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ABSTRACT 

In many real world applications of machine learning, the cost of 

acquiring measurements varies significantly. As businesses 

operate in resource-constrained environments, a question that 

arises is which combination of signals results in the most accurate 

models given a fixed budget. Conversely, if more accurate models 

are needed, what signals increase accuracy at lowest cost? This 

paper introduces a three-stage framework for integrating data 

acquisition cost into time-series applications based on signal 

ablation. Stage 1 constructs a time-series predictive model 

utilizing all relevant signals to assess the maximum accuracy 

achievable with an unlimited budget. Stage 2 randomizes each 

signal independently, computing the degradation in accuracy 

incurred on the underlying model. This process is achieved either 

by shuffling of its measurements or random sampling from 

signal’s distribution. Utilizing the resulting estimated signals 

accuracy and their acquisition cost, Stage 3 solves the knapsack-

like combinatorial optimization problem of picking the right 

combination of signals maximizing total accuracy given any fixed 

budget. The proposed framework is showcased on a synthetic 

time-series dataset which allows us to control the cost distribution 

in order to understand how the system works in different 

scenarios.  
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1 Introduction 

From healthcare to finance and engineering, more data is being 

accumulated, filtered and analyzed, improving decision making 

across all domains. Increasingly, models are becoming multi-

modal, making use of signals from disparate sources, varying 

widely in type, structure and value. Organizations making use of 

this data are operating within cost constraints and have to make 

trade-offs when it comes to model development and data 

collection budget. 

     The concept of cost comes in many ways, from monetary to 

the cost of time lost (e.g. downtime), cost of invasiveness and so 

on.  In healthcare, for example, the cost of taking a blood sample 

is less than the cost of taking an MRI in terms of monetary cost, 

but arguably higher in terms of invasiveness. Condition 

monitoring of wind farms utilizes airborne and subaquatic drones 

to take image samples of offshore wind turbines. These images, 

complemented with other sensor data (e.g. electrical signals), can 

be fed into predictive models making real-time assessments about 

the structural integrity of the towers, blades or subsea cables. 

While measuring and transmitting electric signals is cheap, the 

monetary cost of sending robots offshore can be high. It is thus 

useful to have a framework for understanding how much accuracy 

is brought by these signals and how can the budget be allocated in 

such a way as to maximize prediction capability. 

     This paper introduces a three-stage framework for addressing 

the inclusion and optimization of data acquisition cost when 

considering predictive, time series models. It starts by 

investigating what the potential maximum accuracy is, 

considering all relevant signals used together. Stage 2 perturbs 

(ablates) the signals one by one, computing the drop in accuracy 

due to each, which is essentially assessing their importance 

according to the underlying model. The final stage selects the best 

combination of signals that maximize accuracy for any given 

budget. The framework is showcased on a synthetic time-series 

dataset formed by sine functions. A set of independent sine 

functions differing in phase and frequency is used to generate a 

dependent variable, a relationship which is captured using a three-

layer, feedforward neural network. As the target variable is a 

weighted sum of its inputs, this allows control of the weights and 

tests the framework’s ability to uncover the importance of each 

signal. 

The paper is organized as follows: we discuss work on cost 

frameworks for machine learning and relevant optimization 

methods in Section 2; the three-stage framework for incorporating 

acquisition cost in time series applications is described in Section 

3; Section 4 presents the experimental results on a synthetic time-

series dataset; Section 5 concludes the paper and discusses future 

work. 

2 Background 

    Cost is an essential, yet often overlooked facet of machine 

learning application in real-world scenarios. There is a multitude 

of types of costs arising in model development and deployment 

such as the cost of labelling the data for supervised learning, the 
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cost of misclassification errors, cost of tests, cost of intervention, 

cost of data acquisition, cost of computation, human-computer 

interaction cost, cost of instability etc. [1]. While the cost of 

misclassification has been addressed extensively in the literature - 

termed cost-sensitive learning [2] - a framework which integrates 

all types of costs is currently lacking.  

     The cost of data acquisition is an important cost to be modelled 

as its application space is potentially immense. Consider, for 

example, the healthcare domain where electronic patient records 

document illness progress. The illness trajectory prediction 

becomes more accurate with more health tests, but they come with 

wide-ranging costs and thus could be constrained by the available 

budget. Healthcare providers would benefit from a framework that 

takes a budget as an input and decides which test to perform in 

order to maximize health state prediction accuracy. In another 

context, offshore wind turbines can benefit from the integration of 

various fixed or mobile sensors. Fixed sensors installed in a 

turbine can sample data with a relatively low cost, while mobile 

sensors (such as aerial or subaquatic drones) need to visit the site 

to take measurements and images, which is a costly and 

potentially hazardous procedure. In this scenario, wind farm 

operators would like to know how much increase in diagnostic 

accuracy could be obtained by sending robots, and thus incurring 

the cost and increasing the safety risks.       

