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ABSTRACT
With increasing focus on privacy protection, alternative methods
to identify vehicle operator without the use of biometric identifiers
have gained traction for automotive data analysis. The wide variety
of sensors installed on modern vehicles enable autonomous driv-
ing, reduce accidents and improve vehicle handling. On the other
hand, the data these sensors collect reflect drivers’ habit. Drivers’
use of turn indicators, following distance, rate of acceleration, etc.
can be transformed to an embedding that is representative of their
behavior and identity. In this paper, we develop a deep learning
architecture (Driver2vec) to map a short interval of driving data
into an embedding space that represents drivers’ behavior to assist
in driver identification. We develop a custom model that leverages
performance gains of temporal convolutional networks, embedding
separation power of triplet loss and classification accuracy of gra-
dient boosting decision trees. Trained on a dataset of 51 drivers
provided by Nervtech, Driver2vec is able to accurately identify the
driver from a short 10-second interval of sensor data, achieving an
average pairwise driver identification accuracy of 83.1% from this
10-second interval, which is remarkably higher than performance
obtained in previous studies. We then analyzed performance of Dri-
ver2vec to show that its performance is consistent across scenarios
and that modeling choices are sound.
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1 INTRODUCTION
Identifying the operator of a vehicle can be achieved through in-
stalling biometric devices, but there are situations in which the use
of such devices is not desired [1]. In this case, a driver identification
system can rely on the increasing number of sensors available on
modern vehicles. Data from these sensors are already used to build
applications such as automatic braking, lane departure warning,
and blind spot detection [2]. These applications can be further im-
proved through user-specific customization after inferring identity
of the driver from sensor data.

A mature driver assistance system that responds to a short snip-
pet of sensor data gives engineers the potential to build applications
that adapt to specific users. At the household level, the system can
quickly identify the driver behind the wheel and then adjust ve-
hicle settings accordingly. This adjustment will not be limited to
air conditioning or seat position, but will also help with vehicle
maneuvering according to drivers’ habits [3]. A system with high
accuracy in identifying drivers can also be built to alert vehicle
owners of unrecognized driving pattern to deter possibility of theft
[4]. One way to build such a system is to map driving behavior to
a user-specific embedding, of which many downstream tasks can
also take advantage. A primary challenge is that such system must
be generalizable to all scenarios. This requirement is due to the
fact that drivers behave differently according to local conditions,
including different area types such as highway, urban or rural areas
and road conditions like straight roads or turns. Model training
for a highly capable system depends on large amounts of driving
data. Yet those recorded in a varieties of scenarios and by drivers
of different driving styles have been difficult to obtain.

In this paper, we develop a model to map a short interval of
sensor data into a driver embedding that is suitable for accurate
driver identification. Our model is built to extract information from
a high quality dataset and to tackle challenges outlined above. To
achieve this goal, we design a customized deep learning architecture
that leverages the advantages of temporal convolution, the Haar
wavelet transform, triplet loss and gradient boosted decision trees’
[5][6][7]. We train this model on a dataset consisting of more than
15 hours of driving data collected from a driving simulator designed
by Nervtech, a high-end driving simulation company. In Section 5.1,
we show that using a short 10 second snippet of driving data, we can
learn embeddings that are able to identify the driver out of a set of
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51 potential candidates. In a series of experiments, we further show
that Driver2vec can correctly identify the driver in pairwise (2-way)
comparison setting with 83.1% accuracy and perform consistently
across different road areas. We then analyze the effects of many
important hyper-parameters andmodel components to demonstrate
the robustness of our model.

2 RELATEDWORKS
Non-invasive identification has been investigated in many domains.
For smartphone users, it has been found that movements and ges-
tures associated with phone usage or their correlations with app us-
age link directly to user identity [8][9][10]. Thesemethods show the
effectiveness of using machine learning models for user identifica-
tion through time series data as an alternative to facial recognition,
a common invasive method for user identification.

