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ABSTRACT
Forecasting accuracy is reliant on the quality of past available data.
In turn, data quality is affected by the occurrence of anomalies
(e.g., reduced sales due to stock shortage). We address this problem
by pastcasting: predicting how data should have been in the past
for it to explain the future better. We propose PastProp-RNN, an
adaptation of the backpropagation algorithm used by LSTM that
assigns part of the responsibility for errors to the training data and
changes it accordingly. We test three variants of PastProp-RNN
on artificial and benchmark data, as well as on a case study from
the retail domain. Our results indicate that the proposed method
not only is able to reconstruct data that was affected by anomalies
but also to improve the forecasting accuracy when compared to
a standard LSTM. Additionally, ARIMA seemed to benefit from
learning with data corrected by our method.
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1 INTRODUCTION
Demand forecasting has been recognized as a key process in retail
for a long time. In earlier days, companies would solely rely on
the knowledge and opinions of experts to predict future demand.
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Eventually, expert-based approaches were no longer satisfactory
due to the increasing volumes of data involved. As a result, statistical
andmachine learningmethods got involved [4]. More recently, deep
learning techniques have been applied due to their ability to model
complex patterns in long time series. A common concern to any
forecasting method is the quality of the available data. In retail,
past sales data are used to estimate future demand. However, sales
may sometimes be unrepresentative of the demand. For example,
when a product goes out of stock for a time period, the registered
sales for that product will not take into account the number of lost
sales opportunities. This is known as censored observation [9]. In
other words, the observed value of sales is limited by the available
stock (i.e. an upper bound), and the true demand is outside the
measurable range. This type of anomaly effectively decreases the
quality of the input data. Another example of anomalous data is the
temporary closing of a store for some extraordinary reason. During
that time period, there will be no recorded sales. Therefore, those
zero values will probably be bad predictors of demand when the
store reopens. Finally, an example of what would not be considered
as an anomaly is the sales increase during the Christmas season.
The reasoning behind this is that, despite constituting an outlier,
the phenomenon is expected and likely helpful at explaining future
time series values.

Motivated by these issues, we address the general problem of
making changes to past data to make it a better predictor of the
future. This is referred to as pastcasting [2, 7]. We propose Pastprop,
which consists of modifying the backpropagation algorithm of an
LSTM implementation with the goal of correcting anomalies in
data and reducing their effect on forecasting accuracy. The idea is
to make the learning process estimate the contribution of training
data to the outputted errors. In other words, the responsibility for
errors is shared not only among network weights but also with the
data. Hence, instances of training data should also be updated in
the direction that minimizes error.

2 RELATEDWORK
The problematic of demand forecasting in the presence of censored
sales data has been addressed in the literature. [10] tackles the
problem through the use of ensemble methods. In the study, ma-
chine learning methods were combined while accounting and not
accounting for censorship in data. [1] studied the issue while using
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sales data of the same products from multiple retail stores. Their
method includes modeling the problem with a "latent variable"
and using "matrix completion" related techniques [1]. Their results
argue that the demand forecasting error would tend to zero as the
number of considered stores and timestamps increased to infinity.
[8] addresses the problem while considering that the retailer’s stock
levels might not be accurately known at all times. They concluded
that ignoring the possibility of "inventory record inaccuracy" in
the presence of censored sales data usually leads to a "systematic
underestimation of demand" [8].

2.1 LSTM
Long-Short TimeMemory (LSTM) is a type of Recurrent Neural Net-
work (RNN). RNNs differ from feed-forward neural networks by the
recurrent connections which allow them to learn from sequential
data. They attempt to model and remember temporal dependen-
cies in sequences. However, RNNs have been criticized due to the
vanishing and exploding gradient problem [5]. In brief, RNNs are
not suited to learn long dependencies in time series data. In fact,
they are not effective at learning relationships more than 5 to 10
time steps apart in data [11]. To solve this issue, LSTM, a new
architecture, was proposed by [6].

The LSTM architecture is composed of blocks, each of them
containing an input gate, output gate and memory cell. A gate is set
of processing units with sigmoid activation functions whose inputs
are scaled by weights. There is also an input modulation gate which
contains a tanh activation function instead. The memory cell holds
hidden information resulting from previous inputs. The modulation
gate learns to scale input features according to their importance
and then squashes them between -1 and 1. Moreover, the purpose of
the input gate is to regulate which of those features should used to
updated the cell’s state. The output gate filters which information
from the cell should be passed to the next block. A forget gate was
later proposed [3] to learn which data should be discarded from
memory even before updating it with new information from the
current input.