3 Methodology 

     In our framework, optimization is employed in all three stages 

(Figure 1). Firstly, the system is optimized to find the minima of 

the predictive model’s loss function using all relevant signals 

(Stage 1). Secondly, each signal is randomized, by either having 

its values shuffled or by sampling from a distribution, forcing the 

model to break the association between a signal and the target 

variable (Stage 2); a similar approach was introduced in [3] and 

expanded in [4] and [5]. Estimated accuracy is computed for each 

shuffled signal before the process goes to the next phase. It is 

important to note that this computation does not involve re-

training the underlying model. The inputs to the final stage (Stage 

3) are the cost of acquiring the samples and their estimated 

accuracy computed at Stage 2. The budget can be specified either 

as a scalar or a vector (e.g. in future applications where multiple 

constraints are required). Solving Stage 3 involves a combina-

torial optimization problem. The standard one-dimensional 

Knapsack problem asks the following: given a set of items, each 

of different weights and values, what is the selection that 

maximizes total value given a weight constraint? The Multi-

Dimensional Knapsack problem (MKP) is described by the 

following optimization problem [6]: 

    maximize 𝑧 = ∑ ajxj
𝑁
j=1  

    s.t.  ∑ cijxj ≤𝑁
j=1 bi, i ∈ {1,2, … , m}                                (1) 

           xj ∈ {0, 1},    j ∈ {1,2, … , 𝑁}                                  (2) 

     In our framework, we have N as the number of signals, m is the 

number of constraints, a is the unit of accuracy, c is the cost 

associated with sampling a signal, b represents the budget and z 

represents the model’s accuracy. It is important to note that 

accuracy here designates one of the potentially many ways to 

capture the performance of a predictive system (others include TP, 

F-Score, RMSE or MAE, etc.). We further contrast and compare 

an exact dynamic-programming solution (Table 2) to a greedy but 

faster approach which does not guarantee global optimality (Table 

1). 

 

Figure 1.  High level framework overview 

    

  Stage 1 of our framework consists of a classification scenario 

where we are tasked with learning a model that takes as an input a 

vector of data V, and outputs a target, categorical variable T. 

Exploring regression schemes where the target variable is 

continuous will be investigated in the future. The vector of 

measurements 𝑉𝑖= {𝑆1i, … , 𝑆𝑁i} is sampled from the feature set S 

of size N, each having an associated scalar 𝑇i. It is assumed that 

the set of features S is relevant to predict T. If this is not the case, 

the set of models we train might overfit on noisy data, skewing 

the results of the analysis. Statistical tools for feature selection 

such as filters, wrappers or embedded models can be utilized at 

this step.  

 

 

Figure 2. Stage 1: Fitting a model using all the relevant signals  

     

   Using a set of fixed hyperparameters H, the model ℳ is trained 

in a supervised fashion being presented with pairs of the type        

[ 𝑉i , 𝑇i ], iteratively minimizing a predefined probabilistic loss 

function L such as cross-entropy (Figure 2). In our case, where the 

model is a neural network, errors in predicting 𝑇i from 𝑉i are back 

propagated resulting in changes to the model’s parameters.  Once 

the parameters stop changing due to L not minimizing further or 

we have reached the maximum number of predefined epochs, the 

learning process ends. The training set accuracy of model ℳ 

represents the maximum accuracy we can get by using all relevant 

signals.  
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Figure 3. Stage 2: Every signal k is shuffled independently 

with the model evaluated using cross-validation. Resulting 

accuracy is saved  

     We now describe Stage 2. As we have a set of N signals (from 

which vectors V are sampled), we have 2^N-1 potential subsets of 

signals to fit our model to, which represents a large space to 

explore. Besides this global optimal solution of O(2^N) there is an 

O(N) greedy approach that we have chosen to apply in our 

experiments. In this scenario, we keep the number of signals fixed 

to N and explore how much each contributes to the accuracy of 

the model ℳ. One way of achieving this is by repeatedly 

predicting the test set using the model ℳ with one of the signals 

either shuffled or made random noise. 

     The difference between the accuracy of ℳ (the model that 

uses all signals) and the accuracy obtained by shuffling or 

randomizing signal k estimates the impact that this signal has on 

the total model accuracy and we denote it by 𝐴𝑘 . For some 

machine learning models such as the neural networks used in our 

experiments, the model training time complexity is not well 

understood; however, the prediction time complexity is linear in 

terms of the weights of the network.  Figure 3 illustrates how 

Stage 2 works, with the model being presented with vector 𝑉𝑖 

containing one component shuffled. The process is repeated for 

each signal k from 1 to n, resulting in the vector A={𝐴1, … , 𝐴𝑁} 

which accounts for the accuracy of each feature relative to total 

accuracy.  