Researchers have made direct efforts to identify vehicle operator
or driving style using time series data with the following three
approaches: (1) Rule-based approaches, such as fuzzy logic [11][12]
(2) Supervised machine learning models such as decision trees [13],
support vector machines [14][15] and neural networks [16] [17]
(3) Unsupervised/semi supervised models in the form of Gaussian
mixture models (GMM) [18][19] and k-means [14][15]. Many works
use a limited set of sensor data, typically only including velocity
and derivatives of velocity [18] [12] [19]. Another limitation of
existing works is the size of available data and the total number of
participating drivers [20]. Lastly, existing methods rely on specific
scenarios. One example is that machine learning models were able
to achieve 76.9% accuracy only on selected turns along with dis-
cussion of difficulties of driver identification during less complex
operations such as driving on straight highways [21]. Similarly,
an implementation based on LSTM only used left turn maneuvers
in a zone with 30km/h speed limit [17]. Our Driver2vec addresses
all limitations discussed above. The dataset we are using has 51
unique drivers and is over 15 driving hours in total. It contains a
wide variety of data channels collected from 4 driving scenarios.
Furthermore, our model is trained without manual selection of
desirable events or scenarios to ensure that it generalizes to all driv-
ing conditions. Since Driver2vec is the only work that has tackled
limitations in data sources and driving scenarios, our model can
serve as a cornerstone for accurate driver identification on modern
vehicles.

We designed our model to take advantage of advances in similar
tasks such as speaker identification via speaker embedding. In this
case, performing context-free speaker diarization as an embedding
task using Temporal Convolutional Network (TCN) was shown to
perform as much as 6% better than alternative approaches [7]. Fur-
thermore, the convolutional nature of a temporal convolutional net-
work better suits hardware structure of GPUs and provides higher
accuracy than traditional recurrent networks [22]. In addition to
an TCN encoder, the Haar wavelet transform is also an effective
method of indexing time series, often better than a discrete Fourier
transform [23]. For further performance improvement, researchers
have experimented with hybrid models that combine feature ex-
traction power of neural networks with decision making power of
gradient boosting decision trees, achieving 1% to 2% improvement
in classification accuracy [24][25]. Despite these advances, there

have been few direct applications of deep learning in vehicle sensor
processing that use recurrent networks (RNN) [16][17][26]. These
models face limitations such as being only able to perform well in
specific driving scenarios [16] and maneuvers [17], or rely on long
intervals of low frequency data [26]. Our proposed model demon-
strates that driver embedding can be learned without limitations
outlined above using TCN with triplet loss and that drivers can
be accurately identified using LightGBM, an implementation of
gradient boosting decision tree [27].

3 DATASET
The dataset used for this work was collected from a high-end driv-
ing simulator built by Nervtech. This simulator has been demon-
strated to reproduce an environment that invokes realistic driver
reactions and has been used for evaluating risks of young drivers
and those with neurological diseases [28][29]. This dataset contains
51 anonymous volunteer drivers’ test drives on four disjoint road
areas, labeled as highway, suburban, urban and tutorial. Each driver
spent approximately 15 minutes on the simulator, accumulating to
more than 15 hours of driving in total. The average amount of time
that drivers spend in each area is presented in Table 1. A unique
advantage of this dataset is that it was designed for multiple dri-
vers to drive the same exact scenarios on the simulator, removing
external factors, including the effect of weather and road condition,
from driver analysis. Another advantage of this dataset is that the
simulator samples at 100Hz, much higher than datasets used by
existing studies [18] [12] [19] [21] [26].

Road Area Average Time (SD)

Highway 238.8 (73.8)
Suburban 251.7 (83.8)
Urban 196.9 (77.1)
Tutorial 171.9 (83.1)
Total 859.4 (245.7)

Table 1: Average (standard deviation) time spent in seconds
per driver in each road area.

For this study, we divided data from each road area using a 8:1:1
ratio for training, evaluation and testing. We then grouped the
data columns into 8 categories: (1) distance information, (2) lane
information, (3) acceleration/break pedal, (4) speed, (5) gear box,
(6) acceleration, (7) steering wheel/road angle, (8) turn indicators.
These categories correspond to a total of 31 features. More details
of the dataset are presented in Appendix Section A.1.

4 DRIVER2VEC MODEL
In this paper, we convert a 10 second snippet of sensor data sam-
pled at 100Hz to a representation which is indicative of the driver’s
identity. The input to our model is a multi-channeled time-series se-
quence. The output of our model has two stages. At first, we output
an embedding of length 62 to represent a driver’s behavior. After-
wards, this embedding is further processed for driver identification.
To achieve this, we develop a new deep learning architecture, which
we call Driver2vec. This new architecture is illustrated in Figure 1.

The core of Driver2vec architecture is time series processing. For
this task, we use Temporal Convolutional Network, which is based
on dilated causal convolutions for variable length input sequences.
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Figure 1: Model architecture for Driver2vec, its loss structure and possible downstream tasks.