Similarly to RNN, LSTM learns by forward and backward passes.
In the forward pass, the input is concatenated with an output from
the previous block and a bias value. That information is processed
within the LSTM block and then goes through a final layer of
weights to obtain the predicted outputs. Each of them is compared
to the real outputs and an error measure is obtained. The backward
pass takes that error and applies a gradient descent algorithm to
update the weights of each gate.

3 PASTPROP
We propose a novel idea of reworking the backpropagation algo-
rithm so that error responsibility is extended to data. As such, simi-
larly to the network weights, input data should be corrected in the
direction that minimizes error, with a magnitude proportional to its
contribution to that error. The goal is that the corrections improve
the overall quality of the training data. In particular, we expect
them to be effective at reconstructing anomalies. The premise is
that anomalies can be viewed as sections of data with high respon-
sibility for errors. Therefore, they should theoretically be subjected
to more significant changes. The idea could potentially be applied

to other neural network architectures, which also learn through
backpropagation. However, our work is focused on LSTM only
since they are well suited for time series forecasting - our task of
interest.

3.1 PastProp Variants
The following subsections explain, in higher detail, the implemen-
tation of three different pastprop variants. All of them derive from
a publicly available Python implementation of an LSTM 1. Further-
more, it is assumed that the algorithms receive an univariate time
series as training data. During the learning process, multi time
step samples are used to predict multi time step labels. At the end
of training, the outputs are both the network’s weights and the
corrected time series.

3.1.1 Calculating deltas. The key variables used by pastprop are
the deltas. In a similar manner to how the input, forget and output
gate’s gradients are obtained, we can also calculate a gradient for
the LSTM’s hidden input at each block. This is the expression we
are looking for:

𝜕Error𝑡
𝜕hin𝑡

=
𝜕Error𝑡

𝜕(hin𝑡𝑊𝑖 )
𝑊𝑖 +

𝜕Error𝑡
𝜕(hin𝑡𝑊𝑓 )

𝑊𝑓 + 𝜕Error𝑡
𝜕(hin𝑡𝑊𝑜 )

𝑊𝑜

+ 𝜕Error𝑡
𝜕(hin𝑡𝑊𝑔 )

𝑊𝑔

(1)

Since the hidden input is composed of the input sample, previous
hidden output and a bias value

hin𝑡 = {𝑋𝑡 , hout𝑡−1, 𝑏} (2)

We subset the gradient to just the part that respects to the input
sample.

𝜕Error𝑡
𝜕hin𝑡

[𝑋𝑡 ]

The deltas to be added to the input samples are calculated from
this gradient and the “data correction rate” constant, a Pastprop
specific hyperparameter which serves as a learning rate for data
instead of weights.

3.1.2 Regular Pastprop. In this variant, the corrections are applied
to the whole time series - all at once - after the completion of
each epoch. During an epoch, the "deltas" to be added to each data
sample are calculated and stored until the end of the epoch. Right
before starting the new epoch, the deltas and time series are added
together. This means that every epoch deals with a different version
of the data. It also means that the first epoch produces exactly
the same weights that a normal LSTM would (in case the initial
weights are the same). Figure 1 illustrates the described mechanism
in a simplified way. We can see that most of the time steps have
overlapping deltas associated with them. In those cases, an average
of the corresponding deltas (not their sum) is used to build the
final corrections array. This is done to make the amount of data
corrections less dependent on the sample size.

1https://gist.github.com/karpathy/587454dc0146a6ae21fc
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Figure 1: Simplified illustration of how regular pastprop
works

3.1.3 Progressive PastProp. This variant differs from the "Regular"
one in the sense that deltas are added to data over the course of
epochs. As soon as they are obtained, deltas are first adjusted to
compensate for overlapping and then added to samples.

Contrary to the first variant, each epoch deals with progressively
different time series. For this reason, the weights differ from those
produced by an LSTM right from the first epoch.

