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ABSTRACT
There is an abundance of time series data in many domains. Analyz-
ing this data effectively requires deep expertise acquired over many
years of practice. Our goal is to develop automated systems for
time series analysis that can take advantage of proven methods that
yield the best results. Our work is motivated by paleogeosciences
time series analysis where the datasets are very challenging and
require sophisticated methods to find and quantify subtle patterns.
We describe our initial implementation of AutoTS, an automated
system for time series analysis that uses semantic workflows to rep-
resent sophisticated methods and their constraints. AutoTS extends
the WINGS workflow system with new capabilities to customize
general methods to specific datasets based on key characteristics
of the data. We discuss general methods for spectral analysis and
their implementation in AutoTS.
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1 MOTIVATION AND OVERVIEW
Time series data is ubiquitous in many fields of research including
geosciences, finance, economics, health, engineering, environmen-
tal sciences, and social sciences. Quantitative analyses in these fields
use statistical methods to identify trends, patterns, and correlations
within sequential data to ultimately generate signals or filters based
on inference or prediction. Our work focuses on paleoclimate data,
a field of climate science that focuses on understanding past climate
variability. In this area, applications of time series analysis mainly
focuses on signal processing. Although many signal processing
methodologies relevant to time series analysis are widely available
in popular packages and libraries in Matlab, Python, and R, there
are important aspects that require sophisticated expertise:

(1) Identifying methods and set parameters that are appropriate
for a given dataset. Paleoclimate datasets are often unenvely-
spaced in time, requiring specific methods designed to deal
with missing values such as the Lomb-Scargle Fourier Trans-
form [24, 27, 28] and the weighted wavelet Z-transform
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(WWZ, [3, 22, 33]) or hypothesizing over missing values
using, for instance, interpolation or singular spectrum de-
composition.

(2) Preparing data for analysis, including detrending, standard-
ization, and removal of outliers.

(3) Specifying the null hypothesis. To evaluate the significance
of spectral peaks in a climate time series, a researcher needs
to generate a null hypothesis. Ideally, climatologists would
want to use long runs of unforced climate simulations from
numerical models. However, these series are prohibitively
expensive to generate, and researchers rely on autoregressive
models, most often of order 1. Depending on the complexity
of these models, several parameters need to be set to simulate
the behavior of climate (e.g., the autocorrelation coefficient
in AR(1) models), which are either obtained from the series
itself or from prior knowledge.

Paleoclimatology is an incredibly interdisciplinary field, incorporat-
ing expertise in physics, chemistry, sedimentology, biology, ecology,
data science, and computer science to name a few. However, the
researchers best able to understand the paleoclimate data are often
not well-versed in data science and, in particular, time series anal-
ysis. Our goal is to develop automated machine learning for time
series analysis. In previous work, we explored the development of
automated machine learning systems for classification problems
[12] and for text analytics [11, 15, 16]. A number of techniques have
been developed for automated machine learning in recent years
[2, 4]. These approaches search the solution space by consider-
ing different types of algorithms and exploring parameter settings,
while optimizing for some target metric. Unfortunately, for time
series analysis this kind of approach is unlikely to work well since
it is very difficult to characterize a new time series (e.g., the noise
to signal ratio, outliers, and the significance of trends in the data)
from first principles without relying on proven methods that result
from extensive practical experience and generalization. In addition,
one must rely on synthetic series with a known behavior for ap-
proach validation. We are also interested in combining automated
approaches for time series analysis with human steering, an ap-
proach that we have found effective in other contexts [8]. Finally,
we aim to incorporate and compare approaches and lessons learned
from different disciplines studying time series data.

Our initial work focuses on time series analysis, as a precursor
to prediction tasks, and their implementation in AutoTS. Our main
contribution is: (1) the compilation of expert-grade knowledge and
implemented functions for spectral analysis; (2) an implementation
of this knowledge in semantic workflows to enable automated
generation of solutions through an intelligent workflow system;
and (3) novel capabilities for workflow systems needed to support
this automation, specifically data profiling and the ability to skip
workflow steps.

2 APPROACH
2.1 Working with Paleogeosciences Data
Paleogeosciences group all geoscience disciplines as applied to the
past, including paleoclimatology, paleoceanography, paleohydrol-
ogy, paleoseismology to name a few. These disciplines all have in
common the need to rely on proxy data to make inference about

a past event. For instance, paleoclimatologists do not have tem-
perature records from thermometers going back millions of years.
Instead, they rely on natural archives (e.g., trees, ice cores, marine
sediments) which retain information about the environment in
which they were deposited. Paleoclimatologists can make measure-
ments on these archives and interpret the climate signal. The most
well-known example is the ring of trees, whose width vary with fa-
vorable (e.g., warmer, wetter conditions) vs unfavorable conditions.
In this example, the tree ring width act as a proxy for past changes
in temperature and precipitation.

