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ABSTRACT
Collections of time series with hierarchical and/or grouped struc-
ture are pervasive in real-world forecasting applications. Further-
more, one is often required to forecast across multiple levels of the
hierarchy simultaneously, and to have all forecasts reconcile. This
paper proposes a new approach to reconciliation, whereby a regu-
larization term penalizes deviation from the known structure of the
collection in a learned embedding space. Experiments on real-world
Australian travel data demonstrate that the proposed regularization
outperforms state-of-the-art MinT reconciliation [24] in three dif-
ferent forecasting settings. These settings include two challenging
forecasting settings: short training sequences and a long forecast
horizon. We also show that our proposed regularization term is
robust to the relative size of the learned embedding space.
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1 INTRODUCTION
Many high-dimensional, real world collections of time series exhibit
complex hierarchical and grouped structure. For example, the inter-
national sales of a multinational company can be disaggregated into
sales at the country, state/province, and county levels. Additionally,
coarse groupings of different products can be separated into finer
and finer groupings until each product is represented by an indi-
vidual series. In forecasting applications, one is often required to
make forecasts for multiple different levels of the hierarchy simul-
taneously. It follows that leveraging the inherent structure of the
collection can produce better forecasts.

Two classic approaches to utilizing hierarchical structure are
“bottom-up" forecasting [6, 12, 20] and “top-down" forecasting [7,
13]. As its name suggests, the “bottom-up" methodmakes individual
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predictions at the most diffuse level and then sums these predictions
according to the hierarchical structure. Similarly, the “top-down"
approach makes an initial forecast for the most aggregate level and
then estimates the disaggregation proportions.

Recent approaches propose post-hoc reconciliation methods
that can be applied after forecasting all of the series individually
[8, 22, 24]. Specifically, van Erven and Cugliari propose a minimax
optimization problem where the optimal solution makes the mini-
mum possible adjustments to reconcile a set of base forecasts [22].
Meanwhile, Wickramasuriya et al. learn a transformation that min-
imizes the trace of the covariance matrix of the reconciled forecast
errors, under the assumption that the base forecasts are unbiased
[24]. They call this approach minimum trace (MinT) reconciliation.

More recently, Mishchenko et al. propose a self-supervised rec-
onciliation term that can be added to any maximum likelihood
objective and that only constrains the forecasts for future time
steps [11]. This approach is attractive because it permits concurrent
optimization of both the forecasting and reconciliation objectives.
However, this optimization is only efficient if the function being
optimized defines unique parameters for each individual time se-
ries. This allows for the usage of a randomized coordinate descent
algorithm.

This deficiency is also non-trivial, as global forecasting models,
which share parameters across the entire collection of time series,
have demonstrated preeminence across multiple model families
in recent years. Recurrent models include DeepAR [17], the deep,
recurrent quantile forecaster of Wen et al. [23], and deep state space
models [15], among others [1, 2, 9, 16]. Temporal convolutional
models include the WaveNet-inspired architecture of Borovykh et
al. [3, 21] and the DeepTCN model of Chen et al. [4]. Finally, matrix
factorization approaches include the temporally regularized matrix
factorization of Yu et al. [25] and the DeepGLO model of Sen et al.
[19].

This paper builds off of the learned categorical embedding space
from the DeepAR modeling approach [17]. In DeepAR, a unique
embedding is learned for each series in the collection. These em-
beddings are used, in conjunction with other features, as input
to the recurrent component of the model. In this work, we add a
regularization term to the embedding space that penalizes devia-
tion from the known structure of the hierarchy. Specifically, we
penalize the sum of the distances between each parent series and
all of its descendants at the bottom level of the hierarchy. We use
descendants at the bottom level to express constraints uniquely,
following the examples of [5, 24]. We also normalize the penalty
by the total number of constraints. This regularization encourages
the embeddings of descendants to be similar to the embeddings of
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their parents. This also expresses the motivation behind our regu-
larization: children are more similar to their parents than to other
series in the hierarchy. Finally, our approach also permits efficient
stochastic optimization of models with global parameters because
it applies the regularization to the embedding space instead of the
output space.

We demonstrate the efficacy of our proposed approach on the
data set of Australian travel flows presented in [8, 24]. This data
set contains 555 total time series and 251 hierarchical constraints.
It is also the largest public collection of time series with both hi-
erarchical and grouped structure of which we are aware. On this
data set, our embedding reconciliation outperforms state-of-the-art
MinT reconciliation in three different forecasting settings. These
settings include two challenging forecasting settings: short training
sequences and a long forecast horizon. Furthermore, we demon-
strate that our approach is robust to the relative size of the learned
embedding dimension.