The benefit of using a temporal convolution is that it can be scaled
much larger than RNNs and often leads to significant accuracy
gains in time series datasets [22]. As demonstrated by previous
works, information from the frequency domain contributes tomodel
performance [18][21]. To capture the spectral component of input
channels, we use a Haar wavelet transformation, which generates
two vectors in the frequency domain [30]. We pass these vectors
through a linear layer then concatenate them with results from
TCN as the final driver embedding vector. Driver2vec uses triplet
loss as the training metric due to its effectiveness shown in other
domains [7][31]. Each input is constructed as a set of 3 samples
x = 𝑥𝑟 , 𝑥𝑝 , 𝑥𝑛 , where 𝑥𝑟 denotes an anchor, 𝑥𝑝 denotes a positive
sample belonging to the same driver as 𝑥𝑟 , and 𝑥𝑛 a negative sample
from a different driver. The triplet loss is defined as:

𝑙 (𝑥𝑟 , 𝑥𝑝 , 𝑥𝑛) =𝑚𝑎𝑥 (0, 𝐷2
𝑟𝑝 − 𝐷2

𝑟𝑛 + 𝛼) (1)

where 𝛼 is the margin and 𝐷 is the 𝑙2 distance. In Driver2vec, the
optimization is based on triplet loss and the objective is to achieve
𝐷2
𝑟𝑛 ≫ 𝐷2

𝑟𝑝 + 𝛼 using the concatenated embedding as shown in
Figure 1. This setup encourages embeddings for the same driver to
be close to each other, and to be far apart for embedding of different
drivers. Once the embedding model is trained, we use LightGBM,
an efficient implementation of gradient boosting decision trees
(GBDT) [6][27] for subsequent tasks. The output of the LightGBM
classifier is driver identification output of the overall Driver2vec
model, completing our time series classification workflow.

Overall, our network takes in a multi-channel time series inputX
(X ∈ R31×1000) and converts it to a 62-dimensional embedding. This
embedding is then used to predict the correct driver out of potential
candidates. In Section 5, we evaluate our model’s performance and
analyze its robustness in a series of experiments.

5 EVALUATION
In this section, we evaluate the performance of Driver2vec on a va-
riety of driver prediction tasks. Since the Driver2vec embedding is
trained on driver prediction, we first investigate its performance on
driver identification, then analyze the importance of components
of Driver2vec. For our experiments, we selected model based on
pairwise (2-way) accuracy only. We determined that training with

Adam optimizer using learning rate = 4× 10−4, decay = 0.975,
kernel size = 16, triplet margin(𝛼) = 1 yields the highest
pairwise evaluation accuracy of 81.8% and test accuracy of 83.1%.
Hyper-parameters for the LightGBM classifier are found through
grid search and are presented in Appendix Section A.2. All pa-
rameters for subsequent experiments are kept the constant unless
specified otherwise.

5.1 Driver Identification
Performance of Driver2vec is evaluated for several driver identi-
fication scenarios, which are full multi-class driver identification,
identification among a set of 𝑛 candidates, performance in specific
driving area and identification with “none-of-the-above" option.

51-way Driver Identification. We plot confusion matrix for driver
identification result usingDriver2vecmodel in Figure 2. A clear diag-
onal shows that the model is frequently correct. This corresponds to
15% identification accuracy among a full set of 51 candidate drivers.
We then use a set of features similar to those used by a baseline
approach which is based on a tree classifier for 8-10 seconds of
driving data [21]. After grid searching for the best set of param-
eters, we are only able to achieve 10.9% identification accuracy
with the baseline model. We attribute the added accuracy of our
model to features extracted from the TCN component of Driver2vec
because both models use frequency domain features while feature
extraction from TCN is unique to Driver2vec.

Figure 2: Confusion matrix of 51-way driver identification.

Multi-way Driver Identification. In real life, a vehicle is usually
shared among a small number of drivers, therefore a model de-
ployed in the real world should only have to identify a driver from
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a small group of candidates. For this purpose, we perform experi-
ments for pairwise accuracy (𝑛 = 2) and 𝑛-way average accuracy
on combinations of 𝑛 = 3, 4, 5 drivers. Setup for 𝑛-way accuracy is
presented in Appendix Section A.3.