3.1.4 Selective Pastprop. This variant is built upon the "Regular"
variant and introduces two new features. The first is an hyperpa-
rameter that dictates the amount of initial epochs to wait before
applying data corrections. The second feature is a thresholding
mechanism. At the end of an epoch, when the final corrections
array is ready, the deltas are ranked by the average of theirs and
their neighbours’ absolute value. Higher values translate to higher
ranks. The highest ranked deltas prevail while the other ones are
changed to zeros (i.e. they will have no effect on data). A threshold
parameter is used to establish the amount of deltas to be preserved.
Furthermore, the number of previous and subsequent time steps
that define a delta’s neighborhood is also required as a parameter.
In case that number is zero, each delta is ranked solely by its own
absolute value. Keeping the time series unchanged for the first few
epochs is an attempt at reducing the impact of the LSTM’s random
weight initialization on data corrections. Moreover, the inclusion of
neighbor deltas in the ranking system incentivizes the preservation
of deltas associated with anomalous zones. In turn, single point
anomalies are not as targeted by the system.

4 EXPERIMENTAL SETUP
The LSTM related hyperparameters required for the pastprop vari-
ants are the: sample size, label size, the number of hidden units for
each LSTM gate, learning rate, and the number of epochs.

The only pastprop specific hyperparameter, common between
all variants, is the data correction rate. The Selective variant also
needs the number of waiting epochs, the number of highest ranked
deltas to keep on the corrections array, and the number of previous
and subsequent time steps to consider when ranking deltas.

Anomalies were generated and characterized by the size, posi-
tion in the time series, and magnitude. Since their size and position
are self-explanatory, only the magnitude attribute is explained here.
Three different levels of magnitude were considered. Level 0 sub-
stitutes the data by a sequence of zeros. The remaining two levels
function differently. The anomaly zone is divided by equally sized
chunks. It is randomly chosen whether each chunk should add or
subtract from the original data. At a given time step, the value of

the change is the maximum between 0.1 and a percentage of the
time series’ original value. The possible percentages are 25 and
50, which correspond to the magnitude levels 25 and 50. The min-
imum absolute change value of 0.1 was chosen in the context of
data being normalized between 0 and 1. For a given time series
and a complete set of parameters, a single experiment consisted
of performing multiple operations. The first step was to generate
random initial weights compatible with the problem at hand. For
the sake of fairness in comparison, all tested methods worked with
these same starting weights. The methods include a simple LSTM,
all three pastprop variants, and also three additional LSTMs. The
latter used the series corrected by the pastprop variants as training
data. After execution, besides forecasting accuracies on test data,
a few other results were kept. They included similarity measures
between each corrected series and the original data, both on the
anomaly zone and outside of it. With robustness in mind, the whole
experimental procedure was repeated 5 times. The final results
attributed to that combination of dataset and parameters were the
average results of those runs. Additionally, we compared baseline
algorithms including Autoregressive integrated moving average
(ARIMA) and Exponential smoothing state space model (ETS) with
Pastprop variants on anomalous data. ARIMA and ETS were ap-
plied to the corrected data produced by Pastprop. The results were
then compared to those obtained earlier while using the original
anomalous data.

4.1 Datasets
The research was performed on 9 different time series. The fol-
lowing subsections describe how the data was obtained and what
hyperparameters were tested with them. A few parameters were
kept constant throughout all experiments. For all presented datasets,
the training data consisted of the first 70% of the time series, and
the last 30% were used for testing. Furthermore, the learning rate
and the number of hidden units were always 0.001 and 20 resp.
Lastly, all series were normalized between 0 and 1.

4.1.1 Artificial data. The only artificially generated time series
is a sinusoidal function with values ranging from 0 to 1. Its total
length is of 500 time steps. An intensive study on hyperparameters
combinations and their effect on the results has been conducted on
this dataset. The values used for this study follows:

• epochs: 50, 200, 100 (respective waiting epochs were 10, 20,
50)

• data correction rate: 0.001, 0.01, 0.1
• anomaly size: 25, 50, 1000 time steps
• anomaly position: 5 different positions evenly spaced through-
out the training data plus non-occurrence of anomaly

• anomaly magnitude: level 0, level 25, level 50
The sample and label sizes were of 50 time steps. Considering all

possible combinations of these parameters and the definition of a
single experimental setup, a total amount of 486 experiments were
carried out on the artificial data.

4.1.2 Benchmark data. A total of 6 benchmark time series were
used, originated from 2 publicly available datasets. The M5 compe-
tition dataset 2 was processed with the goal of extracting three time
2https://mofc.unic.ac.cy/m5-competition/
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series, each representing the daily unit sales of a specific product
category (Hobbies, Foods, and Household) registered in Walmart
stores located in the USA. Another electricity consumption dataset
from the UCI Machine Learning Repository 3 has been used. Three
time series with a length of 1462 time steps has been used.