2 BACKGROUND

Figure 1: Simple, three-level hierarchical time series

Our notation follows the example of Corani et al. [5]. The hierar-
chy contains 𝑛 total time series,𝑚 of which are at the most diffuse
level (the shaded nodes in the example in Figure 1). The vector of
observations for all series at time 𝑡 is y𝑡 = (𝑦1𝑡 , . . . , 𝑦𝑛𝑡 ) ∈ R𝑛 . We
can partition y𝑡 into [u𝑡 , b𝑡 ], where b𝑡 ∈ R𝑚 are the observations
of the series at the most diffuse level (𝐴𝐴,𝐴𝐵, 𝐵𝐴 and 𝐵𝐵 in Figure
1) and u𝑡 ∈ R𝑛−𝑚 are the observations of aggregate series across
all other levels of the hierarchy (𝐴, 𝐵 and 𝑇𝑜𝑡𝑎𝑙 in Figure 1).

The hierarchical structure of the collection can be represented
with a summing matrix, S ∈ R𝑛×𝑚 , such that y𝑡 = Sb𝑡 . S contains
one row for each series in the collection, but only contains columns
for those series in themost diffuse level. The aggregation constraints
determine each individual entry of S:

S𝑖 𝑗 =

{
1, if series 𝑗 is included in the aggregation to series 𝑖
0, otherwise

.

Thus, S represents each series in the hierarchy as a sum of series at
the most diffuse level. This means that S𝑛−𝑚+1:𝑛,1:𝑚 ∈ R𝑚×𝑚 , the

sub-matrix of S including only those series from the most diffuse
level, is I ∈ R𝑚×𝑚 .

Finally, the task is to make forecasts for all time series in the
collection for multiple time steps in the future given training ob-
servations 𝑡 = 1, . . . , 𝑡0. We let ŷ𝑡+ℎ = (𝑦1

𝑡+ℎ, . . . , 𝑦
𝑛
𝑡+ℎ) ∈ R𝑛 rep-

resent the vector of forecasts for all series at time 𝑡 + ℎ, where
𝑡 = 𝑡0 + 1, . . . ,𝑇 .

2.1 MinT Reconciliation
MinT reconciliation [24] learns a matrix P, such that

ỹ𝑡+ℎ = SPŷ𝑡+ℎ,

where ỹ𝑡+ℎ are the reconciled forecasts at time 𝑡 + ℎ. Specifically,
Wickramasuriya et al. derive P such that it minimizes the trace of
the covariance matrix of the reconciled forecast errors,

Tr(Var( [y𝑡+ℎ − ỹ𝑡+ℎ |y1, . . . , y𝑡0 ])),

under the constraint SPS = S. This constraint enforces that the
reconciled forecasts are unbiased as long as the original forecasts
are also unbiased. The expression for P depends on the covariance
matrix of the original forecast errors:

W = E[(y𝑡+ℎ − ŷ𝑡+ℎ) (y𝑡+ℎ − ŷ𝑡+ℎ)⊺ |y1, . . . , y𝑡0 ] .

Different strategies exist for estimating W and in our experiments
we use the shrinkage estimator from [18]. This estimator shrinks
the off-diagonal elements of W toward zero, and it performs the
best in the experiments in [24].

2.2 Self-Supervised Reconciliation
In [11], Mishchenko et al. propose a reconciliation term of the form:

𝜆

𝑇∑
𝑡=𝑡0+1

𝐶∑
𝑐=0

𝑦𝑐0𝑡 −
𝐽∑
𝑗=1

𝑦
𝑐 𝑗
𝑡


2

.

This term sums over all of the constraints𝐶 in the hierarchy, where
𝑦𝑐0𝑡 and the 𝑦𝑐 𝑗𝑡 are the forecasts for the root node and leaf nodes,
respectively, in constraint 𝑐 at time 𝑡 .

Notice that the regularization term only applies to time steps
𝑡 = 𝑡0 + 1, . . . ,𝑇 . Therefore, it only enforces reconciliation between
future predictions and not between in-sample predictions, which is
the reason for the “self-supervised" appellation. It is not necessary
to constrain in-sample predictions because the forecasting loss also
implicitly minimizes the reconciliation loss over the training time
steps. Specifically, if we assume accurate training data, y𝑡 must
satisfy the hierarchy when 𝑡 = 1, . . . , 𝑡0, but it is not guaranteed to
do so for 𝑡 = 𝑡0 + 1, . . . ,𝑇 .