     Stage 3 receives a vector of costs C= {C1, … , C𝑁}, the vector of 

accuracies A computed at Stage 2, and the budget b. It then 

answers which subset of signals fits the budget and maximizes the 

predictive accuracy. To be additive, these costs need to be in the 

same unit and to be known when the procedure starts. As an 

example, the condition monitoring tools attached to drive-trains in 

a wind turbine are powered by electricity which can be translated 

into costs per kWh of operation. Operating a drone which takes 

pictures of blades that feed into a neural network for image 

detection requires the additional cost of having an engineer 

operate it (cost of employment).  

      For permutation feature importance, we used a library 

available in the Scikit-learn library [7]. 

     For executing Stage 3, Table 1 presents a greedy algorithm that 

is fast to run (has linear time complexity) but may result in a 

suboptimal solution. It involves sorting the features based on the 

accuracy they provide relative to their cost, and adding them one 

by one to the solution vector as long as it does not overfill the 

predefined budget. The solution is greedy because it optimizes for 

the current best feature at every step and cannot look ahead for 

alternatives. The solution vector tells us which signal to keep and 

which to discard. 

     In contrast, the dynamic programming version presented in 

Table 2 selects the optimal solution but requires a matrix of size 

N·(Budget+1) to store intermediary solutions to its subproblems, 

where we recall that n is the number of signals. At this stage, 

users will decide whether they want the optimal but 

computationally demanding version or the fast but suboptimal 

one, or any flavour in-between [6]. In the following section we 

experiment with both the greedy and the dynamic solutions for the 

Knapsack optimization problem.  

 

 

Algorithm 1: Greedy Knapsack1D optimization 

Input:  Cost = {𝐶1 … 𝐶𝑛 }, Accuracy = {𝐴1…,𝐴𝑛}, Budget = b 

Output: SolutionVector 

1. AccuracyPerCost = Accuracy/Cost 

2. Index = Index(SortDescending(AccuracyPerCost)) 

3. SolutionVector=0; SolutionCost=0 

4. For i from 1 to n: 

5.      If (SolutionCost+Cost[Index[i]] > budget): 

6.           break 

7.      else: 

8.           SolutionCost+=Cost[Index[i]] 

9.           SolutionVector [Index[i]] = 1 

10.  end For 

11.  Return SolutionVector 

Table 1. Greedy Knapsack1D optimization pseudocode 

 

4 Experimental Results 

     In this section we showcase the proposed framework and we 

exemplify the way the target variable is generated using a given 

set of signals. Knowing beforehand how much influence a signal 

has on the target variable, we can then show precisely how well 

the shuffling process helps in uncovering the real impact the 

feature has during Stage 2 of the framework (Figure 3). In this use 

case, we generate a set of N=20 signals of size=10000 made of 

sines generated using the equation: 

𝑆k = a ∗ sin (b ∗ (x + c)) + d                           (3) 

where a, c, d are sampled independently from normal distributions 

N(0, 1)  for each Sk. The constant b = 2π/g has g sampled from 

the same normal distribution, andx ∈ [0, X]. 
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Table 2. Dynamic Knapsack1D optimization pseudocode 

 

Figure 4.  Ten independently generated signals using eq. (3)  

     One scenario assumes that each feature has the same cost of 

acquisition, C(𝑆𝑘) = 500 units for Ɐ𝑘 ∈ [0, 𝑁], summing up to a 

total cost of 500*20=10000 units, shown in blue in Figure 7. In 

contrast, we investigate a cost distribution arising from a power 

law distribution with results marked in red in Figure 7. The 

resulting matrix contains on each row one of the generated sines. 

The sines shown in Figure 4 together with the rest of the  

generated ones in our dataset (N=20 in total) are summed together 

according to Equation (4), where Wtr represents the row vector of 

a set of predefined mixing weights. We use these weights to 

control the contribution of a particular sine into the target variable 

T that we are generating using Equation (4). For our experiments, 

these weights are sampled from a power law distribution. 

T = Wtr · S = ∑ W𝑘
tr ∗N

k=0 𝑆𝑘                           (4) 

     As we would like to solve a classification problem, we 

discretize the target variable T into three classes (or bins) - 

function of their value as shown in Figure 5.  

     We further prepare a feed-forward neural network containing 

three dense layers. The choice of the model, its hyperparameters 

and architecture should match the complexity of the data.  Neural 

networks have been shown to be universal functions 

approximators [8]. The particular hyperparameters we chose are    

2*N neurons for the first dense layer, followed by N neurons for 

the second dense layer and 
𝑁

2
  neurons in the third (note N=20 in 

our setting). Batch Normalization layers are used to stabilize and 

increase the rate of convergence of the model. We use Rectifed 

Linear Units (RELU) as the activation function and the ADAM 

optimizer [9]. We set the batch size to 256 and we train our model 

for 512 epochs. This model is trained on 80% of the training data, 

obtaining a total accuracy TR_acc.   