The need for a proxy does not only apply to the environmental
parameter being reconstructed but also extend to the way in which
the time axis is obtained. Consider a marine sediment. Sediments
accumulate on the seafloor over time, preserving a rich history of
past ocean variability. Scientists obtained cores that represent this
deposition history and make measurements on a finite quantity
of the sediments at various depth intervals that are essentially
representing time in the sedimentary archive. These sediments can
be dated using the same radiocarbon techniques used to estimate
the age of human settlements in archaeology, allowing to link the
depth of the environmental change to time.

Because of the way paleoclimate series are obtained, signal pro-
cessing is not a straightforward task:

(1) paleoclimate time series are almost always unevenly spaced
in time since, for instance, deposition of sediments within
the marine environment varies through time so that a phys-
ical 1 cubic centimeter sample may represent 100 years or
1000 years within the same archive. Although the Lomb-
Scargle Fourier Transform ([24, 27, 28] and theWWZmethod
([3, 22, 33]) deal with such datasets, they come with signifi-
cant tradeoffs ([29]). On the other hand, interpolation can
bias the statistical results and enhance the low-frequency
components at the expense of the high-frequency compo-
nent ([29]).

(2) paleoclimate time series are extremely noisy, stemming both
from analytical error and weather noise.

(3) paleoclimate time series have large uncertainties in both time
and the environmental parameter. The uncertainty arises from
analytical error and the interpretation of the proxy.

(4) paleoclimate times series display long-term, deterministic trends,
whichmaymask other signals of smaller magnitude that may
be more relevant to the problem at hand. Therefore, detrend-
ing is often necessary. If not done carefully, the detrending
can result in new, spurious signals in the analysis.

However, the ability to perform statistical analysis on paleocli-
mate time series is necessary to understand how our climate has
changed in the past. In particular, time series analysis allows paleo-
geoscientists (1) to identify periodicities, which may be associated
with known phenomena (e.g.[14]) and forcing (e.g., [1, 17, 20]; (2)
to investigate the temporal continuum to understand how energy
within the Earth system is redistributed across various timescales
(e.g., [18, 25]); (3) to assign time to the long geologic record of past
climate variability (e.g., [13, 23]; (4) to filter the series to highlight
specific features in climate datasets (e.g., [20]); (5) to detect regime
shifts (e.g., [19, 26]; and (6) to identify coherent spatiotemporal
variability between multiple independent timeseries (e.g., [31]).
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2.2 Spectral Analysis in the Paleogeosciences
Consider spectral analysis, a method to tease out periodic signals
within time series data. In the context of paleoclimatology, it is
often used to identify patterns of variability to phenomena with
known periodicity such as the El Niño-Southern Oscillation or so-
lar cycles as a basis for a mechanistic causation [1]. It has also
been used to validate climate models [35]. However, paleoclimate
time series data are often unevenly-spaced in time, noisy, and con-
tains a significant amount of outliers. Furthermore, most include
long-term trends reflective of known processes within the climate
system (e.g., Milankovitch cycles, insolation), which are not nec-
essarily of interest. Therefore, a common method (Fig. 1) involves
significant pre-processing (standardization, detrending, removal of
outliers, and hypothesizing over missing values) prior to analysis.
Each pre-processing step must be performed in a particular order.
For instance, interpolation results in less spurious values when
performed on detrended series.

Figure 1: An expert-grade method for spectral analysis,
shown at the top, includes pre-processing of the data fol-
lowed by transformation into the frequency domain and sig-
nificance testing. Each step can be implemented using dif-
ferent functions, shown in the middle. The selection of an
appropriate function depends on the characteristics of the
time series dataset. Functions in red illustrate such a selec-
tion. All functions are available through the Pyleoclim pack-
age [21]

.

In order to validate this method, we generated 720 synthetic
time series with various signals, noise-to-signal ratio, trends (linear
and polynomial), number of outliers and missing values, gaps, and
underlying spectrum and calculated a cost function that optimizes
the presence of peaks at the prescribed frequency, the width-to-
height ratio of the peak (an indication of spectral leakage), and the
assertion that the prescribed peaks could be significantly detected
above the 95% AR(1) ensemble. The cost function was also used
to search for the best default hyperparameters for each spectral
method.