Finally, Mishchenko et al. use a randomized block coordinate
descent algorithm to optimize their objective function. However,
the use of a coordinate descent algorithm assumes that a separate
parametric function ŷ𝑖

𝑡+ℎ = 𝑓𝜃𝑖 (X𝑖
𝑡+ℎ) exists for each time series,

where 𝜃𝑖 are the parameters for series 𝑖 . These separate parametric
functions allow the forecasts that are not being updated, but are
needed to compute the reconciliation term, to remain fixed. On the
other hand, a global model, which learns a shared parametric func-
tion ŷ𝑖

𝑡+ℎ = 𝑓𝜃 (X𝑖
𝑡+ℎ), where 𝜃 is shared across all series, requires

that all forecasts are updated at each iteration. This is necessary in
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order to compute the reconciliation term.1 This prevents stochas-
tic optimization routines that sample mini-batches over the entire
collection and thus does not scale as the number of series in the
collection increases.

3 METHOD
We propose a reconciliation term that is similar in form to that of
Mishchenko et al., but which penalizes distance in a learned embed-
ding space instead of distance in the output space. The first version
of our regularization uses the squared 𝐿2 norm as the distance
metric:

𝜆

∑𝐶
𝑐=0

∑𝐽
𝑗=1 ∥𝐸𝜙 (v𝑐0) − 𝐸𝜙 (v𝑐 𝑗 )∥2

𝐶
. (1)

Here, 𝐸𝜙 is an embedding matrix with learned parameters 𝜙 ,
which maps the set of one-hot categorical vectors, representing
individual time series {v ∈ {0, 1}𝑛 : ∑𝑛

𝑖=1 𝑣𝑖 = 1}, to 𝑑-dimensional
real-valued representations, 𝐸𝜙 : v → R𝑑 . Our constraint is similar
to [11] in that we sum over all constraints𝐶 , where v𝑐0 and v𝑐 𝑗 are
the one-hot encodings of the root node and leaf nodes, respectively,
in constraint 𝑐 . However, instead of penalizing the distance between
each parent series and the sum of its children, we penalize the
the sum of the distances between each parent series and all of
its children. Furthermore, we normalize by the total number of
constraints. Finally, notice that this formulation obviates the need
to sum over time steps, as 𝐸𝜙 (v) is time-invariant.

We also experiment with using the cosine distance instead of
the squared 𝐿2 norm as the reconciliation distance metric, which
leads to a second version of our regularization term:

𝜆

∑𝐶
𝑐=0

∑𝐽
𝑗=1 1 −

𝐸𝜙 (v𝑐0) ·𝐸𝜙 (v𝑐 𝑗 )
∥𝐸𝜙 (v𝑐0) ∥ ∥𝐸𝜙 (v𝑐 𝑗 ) ∥
𝐶

. (2)

This second version is motivated by the observed correlation
between cosine similarity and word similarity in learned word
vector representation spaces [10, 14]. Wewill compare the empirical
performance of the two distance constraints in Section 4.

In addition to improved empirical performance, our regulariza-
tion presents two distinct advantages over previous approaches.
First, like [11], our regularization term permits concurrent optimiza-
tion of both the forecasting and reconciliation objectives without
requiring a separate, post-hoc reconciliation step. Although it is
true that neither our method nor [11] guarantee perfect reconcil-
iation, the hyperparameter 𝜆 allows both methods to move on a
continuum of reconciliation, from lightly encouraged to all but
mandated. This permits flexibility in choosing 𝜆 across different
applications. Furthermore, it is also possible to apply MinT reconcil-
iation as an additional post-processing step to the forecasts that our
method generates. This provably produces even better predictions
[22, 24].

Second, our approach is more efficient than the method of
Mishchenko and colleagues. Our regularization only requires evalu-
ating the function 𝐸𝜙 (v𝑖 ), instead of evaluating the function 𝑓𝜃 (X𝑖

𝑡 ),
1One could design a batching scheme that samples over constraints. However, this
seems to present a significant challenge for most data sets because neither the number
of series included in each constraint nor the number of constraints containing each
series are not uniformly distributed.

for 𝑖 = 1, . . . , 𝑛 and 𝑡 = 𝑡0 + 1, . . . ,𝑇 . Specifically, in each iteration,
our approach only requires a single matrix multiplication, while
the approach of Mishchenko and colleagues requires a forward
pass through the entire model. Additionally, recall that 𝐸𝜙 (v𝑖 ) is
time-independent and thus our reconciliation term does not require
summation over all future time steps. Table 2 presents an empirical
comparison of the two regularization approaches. To summarize,
our regularization term permits batched, stochastic optimization of
a forecasting model with global parameters, while the approach in
[11] necessitates un-batched, deterministic optimization.