 

Figure 5. Target variable 𝐓, in this case a uniformly weighted 

sum of sines. Colours represent the three classes to be 

predicted by our model 

     When it comes to Stage 2, the same model is used with 

shuffled (or noisy data) with its prediction being evaluated both 

on the training data and the test (hold-out) data. This is because 

we want to evaluate not only how much the model depends on the 

data it sees during the training but also how well the model 

generalizes using the given signal. Here, besides shuffling, one 

Algorithm 2: Dynamic Knapsack1D optimization 

Input:  Cost = {𝐶1 … 𝐶𝑛 }, Accuracy = {𝐴1…,𝐴𝑛}, Budget = b 

Output: SolutionVector 

1. Mat = Zeros[N, b+1] 

2. For i from 0 to N: 

3.    For j from 0 to b+1: 

4.      If ( i ==0 and j> C[i]): 

5.           Mat[i,j] = A[i] 

6.      else if (i>0): 

7.          Max_without_current = Mat[i-1, j]   

8.          Max_with_current = 0 

9.          If (j > C[i]): 

10.             Max_with_current = A[i] + Mat[(i-1), j-C[i]] 

11.             Mat[i,j] = max(Max_with_current,                

Max_without_current) 

12.     end for 

13.  end for 

14.   i=N; j=b 

15.  While (i>=0 and j>=0): 

16.     If (Mat[i,j] != Mat[i-1,j]: 

17.        SolutionVector[i] =  1 

18.        j= j- C[i] 

19.        i=i-1 

20.    else: 

21.        i = i-1 

22.  Return SolutionVector 
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could also find the distribution of the signal with maximum 

likelihood estimation and then sample randomly from that 

distribution. 

     In contrast to Molnar [5] who used either the training or the 

testing set estimates of accuracy for each feature 𝑆k , here we 

propose the following scheme: 

  𝐴𝑘 = TR_acc − α ∗ 𝑇𝑅_acc_𝑆𝑘 + (1 − α) ∗ 𝑇𝑆_acc_𝑆𝑘  (5)                                           

where α (in our case α=0.5) controls how important the training 

set estimate is compared to the testing set. TR_acc_ 𝑆𝑘 is the 

training accuracy when the model uses shuffled feature 𝑆k  to 

predict the training data, while similarly, TS_acc_ 𝑆𝑘  is the 

accuracy of the model on the testing set.  

     Figure 6 shows in orange the original mixing weights used to 

generate the target variable T and in blue the 𝐴𝑘, normalized to 

the sum of 1 for comparison.  This confirms that the model 

learned correctly how the input features contribute to the target 

variable. In any real-world situation, we would not know the real 

underlying mixture process that gives rise to the target variable T, 

and we would have to rely on the estimates produced by shuffling 

our signals as described at Stage 2.  

     Using the discovered feature importance A and the cost 

function 𝐶𝑢 (of uniform costs) and 𝐶p (power law costs), we can 

compute the best accuracy for any given budget, up to the total of 

10000 units where we can utilize all the available features. In 

Figure. 6 one can observe the accuracy taking higher leaps with 

less budget, which happens because the framework is considering 

the best features first. While the Greedy and Dynamic solutions 

perform equally well for signals with equal costs (in blue), when it 

comes to power law distributed costs (red), the Dynamic solution 

achieves better scores (Figure 7).  

 

 

Figure 6. Orange shows the original mixing weights for 

equation (4) while blue shows the estimated importance of 

each signal 𝑨(𝑺𝒌)  resulting from running Stage 2. The 

shuffling process identifies signal’s importance in our 

classification task. 

 

 
Figure 7. Knapsack solution for each budget up to 10000 units 

which is the cost of acquiring all the features and getting close 

to 100% accuracy. Dotted lines (Dynamic Knapsack solutions) 

are contrasted with straight lines (greedy Knapsack) in two 

cost scenarios: uniform (blue) and power law (red).  

 

5 Discussion and Conclusion 

This paper introduced a novel framework for incorporating feature 

acquisition cost for time-series applications operating with limited 

budgets. The approach utilized in our data experiments trades 

global optimality for speed by adopting an O(N) ablation strategy 

at Step 2. Where this technique may offer sub-optimal results is 

when joint signal accuracy may be higher than the sum of 

independent signal accuracy. Relevant signals should be selected 

beforehand using expert knowledge and/or statistical feature 

selection procedures. While brute-force signal combination - 

O(2N) - can yield optimal results, other solution space exploration 

techniques can be utilized. While this work explored cost 

optimization in a classification environment, it would be 

interesting to see how it performs in regressions and on real 

datasets. Further, an interesting area to investigate would be the 

MKP problem with multiple budget constraints and different 

kinds of costs. 
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