Results for 𝑛 = 2, 3, 4, 5-way accuracy are presented in Table 2.
For 𝑛 = 2, Driver2vec achieved 83.1% pairwise accuracy on test
data. Accuracy decreased to 62.5% for 5-way identification. This
decrease is in line with eventual 𝑛 = 51 way accuracy of 15%. This
observation reflects the fact that as group size increases, probability
of including another driver with similar driving behavior increases,
which negatively affects prediction accuracy. In comparison, we
also experiment with the previously mentioned baseline [21] and
are only able to achieve 69.8% for pairwise accuracy, with even
wider gap in performance compared to Driver2vec for 𝑛 = 3, 4, 5.

Accuracy (Test set) (%) Baseline (%) [21]
2-way 83.1 69.8
3-way 73.8 55.1
4-way 67.3 47.0
5-way 62.5 42.7

Table 2: Multi-way accuracy for Driver2vec and for a refer-
ence baseline implementation [21] on test data set for 2, 3, 4
and 5 way driver identification.

Area Specific Prediction. Previous work [16] demonstrated that less
sophisticated roads, such as rural roads and highway, are more dif-
ficult for driver identification. However, it is important for a system
deployed in the real world to perform well in all circumstances. We
performed driver identification on the four areas (tutorial, urban,
suburban and highway) provided by the Nervtech dataset. As shown
in Table 3, the difference in test accuracy is small across different
areas, at around 2%, which is much lower than 18% observed in a
previous implementation [21]. This result shows that Driver2vec
can capture much more information than velocity-related vehicle
maneuver events and that environmental information, such as ve-
hicle position in a lane and distance to next vehicle, also contribute
to prediction accuracy.

Driving Area Pairwise Accuracy
Evaluation Set (%) Test Set (%)

Highway 78.4 81.1
Suburban 70.7 81.9
Urban 78.9 82.4
Tutorial 80.4 84.7

Table 3: Driver2vec performance in given driving area type.

Prediction with None-of-the-above Option. We introduce a “none-of-
the-above" option to emulate the real world use case of identifying
new or unauthorized drivers. Details for setting up the none-of-
the-above evaluation is presented in Appendix Section A.3. Table 4
compares performance between with and without the none-of-the-
above setup. The highest drop in performance of 15.3% is observed
in the pairwise setup; the difference decreases monotonically down
to 6.2% for 5-way predictions. This decrease is expected because
having more candidates potentially introduces more driving styles,
making it easier for the model to identify a not-included driving
behavior. To our best knowledge, this work is the first to explore

none-of-the-above possibility in driver identity prediction and our
result shows Driver2vec is robust to “noise" introduced as part of
our none-of-the-above experiment setup.

Without N-o-t-a (%) With 50% N-o-t-a (%)

2-way 83.1 67.8
3-way 73.8 62.2
4-way 67.3 59.1
5-way 62.5 56.3

Table 4: Multi-way accuracy with and without none-of-the-
above (N-o-t-a) noise.

5.2 Model Component Analysis
In this section, we evaluate the importance of groups of sensor
data and contribution of each part of Driver2vec to overall model
performance. Analysis of two important hyper-parameters, interval
length and embedding size are presented in Appendix Section A.4.

Feature Importance. We group similar variables in the Nervtech
dataset to evaluate the importance of each category of variables.
Since a model could infer velocity in 𝑦-direction from total velocity
and its 𝑥 ,𝑧 components, the entire group of velocity related variables
must be removed together. A detailed table for grouping of these
time series signals is presented in Appendix Section A.1.

Excluded Sensor Group Pairwise Accuracy (%)

Only include speed and acceleration 66.3
Distance information 74.6
Lane information 77.8
Acceleration/break pedal 78.1
Speed 78.8
Gear box 79.0
Acceleration 79.1
Steering wheel/road angle 79.2
Turn indicators 79.3
All included 81.8

Table 5: Feature ablation study through comparing pairwise-
way accuracy after removal of different sensor groups.

Table 5 shows performance ofDriver2vec after having each group
of variables removed from input. Since having “speed and acceler-
ation only" represent a 15.5% drop in pairwise accuracy and that
removing “lane information" and “distance information" also cause
significant accuracy loss, drivers’ behavior is much more than ac-
celeration and turns. In fact, factors such as “lane information" and
“distance information" are more important than velocity-related
items, as they lead to more decrease in prediction accuracy (4%
to 7.2% drop compared to only 1.5% to 3.7% decrease). This result
implies that it is insufficient for models to only use smartphone
data such as accelerometer and GPS for the purpose of drivers
evaluation[32]. We further hypothesize that feature groups such as
“gear box", “acceleration/break pedal", “speed" and “acceleration"
are highly correlated, thus our model is able to recover missing
information despite having a group of features removed.