4 APPLICATION
4.1 Data
We performed our empirical experiments on the Australian travel
flow data presented in [8] and [24].2 Observations were recorded
with monthly frequency from 1998 to 2016 and satisfy both a ge-
ographic hierarchy and a travel type grouping. The geographic
hierarchy comprises four levels: country, state, zone and region.
Furthermore, each series at each level can be sub-divided into four
different types of travel: holiday, visiting friends and relatives, busi-
ness, and other [24]. Thus, the data set contains 555 total time series
and 251 total hierarchical and grouping constraints.

4.2 Evaluation
We followed the example of Wickramasuriya et al. [24] and evalu-
ated forecasts using the root mean squared error (RMSE), averaged
over all folds and over all series at separate levels of aggregation.
Specifically, we present the mean and standard deviation over 𝑓
rolling folds (𝑓 depends on the specific experiment, but remains
constant for all methods in that experiment) of the RMSE, averaged
over all series at specific level of aggregations. This means that
the standard deviation in the presented tables only accounts for
variation in the average RMSE across folds. It does not account
for variation in the individual RMSEs within folds. From here on,
we refer to the RMSE averaged over all series at a specific level of
aggregation as the aRMSE (average RMSE). We present results at
three separate levels of aggregation: all series across all levels, the
single series at the top level, and all series at the most disaggregated
level. In each experiment, the baseline forecast was produced by
a DeepAR model that included a learned embedding space that
was not regularized. The forecasting objective was to estimate the
parameters of a time-varying negative binomial distribution, as
the travel flow data are positive. Although the travel flow data are
real-valued and not count data, the negative binomial distribution
produced better forecasts than a Student’s 𝑡-distribution, which is
continuous, but has support over the reals. The settings of other
model and optimization hyperparameters can be found in Appendix
A.

4.3 Forecasting Comparison
In our initial experiment, we compared six different reconcilia-
tion approaches: self-supervised reconciliation [11], post-hoc MinT
reconciliation [24], squared 𝐿2 embedding reconciliation, cosine

2Publicly available here: https://robjhyndman.com/publications/hierarchical-tourism/.
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Table 1: Mean ± standard deviation aRMSE (averaged over all series at three separate levels of aggregation) across 10 folds

Method All Levels (555 series) Top Level (1 series) Bottom Level (304 series)

DeepAR Baseline 181.7 ± 42.1 2426 ± 1008 59.6 ± 4.0
+Self-Supervised 1411.9 ± 90.4 24520 ± 1792 174.7 ± 8.9
+MinT 177.7 ± 28.4 2237 ± 653 58.5 ± 4.3
+Squared 𝐿2 163.1 ± 32.2 2037 ± 736 58.6 ± 4.8
+Cosine Distance 162.7 ± 30.0 2074 ± 663 58.8 ± 4.2
+Squared 𝐿2 and MinT 163.5 ± 27.1 1955 ± 573 57.4 ± 5.0
+Cosine Distance and MinT 160.8 ± 29.3 1870 ± 601 57.5 ± 4.7

Table 2: Wall time for 1 epoch of training (50 iterations) on
1 NVIDIA K80 GPU

Method Wall Time, 1 Epoch

DeepAR Baseline 6s
+Self-Supervised 20s
+Squared 𝐿2 17s
+Cosine Distance 17s

distance embedding reconciliation, squared 𝐿2 embedding recon-
ciliation with post-hoc MinT reconciliation, and cosine distance
embedding reconciliation with post-hoc MinT reconciliation. In
this experiment, we set the forecast horizon to 12 months and split
the 228 total observations into rolling folds with training lengths
of 108 observations. This produced 10 total folds.

The addition of either embedding reconciliation term substan-
tially reduced the mean aRMSE, compared to either the baseline
or MinT reconciliation forecasts (Table 1). Both embedding rec-
onciliation terms also caused the model to converge to a slightly
higher training loss (Figure 2, Appendix B). This is evidence that
the regularization term helped prevent overfitting. Furthermore, we
observed that the combination of an embedding reconciliation term
and MinT reconciliation reduced the forecast error even further, in
all but one, exceptional case.3

We also observed that the relative reduction in average forecast
error was substantially greater for the top level series than for the
bottom level series. Specifically, the four methods that included
embedding reconciliation terms decreased the mean aRMSE in the
top level series by between 14.5% and 22.9%. However, they only
decreased the mean aRMSE in the bottom level series by between
1.4% and 3.8%. This indicates that the embedding reconciliation
term is especially proficient at reducing the forecast error of the
top level series.

