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ABSTRACT
The most compelling reason to use unsupervised representation
learning as a feature extraction method for effective animal activity
recognition is the ability to learn from unlabeled data. Obtaining
labeled data is tedious, labor-intensive, and costly, while it is much
easier to obtain raw unlabeled data. In this paper, we compare
three unsupervised representation learning techniques with three
conventional feature extraction methods that are simple and have
excellent performance. To investigate the effect of the size of both
labeled and unlabeled parts of the dataset on the quality of the repre-
sentations, we train the representations and classifier using various
sample sizes. Furthermore, we evaluate the effect of depth in feature
architectures on the performance of the representation learning
techniques. All evaluations are performed on two animal datasets
that are diverse in terms of species, subjects, sensor-orientations,
and sensor-positions. We demonstrate that unsupervised represen-
tation learning techniques approach and, in some cases, outperform
engineered features in animal activity recognition.

CCS CONCEPTS
•Theory of computation→Unsupervised learning and clus-
tering; • Computing methodologies → Dimensionality re-
duction andmanifold learning;Cross-validation; •Applied com-
puting → Consumer health; Health care information systems;
Agriculture.
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1 INTRODUCTION
The activity of animals is a rich source of information that not
only provides insights into their life and well-being but also their
environment [5, 8, 9, 26, 27]. Animal activity recognition (AAR)
is a relatively new field of research that supports various goals,
including the conservation of endangered species and livestock’s
well-being. Over the last decades, the advent of small, lightweight,
and low-power electronics have made it possible to attach unobtru-
sive sensors to animals that can measure a wide range of aspects
such as location, temperature, and activity. These aspects are highly
informative properties for numerous application domains, including
wildlife monitoring [37], anti-poaching [17], and livestock manage-
ment [24].

A significant challenge in AAR is the acquisition of labeled data.
It is difficult to find and observe (wild) animals. Therefore, it is often
hard to collect videos (ground truth data) of collared animals. More-
over, the synchronization of videos with sensor data and manual
annotation is laborious, expensive, and tedious. Because of this, the
proportion of labeled movement data collected in the wild is usu-
ally small. Activity datasets are naturally imbalanced because some
activities are either not frequently performed, or challenging to
observe. It is a lot easier to collect unlabeled data than labeled data.
Therefore, we investigate unsupervised representation learning
from AAR time series data.

Effectively, less labeled data is required when the data represen-
tation is more discriminative. Researchers in the field of human
activity recognition (HAR) have investigated unsupervised feature
learning with small datasets and demonstrated promising perfor-
mances [10, 22, 23]. However, HAR and AAR are different. The
most significant differences between HAR and AAR are the type of
activities, the sensor location, and movement patterns between the
activities in humans and quadruped animals. In animal monitoring
applications, the sensors are mostly worn by animals on collars
around the neck, and the sensor orientation is not fixed. Further-
more, AAR is often used in remote sensing applications, and the
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tags need to be small and lightweight. Therefore, the energy require-
ments are strict, and the AAR system must be resource-efficient
in terms of energy, computation, and memory. There are only a
few recent papers on the subject of deep learning (DL) in relation
to AAR [6, 30, 35]. To the best of our knowledge, DL, and more
specifically, unsupervised representation learning using time series
inertial measurement unit (IMU) data, has not been researched for
AAR so far.