Model Ablation. We conduct a model ablation study to investigate
the marginal benefit of each model component to overall perfor-
mance. Our reference deep learning model is RNN (LSTM) with its
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last output connected to a linear layer for 51-way driver classifica-
tion using cross-entropy loss. The next improvement is replacing
LSTM with TCN for handling time series data. We then replace
the cross-entropy loss function with the triplet loss setup and add
wavelet features into the embeddings as illustrated in Figure 1.
Performances of these incremental steps are presented in Table 6.
Clearly, the most important component in Driver2vec is temporal
convolution, supporting previous reports [22] on benefits of using
TCN for time series tasks.

Model Pairwise Accuracy
Evaluation Set (%) Test Set (%)

Baseline [21] 67.8 69.8
RNN Cross Entropy 72.3 74.0
TCN Cross Entropy 80.4 80.4
TCN Triplet with LGBM 81.8 83.1

Table 6:Driver2vec performance with different combination
of components.

6 A CASE STUDY: DRIVER EMBEDDING
VISUALIZATION

To investigate the relationship between drivers, we plot driver
embeddings, which are the inputs for the LightGBM driver classifier,
onto a 2-dimensional latent space using t-SNE. As shown on the
left of Figure 3, embeddings of 3 randomly selected drivers are
shown in different colors along with embeddings for rest of the
drivers in gray. Although scattered, each driver’s embeddings are
only present in a region of the graph and have little overlap with
embeddings from other drivers. In contrast, right hand side of
Figure 3 contains the same background, but embeddings from a
group of “indistinguishable" (for which Driver2vec made mistakes)
drivers are colored. Driver2vec made incorrect predictions because
these embeddings cluster in one region of the plot, indicating that
these drivers might have similar driving style.

Figure 3: Left: t-SNE visualization of 3 randomly selected dri-
vers. Right: t-SNE visualization of 3 drivers Driver2vec had
difficulty differentiating. (For both figures, all other drivers
are colored in light gray).

7 CONCLUSION
This paper proposes a deep learning architecture to map a 10 sec-
onds snippet of sensor data into an embedding representing the
driver’s identity. Our proposed model, Driver2vec, is the first to
combine temporal convolutional network with triplet loss for em-
bedding generation. Performance on the core task of pairwise driver
identification is 83.1%, beating a replicated baseline performance

of 69.8% [21]. With high quality embeddings, we are able to graphi-
cally demonstrate that embeddings from the same driver form co-
hesive clusters. For the future, we believe semi-supervised methods
such as contrastive learning and introduction of driver stereotypes
like Universal Background Model [33] for speaker identification
are viable ways to improve model performance while reducing re-
quirement on size of labeled data. To summarize, Driver2vec is an
accurate model for driver identification. The embedding Driver2vec
generates has great potential for many downstream applications.
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A APPENDIX
A.1 Description of the Nervtech Dataset and

Reference Implementation of Driver2vec
We grouped available data from the Nervtech dataset into the fol-
lowing categories, presented in Table 7. As described in Section 5.2,
we removed these groups one at a time to evaluate the impact of
each group on performance of Driver2vec. A sample of the dataset
has been made publicly available on Github.

Source code for Driver2vec has also been made available for
reference on Github.

A.2 LightGBM Hyper-parameter
Hyper-parameters for LightGBM are identified through grid search
over common tuning parameters for LightGBM. The best set of
hyper-parameters is presented in Table 8.

A.3 Setup for N-way Accuracy
N-way Accuracy. The setup for 𝑛 = 2, 3 is that for any given driver,
we enumerated all possible subsets of size 𝑛 (a total of

( 50
𝑛−1

)
subsets

that contain the unmasked ground truth) to generate masks. For

Group: Acceleration
Acceleration (x) Acceleration (y)
Acceleration (z)

Group: Distance information
Distance to next vehicle Distance to next intersection
Distance to next stop sign Distance to next traffic signal
Distance to next yield sign Distance to completion

Group: Gearbox
Gear Clutch pedal

Group: Lane information
Number of lanes present Fast lane
Location in lane (right) Location in lane (center)
Location in lane (left) Lane width

Group: Pedals
Acceleration pedal Brake pedal

Group: Road Angle
Steering wheel angle Curve radius
Road angle

Group: Speed
Speed (x) Speed (y)
Speed (z) Speed (next vehicle)
Speed limit

Group: Turn indicators
Turn indicators Turn indicators on intersection

Group: Uncategorized
Horn Vehicle heading

Table 7: Groups of time series signals used for Driver2vec

LightGBM Parameter Name Value

num leaves 31
num trees 100
max depth 12
metric multi_logloss
feature fraction 0.8
bagging fraction 0.9

Table 8: Hyper-parameters for LightGBM classifier.