Furthermore, we observed a substantial increase in forecast
error when we added the self-supervised reconciliation term of
Mishchenko et al. This occurred despite setting 𝜆 = 10e−7, substan-
tially lower than 𝜆 = 1 and 𝜆 = 10 from [11]. We chose 𝜆 = 10e−7
because it was proportional to the ratio between the forecasting
loss and the reconciliation loss at the beginning of training in our
experiments. The reason for the significant increase in forecast

3This exception is likely due to a poor estimate of W, the covariance matrix of the
original forecast errors.

error is that the form of the self-supervised reconciliation term ex-
erts a strong bias toward low-valued forecasts. Specifically, all else
being equal, forecasting low values for all series incurs a smaller
reconciliation penalty than forecasting high values for all series.

Finally, we compared the time it took for each of the methods
to complete one epoch of training (Table 2). We observed that one
epoch of training took approximately three times as long when a
regularization term was included in the model compared to when
one was not. However, we also observed that training with our
proposed embedding term was approximately 15% more efficient
than training with the self-supervised reconciliation term.

4.4 Short Training Sequences
Next, we compared the same set of reconciliation methods (except-
ing self-supervised reconciliation) on artificially shortened training
sequences. Specifically, we limited the training length in each fold
to 54 observations and maintained a forecast horizon of 12 months.
This produced 14 total folds.

In this setting, the addition of the squared 𝐿2 embedding rec-
onciliation reduced the mean aRMSE by approximately the same
amount as post-hoc MinT reconciliation (Table 3). On the other
hand, the addition of the cosine distance embedding reconciliation
reduced the mean aRMSE significantly more than post-hoc MinT
reconciliation. We also made a number of observations that were
similar to those from the initial experiment. First, both embedding
reconciliation terms caused the model to converge to a higher train-
ing loss (Figure 3, Appendix B). This presents additional evidence
that the regularization term helps prevent overfitting, especially
in the context of short training sequences. Second, the relative re-
duction in average forecast error was again substantially greater
for the top level series than for the bottom level series. And finally,
the combination of the cosine distance regularization and MinT
reconciliation again led to the smallest forecast error, this time
across all three levels of aggregation.

4.5 Long Forecast Horizon
In our next experiment we compared the performance of the rec-
onciliation methods in the context of a longer forecast horizon.
Specifically, we set the forecast horizon to 24 months and kept the
training sequence length fixed at 108 observations. This produced
four total folds.

Once again, in this setting, adding either embedding reconcilia-
tion term reduced the mean aRMSE, compared either to the baseline



Forecasting HTS with a Regularized Embedding Space MileTS ’20, August 24th, 2020, San Diego, California, USA

Table 3: Mean ± standard deviation aRMSE (averaged over all series at three separate levels of aggregation) across 14 folds with
training sequences of length 54

Method All Levels (555 series) Top Level (1 series) Bottom Level (304 series)

DeepAR Baseline 190.5 ± 49.6 2494 ± 992 60.3 ± 4.3
+MinT 178.9 ± 27.0 2223 ± 591 59.0 ± 4.1
+Squared 𝐿2 180.2 ± 35.2 2195 ± 743 61.5 ± 5.6
+Cosine Distance 169.3 ± 24.3 2101 ± 556 60.2 ± 4.3
+Squared 𝐿2 and MinT 182.5 ± 36.4 2283 ± 760 59.5 ± 4.1
+Cosine Distance and MinT 165.1 ± 25.5 1892 ± 546 58.9 ± 3.8

Table 4: Mean ± standard deviation aRMSE (averaged over all series at three separate levels of aggregation) across 4 folds with
forecast horizon of length 24

Method All Levels (555 series) Top Level (1 series) Bottom Level (304 series)

DeepAR Baseline 210.5 ± 90.9 2888 ± 1692 62.9 ± 8.9
+MinT 207.3 ± 82.0 2811 ± 1548 60.2 ± 8.5
+Squared 𝐿2 197.9 ± 33.6 2838 ± 872 60.0 ± 4.6
+Cosine Distance 202.0 ± 32.7 2983 ± 477 60.1 ± 6.0
+Squared 𝐿2 and MinT 191.1 ± 25.2 2696 ± 580 57.9 ± 4.6
+Cosine Distance and MinT 193.0 ± 42.2 2704 ± 883 58.1 ± 5.4