For all the benchmark data, the sample and label sizes were of
28 time steps. Regarding anomaly generation, a size of 56 time
steps was used. Two magnitude levels were considered: level 0 and
50. The anomalies were inserted at the middle of training data.
Lastly, the number of epochs were 50, 200 and 1000 while the data
correction rates were 1e-3, 1e-2 and 1e-1.

4.1.3 Retail case study data. Data from an international fashion
retail case study was also used. The main time series consisted
of daily combined sales of two popular articles during a full-year
period. Alongside this data, auxiliary time series were used, such as
the daily average temperature at the store’s location, precipitation
amounts, stock levels, and basic calendar information.

The hyperparameters of the experiments done with these data
were similar to the ones used for benchmark data. Instead, the
sample and label sizes were 14 time steps, and the anomaly size
was 28 time steps.

5 RESULTS DISCUSSION
5.1 Anomaly Reconstruction
The anomaly reconstruction ability was calculated by resorting to
two variables: the MSE between the corrections and the original
data; the MSE between the anomaly and the original data. The
formula is obtained as follows:

reconstruction ability = 1 − MSE(corrections, original)
MSE(anomaly, original) (3)

As such, a positive reconstruction ability indicates the correc-
tions were able to push the anomalous zone closer to the original
data. On the other hand, a negative value means the anomaly was
accentuated even further.

The MSE between corrections and original data was also mea-
sured while excluding the anomalous part. This will be referred
to as the “outside loss”. Especially on the artificial data, where the
series follows a well defined curve, there is no apparent reason to
change data outside of the anomaly. Therefore we want this value
to be as low as possible. When considering other types of data, this
measure loses some of its meaning since corrections may be benefi-
cial even outside of the anomaly. Finally, the measure of “outside
loss” only exists when there are manually inserted anomalies in
data.

Assuming the anomaly occurs in the middle of the training data,
the global results on artificial data indicate a positive reconstruction
ability of roughly 10% when using the Selective pastprop variant.
Meanwhile, the Regular and Progressive variants showed a negative
ability of 41% and 46%, respectively. However, the results differ
when sorting the experiments by the product of epochs and data
correction rate and then ignore the ones at the higher end of this
spectrum. For instance, ignoring the pairs (1000; 1e-2), (200; 1e-1),
and (1000; 1e-1), the reconstruction ability of both the Regular and
3https://archive.ics.uci.edu/

Figure 2: Anomaly reconstruction examples on benchmark
data. Blue is the original time series, green is the recon-
structed and orange is the anomaly.

Progressive variant increased to positive 32% while the Selective
variant’s ability only slightly dropped to 9%. The results assess
that the Regular and Progressive variants are not tolerant to a high
number of epochs and data correction rate. The average outside
losses of the first two variants were of 0.007, while the Selective
variant was just 0.001.

Moreover, on the remaining benchmark and case study data, the
global averages were of 4% reconstruction ability in the first two
Pastprop variants and 1.5% in the Selective one. When ignoring
the experiments with data correction rate equal to 1e-1, we obtain
the following anomaly reconstruction abilities: 13.3% in Regular
Pastprop; 12.96% in Progressive Pastprop; 0.86% in Selective Past-
prop. The corresponding outside losses were 0.00662, 0.00683 and
0.00023. The previous experiments on artificial data suggested that
the Regular and Progressive variants were undermined by the usage
of high number of epochs combined with high data correction rates.
However, in the benchmark and case study experiments, the data
correction rate alone seemed to be the deciding factor, since using
a value of 1e-1 lead to negative reconstruction abilities. The best
results were obtained with (1000; 1e-2). Figure 2 shows some in-
stances of anomaly reconstruction while using that combination of
hyperparameters on benchmark data. It should be pointed out that
the achievement of such reconstruction abilities was accompanied
by very high outside losses, that is, too much change outside the
anomaly zones focused in Figure 2.