An example of such a validation output is shown in Fig 2. In this
instance, we used the pre-processing steps highlighted in red in
Figure 1 and three different analysis methods: the Lomb-Scargle

transform, WWZ and multitaper method. Note that the hypothe-
sizing missing value step was omitted for Lomb-Scargle and WWZ
since these methods do not require evenly-spaced data.

Figure 2: Spectral density for a synthetic timeseries with pre-
scribed periods of 20 and 80, a polynomial trend of order 2, a
white noise/signal ratio of 0.5, 40% missing values, and out-
liers 5 to 7 standard deviation away from the mean using
MTM, WWZ and Lomb-Scargle methods.

While the MTM and WWZ methods capture the prescribed pe-
riodicities of 20 and 80, the Lomb-Scargle method fails to detect
the higher frequency signal. The Lomb-Scargle transform is known
to introduce significant bias in the spectral slope [29]; but it has
nonetheless been popularized within a package distributed to the
paleoclimate community. This highlights the need to further vali-
date our methods with the help of synthetic time series.

In specific cases, it is possible to validate the periodogram against
the theoretical spectrum, an approach we have used with the WWZ
method. This method faithfully captures the spectral slope for vari-
ous underlying spectrum (red noise, colored noise, red noise with
missing values, red/white noise mixture). However, since it is based
on wavelets, it is fairly expensive to compute and may not be appli-
cable to large datasets.

In the course of our validation work, we created a python pack-
age, Pyleoclim [21] that contains the core functions for spectral
analysis and a series of notebooks describing the workflows. This
provided the core knowledge for autoTs. In addition the Pyleoclim
package contains methods for wavelet and cross-wavelet analysis,
field correlation with false discovery rate, causality and (multi-
channel) singular spectrum analysis.

Automating this spectral analysis workflow is challenging since
it requires:

• Customized method instantiation: Each abstract step in the
template (e.g., detrending) needs to be instantiated with spe-
cific functions (e.g., linear detrending, polynomial detrend-
ing, Fig 1). The system should also allow for skipping steps
depending on specific criteria, such as the spectral method
not requiring evenly-spaced data and therefore the step for
hypothesizing over missing values can be skipped.

• Dynamic extraction of data characteristics: The datasets need
to be dynamically profiled to extract their characteristics
as they are generated in order to decide on specializing or
skipping method steps. For instance, removing outliers will
result in a series with missing values after this step and,
therefore, will require an interpolation step for analysis via
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MTM even if the original input dataset did not contain any
missing values.

2.3 Implementation in Semantic Workflows
AutoTs incorporates the methods, primitive functions, constraints,
and data profilers described in Sec 2.2 and uses an intelligent work-
flow system to reason about all that knowledge in order to automat-
ically generate time series analysis that are appropriate for a given
dataset. AutoTs uses and extends WINGS (Workflow Instantiation
and Generation System), an intelligent workflow system that uses
semantic representations to capture abstract multi-step methods,
and reasons about them based on constraints coming from datasets,
functions, and methods [6, 10, 11]. WINGS uses Semantic Web
standards (OWL, RDF, PROV) [32] for representing workflows and
constraints [5]. WINGS uses AI planning algorithms, and in partic-
ular, skeletal plan refinement, to turn abstract-level workflows into
fully instantiated executable workflows for data analysis. WINGS
is well suited for our problem because of several existing features:

• The use of workflow templates to represent all the steps in
commonly used data analysis methods [7], which we have
done in many domains (e.g., [30, 34]). In this particular ex-
ample, we have captured the method presented in Fig 1 as
an abstract workflow template in WINGS (Fig 3).

• The use of abstract workflow components to represent ab-
stract steps in methods.

• The use of primitive components to represent primitive func-
tions and associate them to the abstract components [10].

• The use of metadata to capture data characteristics. When
the data is uploaded in WINGS, users assert the values of
the metadata properties, which can then be used to express
constraints.

• The use of constraints to restrict the use of components.
WINGS includes several types of constraints that represent
different kinds of interdependencies across components in a
workflow as well as interdependencies between components
and datasets [6, 10, 11]. For instance, the invalidation rule
makes the MTM component invalid in workflows where its
input dataset has missing values. Other type of constraints
include metadata propagation constraints and parameter
setting constraints.

• The use of workflow reasoning algorithms based on AI plan-
ning that propagate constraints through a workflow and
automatically generate executable workflow instances from
abstract workflow templates [6].

WINGS requires two extensions in order to support the automa-
tion of time series analysis: (1) dynamic data profiling and (2) op-
tional workflow steps, which we discuss next.