Table 5: Mean ± standard deviation aRMSE (averaged over
all series at all levels) across 10 folds with different ratios of
embedding dimension to recurrent hidden dimension

Dim. Ratio DeepAR + Squared 𝐿2 + Cosine Distance

0.5 180.9 ± 34.5 179.7 ± 84.2 162.6 ± 23.1
1 181.7 ± 42.1 163.1 ± 32.2 162.7 ± 30.0
2 184.8 ± 63.5 172.1 ± 42.0 168.7 ± 31.8
4 170.7 ± 23.1 171.2 ± 29.7 167.3 ± 23.3

or MinT reconciliation forecasts (Table 4). The cosine distance rec-
onciliation model also converged to a higher training loss than
the baseline model (Figure 4, Appendix B). However, this time, the
squared 𝐿2 reconciliation model converged to a slightly lower train-
ing loss. We also observed that the combination of an embedding
reconciliation term with MinT reconciliation further reduced the
mean aRMSE. One interesting observation was that the relative
reduction in average forecast error was not substantially greater for
the top level series than for the bottom level series in this setting.

4.6 Sensitivity Analysis
Finally, we compared the performances of the proposed reconcilia-
tions to that of the baseline model as we varied the dimension of the
embedding space. Specifically, we repeated the baseline experiment,
varying the embedding dimension from half as large as the hidden
dimension of the recurrent component to four times as large.

Both reconciliation terms led to better forecast performance
when the embedding dimension was half as large, the same size,
and twice as large as the recurrent hidden dimension (Table 5). The
single exception occurred, and only for the squared 𝐿2 term, when

the embedding dimension was four times as large. Additionally, the
cosine distance term outperformed the squared 𝐿2 term across all
four settings of the dimension ratio. This is strong evidence that
the effectiveness of the regularization is robust to the relative size
of the embedding dimension.

5 CONCLUSION
In conclusion, this paper proposes two versions of an embedding
reconciliation term that penalizes deviation from the known struc-
ture of a hierarchical and/or grouped collection of time series. The
reconciliation term can be learned contemporaneously with other
model parameters and optimized efficiently. We demonstrated the
effectiveness of both the cosine distance and squared 𝐿2 norm ver-
sions of the reconciliation term across three different forecasting
settings. These settings included two challenging forecasting set-
tings: short training sequences and a long forecast horizon. Addi-
tionally, we showed that both formulations of the regularization are
robust to the relative size of the embedding dimension. Thus, the
embedding reconciliation term is an efficient and effective method
for regularizing global forecasting models learned on hierarchical
collections of time series.
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A MODEL AND OPTIMIZATION
HYPERPARAMETERS

We set all model and training hyperparameters to the default values
in the GluonTS implementation [1] of DeepAR, except for the
number of epochs, the dimension of the embedding space, and the
instance sampler used for training. We set the number of epochs to
50 instead of 100. Additionally, in all experiments in Sections 4.3,
4.4, 4.5 we made the dimension of the embedding space equal to
the recurrent hidden dimension. The default setting in GluonTS is
to set the embedding dimension to [( |v| + 1)/2], where |v| is the
cardinality of the entire collection. We used an instance sampler
for training that created a histogram of the scales of the time series.
An individual time series was then sampled with probability equal
to the inverse of the number of series in its bucket. Thus, time
series with larger scales, which for this application includes the
country-level series and the state-level series, were more likely
to be sampled in each batch. The default training sampler in the
GluonTS DeepAR implementation samples each series once, in
expectation, in each epoch. Random initializations were not fixed
across folds or across models and neither were the random seeds
used to generate samples from the learned probability distributions.

B TRAINING LOSS CURVES

http://arxiv.org/abs/1609.03499


Forecasting HTS with a Regularized Embedding Space MileTS ’20, August 24th, 2020, San Diego, California, USA

Figure 2: Training loss curves from initial experiment, expo-
nentially smoothed over 1250 iterations and averaged across
all 10 folds

Figure 3: Training loss curves from short training sequences
experiment, exponentially smoothed over 1250 iterations
and averaged across all 14 folds

Figure 4: Training loss curves from long forecast horizon ex-
periment, exponentially smoothed over 1250 iterations and
averaged across all 4 folds
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