5.2 Forecasting Accuracy
To investigate the impact of pastprop in the forecasting accuracy,
all M5 and electricity time series were subjected to a 56 time step
long anomaly in the middle of their training part (the first 70% of
the series). The magnitudes applied were of level 0 and 50. Then,
the baseline algorithms were given the full training data to perform
forecasts at 28 time step maximum horizon. Immediately after, one
time step was advanced into the future, and another forecast was
made, now using the knowledge of extra real value. The process
was repeated until the last forecasted value coincided with the
end of available test data. Finally, multiple series were built with
predicted values at specific horizons. For example, we considered
3 series where the values that constitute them were predicted at
an horizon of 1, 7 and 28 days. This was the same forecasting
mechanism adopted for LSTM and Pastprop. Forecasting accuracies
were computed using mean squared error (MSE).
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Table 1: Forecasting accuracies (MSE) at 1, 7 and 28 day horizons obtained by LSTM, Pastprop, ARIMA and ETS on univariate
benchmark data (3 M5 series and 3 electricity series).

Horizon Hyperparameters LSTM Regular Progressive Selective ARIMA ETS

1

(50; 1e-3) 0.02462 0.02775 0.02970 0.02790

0.01097 0.01351

(50; 1e-2) 0.02729 0.03041 0.02458 0.02705

(50; 1e-1) 0.02615 0.02214 0.02303 0.03133

(200; 1e-3) 0.03994 0.06429 0.05774 0.05396

(200; 1e-2) 0.03665 0.03445 0.04312 0.05807

(200; 1e-1) 0.03930 0.04343 0.03777 0.03393

(1000; 1e-3) 2.06349 2.22513 6.98732 6.31422

(1000; 1e-2) 3.62515 1.99246 3.07272 7.89312

7

(50; 1e-3) 0.02486 0.02396 0.02920 0.02722

0.01765 0.01679

(50; 1e-2) 0.02836 0.02460 0.02526 0.02512

(50; 1e-1) 0.02186 0.01971 0.02050 0.02840

(200; 1e-3) 0.03810 0.07618 0.05311 0.04773

(200; 1e-2) 0.03349 0.03421 0.03418 0.05699

(200; 1e-1) 0.03457 0.04138 0.03591 0.03519

(1000; 1e-3) 2.20410 2.09030 7.33739 6.0169

(1000; 1e-2) 4.10815 1.62792 3.42391 7.81961

Table 1 compares the forecasting abilities of Pastprop to LSTM,
ARIMA and ETS at three different horizons: 1, 7 and 28 days. Fol-
lowing MSE results, higher number of epochs seems to always
translate to worse results. Performances using 50 and 200 epochs
were somewhat acceptable (even though worse than ARIMA and
ETS), but using 1000 epochs produced extremely bad results. This
might be related to our specific implementation of LSTM which
does not use a sigmoid function at the output layer. Instead, the
hidden output is simply multiplied by the output layer’s weights
to obtain the predicted values. Since forecasts are not filtered by
sigmoid, they are not restricted to any scale. In our case, due to
the high number of epochs, the weights increased to a point that
resulted in forecasts no longer being in the interval of 0 to 1, hence
the low accuracies. As a results, Horizon 7 displayed the best results.
It produces, on average, 7% and 7.5% better accuracies compared to
horizon 1 and horizon 28 respectively. For (50; 1e-2) and (50; 1e-1),
Regular and Progressive were, on average, 9% and 13.3% better than
LSTM resp., and Selective was 3.8% worse.

As to why ARIMA and ETS outperformed the other methods,
there might be several reasons. More fine-tuning of the hyperpa-
rameters, such as the number of hidden units and learning rate,
could be necessary. These were kept constant to prevent the total
amount of experiments from exploding. Additionally, the base im-
plementation of LSTM we used was the most "vanilla" possible so
that implementing Pastprop would be more straightforward.

Table 2: Statistics on the forecasting accuracy gains (per-
centage decreases of MSE) achieved by ARIMA when using
data corrected by each Pastprop variant using (200; 1e-1) vs.
ARIMA with the non corrected data.

Pastprop mean std median min max

Regular 7.04% 8.74% 7.02% -6.09% 21.70%
Progressive 8.04% 12.60% 2.89% -4.08% 27.93%
Selective 13.25% 9.62% 9.52% 3.48% 29.54%

5.3 Learning with corrected data
Table 2 illustrates the improvements achieved on ARIMA after cor-
recting univariate benchmark data (3 M5 series and 3 electricity
series) using Pastprop variants. The data were not affected by anom-
alies and the horizon of the forecasts was 7 days. Results show that
corrections produced by Pastprop variants have contributed to the
improvement of ARIMA performance. It is worth noting that, in
some datasets, corrections had a negative impact on the forecasts.
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