2: [CPHAP Result in CNN Model, UWave Data 1247]
Our framework visualizes temporal representations learned
from temporal deep neural networks.

Figure 3: [CPHAP Result in ResNet Model, UWave Data 571,
Sensor 0] Given the data sample, channels in lower layers
tend to focus on rapid changes or inflection points. The
channels in the higher layers recognize extreme changes in
softer patterns.
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Figure 4: [CPHAP Result in CNN Model, HAR Data 1247
Sensor1] Since HAR data has a different length of sequence
fromUwave data, the CPHAP forHARhas also the different
lengths of patterns even the same model structure.

Figure 5: [CPHAP Result in ResNet Model, HAR Data 1613,
Sensor8] Patterns from lower layers, such as layer 1, 2, and 3,
reflect local changes like short concave shapes. On the other
hands, patterns from higher layers, such as layer 7, 8, and 9,
capture global changes like slow upward trends.

3.1 Comparisons with other interpretable
methods

We try to compare our framework with Layer-wise Relevance

Propagation (LRP) [11]. LRP explains the model’s decision by de-

composing an output of the model into individual pixels according

to the amount of contribution to the output. Since LRP does not

provide channel-specific analysis, we apply LRP to highly activated

nodes of a specific channel which we call Channel-LRP.
Figure 6 depicts how each method visualize the role of the chan-

nel for time series data. The first plot in Figure 6 represent the

upsampled activation map for the channel and the second plot rep-

resents thresholded regions. In the third plot, colorized points in

Channel-LRP show importance of each point from the input with

color variation. However, the results from these methods cannot

explain how the neural networks recognize selected points or re-

gions due to the lack of human-annotated segmentation data. On

the other hand, CPHAP provides clear visualization for important

sub-sequences and explains how each sub-sequence is perceived

by neural networks. Furthermore, our framework shows the un-

certainty for each perceived pattern, which implies the potential

range of inputs activating corresponding channel. Note that each

time point in the pattern has different degree of uncertainty.

Figure 6: Comparison with other interpretable Methods

3.2 Perturbation analysis
Wequantitatively evaluate the importance of these sub-sequences

selected by our framework. Our assumption is that the activation

values in the channel are robust to perturbations in the input with

preserving the detected important sub-sequences.

We randomly apply perturbations while preserving specific re-

gions selected by each method and observe changes in activations.

The methods include CPHAP, LRP and Random. In the case of

LRP, we calculate relevance scores and time points which have

high relevance scores are selected to be preserved. No points are

preserved when we use Random method. We apply three kinds of

perturbations and observe changes in activations of the channel:

Gaussian, Inverse, Zero. Each perturbation replaces the points with

randomly sampled values from 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 3), reversed values and

zero values.

Table 1 shows how the results from CPHAP are less vulnera-

ble to perturbations than the other methods on Uwave dataset.

The first row of each table denotes the ratio of perturbations. Our

performance is always better when using Gaussian perturbations.

Though activation difference from CPHAP is slightly worse than

LRP when using Zero perturbation with ratio of 1.0, the difference

is very close to zero and CPHAP surpasses LRP method in most of

the other cases. It implies that CPHAP can select critical regions

from the input better than the other methods.
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Table 1: The Robustness of internal activations when apply-
ing perturbations while preserving sub-sequences selected
by CPHAP. The values in the table mean how less activa-
tions in channels change with CPHAP in perturbation com-
pared to other methods (mean ± std).

Gaussian 0.2 0.6 1.0

vs Random 10.06±7.08% 11.4±7.15% 12.4±7.38%
vs LRP 5.72±3.96% 4.92±2.04% 5.11±1.91%

Inverse 0.2 0.6 1.0

vs Random 17.28±6.89% 10.44±10.91% 15.03±9.1%
vs LRP 4.93±3.72% 0.26±3.61% 2.45±2.86%

Zero 0.2 0.6 1.0

vs Random 20.27±6.08% 19.29±6.99% 21.2±6.92%
vs LRP 5.85±3.5% 0.33±4.23% -0.41±3.23%

3.3 CPHAP for Test Dataset
Figure 7 illustrates how CPHAP works well for test dataset. The

left column shows well-matched cases with new test data. On the

other hands, the middle column shows examples of less-matched

patterns through red-dashed circles. Note that there are certain

points where the actual data deviate from the assigned pattern

for each less-matched example. The positions of these points are

reflected in the visualization of our framework. The right column

shows that our visualization successfully capture the positions

which have high uncertainty in the actual data.