𝑛 = 4, 5, we randomly sampled 4000 subsets from all possible com-
binations. This is because storing all

(50
3
)
subsets for 3 drivers or(50

4
)
subsets for 4 drivers would consume excessively large amount

of memory.

Setup for None-of-the-above. We designed the none-of-the-above
option to better represent the scenario in which an unknown driver
is operating the vehicle. For example, the unknown driver can be
a friend who is temporarily using the vehicle, or an indication
of vehicle theft. For standard 𝑛-way accuracy, there is a total of(51
𝑛

)
tuples, out of which

( 50
𝑛−1

)
tuples contain the ground truth

driver and
(50
𝑛

)
tuples that do not contain the ground truth driver.

We introduce none-of-the-above by sampling 1
2
( 50
𝑛−1

)
tuples from

those that contain the ground truth driver and another 1
2
( 50
𝑛−1

)
from those that do not contain the ground truth driver.

At prediction time, unlike standard 𝑛-way accuracy where the
model chooses argmax of predicted probabilities among 𝑛 probabil-
ities, we introduce a threshold representing minimum certainty for

https://github.com/JingboYang/nervtech_driving_simulator
https://github.com/JingboYang/driver2vec
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the model to make prediction. If the sum of probabilities for candi-
date drivers is less than the threshold, the model’s prediction will
be considered "uncertain". In this case, if the ground truth is indeed
not in the given set of candidates, the prediction is considered cor-
rect. With this setup, 2-way accuracy turns into a selection among
(ground truth driver, another driver, not the 2 given candidates).

A.4 Analysis of Hyper-parameters
A.4.1 Interval Length. We define interval length as the length of
time in number of seconds for the time series we look ahead for the
model. Recall that the Nervtech dataset is collected at 100Hz, thus
interval length of 10 seconds represents an input size of 1000 ×𝐶 ,
where 𝐶 is the number of channels (𝐶 = 31 for our experiments).
Interval gap is the time interval between start of a sample. With
a interval gap of 2 seconds, 5 consecutive samples will share a 2
second snippet (located at the beginning of the last sample). All
experiments are conducted using the same hyper-parameters as the
optimal model we found, except interval length. Figure 4 illustrates
interval length and interval gap of our samples. Since data snippets
are sampled after splitting data into training, evaluation and testing
sets, no snippets span across set borders.

Figure 4: Illustration of data sampling using a 10 seconds in-
terval length with a 2 seconds interval gap.

As illustrated in Figure 5, longer time interval leads to higher ac-
curacy. With 30-second sequences, Driver2vec can achieve over 90%
accuracy on evaluation data for pairwise accuracy. This observa-
tion is consistent with high driver identification accuracy achieved
using stacked-RNN auto-encoder using long intervals of low fre-
quency data [26]. However, utility of driver identification decreases
as vehicle adjustments and warnings depend on responsive data
processing. On the other hand, although number of samples scales
inversely with interval length, model performance diminishes. This
fact can be attributed to the difficulty of distinguishing between
drivers of similar style in only a few seconds. This observation par-
tially supports the slightly lower accuracy observed for highway
samples, as driving on highway require less frequent adjustment of
vehicle state.

Figure 5: Effect of interval length on pairwise accuracy with
2 seconds interval gap.

A.4.2 TCN Embedding Size. Embedding size is another important
hyper-parameter we investigated in detail. The size of the Dri-
ver2vec embedding represents the amount of information and level
of complexity associated with driver behavior projected to latent
space. Identifying an appropriate embedding size retains informa-
tion while reduces chance for overfitting. For these experiments,
we keep wavelet embedding size at 30 and only adjust the output
size of TCN layers. For driver prediction, embedding from TCN and
transformations from Haar wavelet are concatenated, as illustrated
in Figure 1. Table 9 compares pairwise prediction accuracy with
various embedding sizes. Total embedding size of 62 has the highest
performance, which means a driver’s behavior can be represented
in approximately 62 dimensions.

TCN embedding size Pairwise Accuracy(%)
(Total embedding size)

16 (46) 79.7
32 (62) 81.8
64 (94) 79.4

Table 9: Pairwise accuracy generated on evaluation data us-
ing different embedding size.
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