2.4 New Capabilities to Support Automation of
Time Series Analysis

2.4.1 Dynamic Data Profiling. WINGS allows users to specifymeta-
data by hand. However, AutoTS requires a mechanism to automati-
cally run data profilers on datasets and generate metadata so that
the resulting data characteristics can be used in the constraints.
A data profiler is an executable that takes a dataset as input and
generates a file with key value pairs that correspond to metadata

Figure 3: An abstract workflow template (left) illustrates
how WINGS capture all the steps involved in the spectral
analysis method shown in Fig 1. Method steps are in grey,
their dataflow in blue, and parameters in green. Steps are
represented in an ontology (right), where each abstract com-
ponent is a class that can be instantiatedwith primitive com-
ponents represented as subclasses.

properties extracted and their values. When a new dataset is up-
loaded, WINGS immediately executes the data profilers for its cor-
responding datatype, and uses the resulting data characteristics to
assert metadata properties for the dataset.

We are extending WINGS with the ability to dynamically trigger
the data profilers during execution. This will enable data profiling
of new datasets generated by each workflow step, which will allow
WINGS to automatically customize each step to its input dataset.

2.4.2 Optional Workflow Steps. WINGS currently requires that
each and all the steps of an abstract workflow are mapped to an
executable component. For AutoTS, we need to be able to decide
whether or not a step in the method will be included in the final ex-
ecutable workflow. For instance, a HypothesizeOverMissingValues
step is not needed when the spectral method is set to Lomb-Scargle
or WWZ.

We created a new type of constraint in WINGS. When the con-
straint expression is satisfied, the abstract step is instantiated to a
“no operation” step that simply passes its inputs to the next step
in the workflow. For instance, a "no operation" constraint for the
HypothesizeOverMissingValues step would have an expression that
would trigger if the input time series is already evenly-spaced. The



AutoTS MileTS ’20, August 24th, 2020, San Diego, California, USA

requirement of being evenly spaced is a separate constraint asso-
ciated with the MTM step, and that requirement is propagated to
earlier workflow steps by the WINGS workflow reasoners.

Fig 4 shows two workflow instances for the general abstract
workflow template shown in Fig 3. The workflow on the left uses
the WWZ component, so the HypothesizeOverMissingValues step
is skipped (indicated by a light color). The workflow on the right
uses the MTM component, which requires its input to be evenly
spaced, therefore the HypothesizeOverMissingValues step will be
included.

Note that if the output of the outlier detection step is evenly
spaced, then the HypothesizeOverMissingValues step should be
skipped in both workflows of Figure 8. The constraints would en-
able this, as long as we have the metadata required for that outlier
detection output once executed. Having this metadata available to
check constraints during execution requires that data profiling oc-
curs dynamically after each workflow step is executed, a capability
that we are adding to the WINGS execution engine following the
approach described in [9].

Figure 4: A step is skipped in the workflow instance on
the left, because a later step (WWZ) does not need that
data transformation. The workflow instance on the right in-
cludes the step because a later step (MTM) requires it.

3 CONCLUSION
We have presented a novel approach to automate time series analy-
sis using semantic workflows that capture expert knowledge. Our
main contributions are: 1) the compilation of expert-grade knowl-
edge and implemented functions for spectral analysis, 2) an im-
plementation of this knowledge in semantic workflows to enable
automated generation of solutions through an intelligent workflow
system; and 3) novel capabilities for workflow systems needed to
support this automation, specifically data profiling and the ability
to skip workflow steps. We have implemented this approach in
AutoTS, which extends the WINGS intelligent workflow system
and incorporates extensive knowledge about spectral analysis.

In future work, we plan to continue to use synthetic data to
uncover new constraints about the components of spectral anal-
ysis and other time series analysis methods. While our work to
date uses default hyperparemeters for each method, we plan to do
parameter sweeps on our collection of synthetic series to uncover
new constraints, better default parameters that take into account
the entire processing pipelines and targeted defaults for different
datasets. We also plan to expand our work to include other time
series analysis methods, such as wavelet analysis, multi-variate
series analysis, including cross-wavelet, field correlation with false
discovery rate, and causality, and ultimately to do forecasting using
deep learning approaches such as long short-term memory (LSTM).
We are interested in testing our approach with real time series
data beyond climate, particularly with financial time series data.
As we gain more experience in the challenges of automating time
series analysis, we will explore the role of human-guided machine
learning [8] as a viable path to allow human steering of automated
machine learning to incorporate intuition and creative uses of data.
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