Figure 7: Comparisons between well-matched patterns and
less-matched patterns

4 CONCLUSION
We propose a new method to visualize the representative tem-

poral patterns in neural networks by breaking into the activations

of channels and analyzing their receptive fields in the input space.

Our framework uses highly activated temporal regions and applies

clustering method to patternize these regions in order to obtain the

general shapes without human-segmented information. Also, we

calculate the uncertainty of each cluster, which enables users to

gain insight into the type of the new input. Consequently, our work

would provide intuitive visualizations for time series and inspire

people to understand AI systems in real world problems.
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A VISUALIZATION OF CPHAP
In our figures, we visualize CPHAPs with colored lines; A black

line is an input sequence, a colored dot line is an input receptive

field, a colored line is CPHAP and a colored shadow means the

uncertainty of the pattern.

Figure 8: Visualization Process of CPHAP

Figure 9 shows that how the input receptive fields of the

channel activations can have the overlapped areas. Then, some

parts of patterns detected in receptive fields can also be overlapped

with other patterns. As described in Figure 10, we remove some

overlapped patterns for CPHAP to illustrate the important patterns

more clearly.

Figure 9: Receptive Field

Figure 10: How to Handle Overlapped Patterns

B PATTERNIZING REPRESENTATIVE
SUB-SEQUENCES BY CLUSTERING

We compare several clustering methods to suggest an optimal

algorithm for characterizing input sub-sequences with a measure

of shape and distribution. We applies various methods, including

K-means, Gaussian Mixture Model (GMM), K-shape, and Self Orga-

nizing Map (SOM) methods. The results of clustering methods are

below.

SOM is an unsupervised learning method by mapping high-

dimensional data to a low-dimensional map with keeping the topol-

ogy of the map space. GMM assumes that there is a certain number

of Gaussian distributions, and that each of these distributions rep-

resents a cluster. K-means method classifies nearby sequences into

identical clusters based on Euclidean distance only. K-shape method

is similar to K-means, but specialized for time series: it compares se-

quences efficiently and computes centroids effectively under scaling

and shift invariances.

We choose SOM for two reasons. First, the mean value of

each SOM cluster seems to be an valid representation of the sub-

sequences belonging to that cluster. Second, the map space of SOM

represents spatial meanings. In other words, near cluster groups

show similar patterns on the map. We expect this property to help

to explain the role of channels in the convolutional neural network.

Figure 11 illustrate the clustering result of SOM, aligning with

the map space of SOM. Also, we plot the marginalized clusters

along horizontal axis and vertical axes. We can identify that near

cluster groups have similar patterns. For the CNN model trained

on Uwave dataset, we observe that the clusters detected by channel

1 in layer 2 are cluster 3, 9, 10, 11, 12, 16, 17 and 18 in Figure 11.

These clusters are actually close together in the map space.

Figure 11: SOM clustering result
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Figure 12: GMM clustering result

Figure 13: K-means clustering result

Figure 14: K-shape clustering result

C PERTURBATION ANALYSIS

Figure 15: The results of perturbation analysis for sampled
channels.

We appends samples of perturbation analysis. In Figure 15, the

X-axis denotes the ratio of perturbations and the Y-axis denotes the

change in the activation value according to perturbation. That is, the

large change of Y value implies that the corresponding algorithm

fails to select the appropriate points related to the channel.

In the case of Gaussian perturbation, preserving the temporal

regions selected by CPHAP makes the channel activation more
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robust for most channels. For some channels, such as channel 15,

CPHAP has similar performance to LRP when using Inverse or Zero

perturbation. However, CPHAP generally selects more important

points than LRP to maintain the activation.

D MODEL STRUCTURE

Table 2: Datasets Information

Time

Length

Input

Sensor

Class Training

Data

Test

Data

UWave 945 1 9 3582 896

HAR 128 9 6 7352 2947

Table 3: CNN Structures

dataset

Test

Accuracy

conv1

filter

pool1

size

conv2

filter

pool2

size

conv3

filter

pool3

size

UWave 98.2% 15 8 11 8 7 4

HAR 79.0% 7 4 5 4 3 2

Table 4: ResNet Structure

conv filter 1 2 3 4 5 6 7 8 9

filter size 15 11 9 15 11 9 15 11 9

pattern size 15 25 33 47 57 65 79 89 97
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