In this paper, we focus on unsupervised representation learn-
ing to improve AAR that aims to automatically recognize the ac-
tivity from motion data –on the animal– while the activities are
performed (online). Specifically, we use time series motion data
recorded through an accelerometer because this is a lightweight
and energy-efficient sensor. We propose to use offline unsupervised
learning on raw accelerometer time-series data to train a feature
extraction method. The trained architecture can then be imple-
mented on the animal tag along with an energy-efficient online
classifier. Our primary goal is to compare and analyze the quality
of unsupervised representation learning techniques and evaluate
their effect on the performance of AAR. Specifically, our main
objective is to compare learned representations, from unlabeled
data, that are expressive, orientation-independent, and discrimi-
nate various activities. Lee et al. introduced convolutional deep
belief network (CDBN) in [20] for efficient hierarchical feature de-
tection in images. In a later work, the authors applied CDBN to
audio data and empirically evaluated them on various audio classi-
fication tasks [21]. The authors showed that the learned features
corresponded to phonemes and demonstrated that the feature rep-
resentations learned from unlabeled audio data had an excellent
performance for multiple audio classification tasks. We hypothesize
that components in time series motion data are built up to a given
activity, similar to how phonemes build-up to words. Therefore,
we evaluated a CDBN for AAR task. We compare the CDBN with
simple principal component analysis (PCA) and a deep net consist-
ing of two stacked sparse auto encoders (SAEs). As a baseline, we
compare the learned representations with conventional engineered
time- and frequency-domain summary statistics. We assess the
performance by training and testing a multi-class support vector
machine (SVM) with the features derived using each extraction
method. Furthermore, the quality of the feature extraction methods
is affected by various factors. In this work, we investigated two:
(i.) the size of the labeled and unlabeled dataset, (ii.) the number of
layers (depth) of the representation learning architectures.

2 METHODOLOGY
The overall methodology of the experiments is shown in Figure 1.

First, raw annotated data from the accelerometerwas pre-processed
and transformed into an orientation independent 3D acceleration
vector. The dataset acquisition and preprocessing are discussed
in more detail in Section 3. Second, various representations were
extracted from the 3D vector. We discuss each representation archi-
tecture in more detail in Section 2.1. The different representations
were used separately and subsequently to describe the data used to
train and test a SVM classifier. To minimize the influence of the clas-
sifier, we use the same type of classifier throughout our evaluations.
We used SVM because this classifier is generally robust to the higher
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Figure 1: Experiment methodology

dimensionality of the data [19]. The SVM was implemented with
the LibSVM library (version 3.23) [7] using a radial basis function.
During each experiment iteration a grid search was performed to
find optimal values for the parameters 𝐶 ∈ {2−5, 2−3, 1, 23, 25} and
𝛾 ∈ {2−4, 2−2, 2−1, 1, 22, 24}. We sampled our dataset with increas-
ing sample sizes utilizing stratified random sampling and random
under-sampling. The experiments were repeated multiple times for
each subsample (batch) of training data to take variability into ac-
count. For each sample size, the trained representation architecture
was used to extract features from the training data and train the
SVM as a supervised learning algorithm. Finally, the performance
of the SVM was assessed using the test data. We evaluated the
performance using the 𝐹1 measure. To address heterogeneity, we
used leave-one-subject-out cross-validation. For each fold, all data
from one subject was only used as test data, while data from the
remaining subjects was used as training data. We did not use the
test data for representation learning because we assumed that this
would not be available when AAR is deployed on unseen animals.
The procedure above was repeated for various sizes of labeled and
unlabeled data.

2.1 Feature Extraction Methods
In this section, we briefly describe each feature extraction method
and the settings that were used in their implementation.

2.1.1 Engineered Representations. The shallow statistical features
do not utilize the unlabeled part of the data because they cannot be
learned. For each window of both training and test data, the features
described in Table 2 (Supplement A.1) were calculated. A selection
was made that consisted of 21 time and frequency-domain features
that are typically used for activity recognition [2, 17, 32, 38].

2.1.2 Principal component analysis (PCA). Principal component
analysis (PCA) [31] is a commonly used and well-established di-
mensionality reduction and decorrelation technique that is often
used in activity recognition [28]. PCA is a basic form of shallow
representation learning since it automatically discovers a compact
and descriptive subset of representation from the raw data without
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relying on expert domain knowledge [28]. The 21 most significant
components identified in the training data were retained and used
to describe the training and testing data.

2.1.3 Deep net of Sparse Auto Encoders. An SAE is an unsuper-
vised learning algorithm that is trained using backpropagation.
SAEs learn to compress data from the input layer into a shortcode
and then decompress it into something that resembles the original
data. The encoder part of the SAE is trained with unlabeled training
data during the training phase. The training and test sets are given
as inputs to the encoder part of the network and transformed with
the learned code ℎ𝑊,𝑏 (𝑥) to obtain the feature vector used for clas-
sification. We utilized a deep net that consisted of two sequentially
connected SAEs. The deep net was trained using greedy layer-wise
training [4]. Please see Supplement A.2 for implementation details.

2.1.4 Convolutional deep belief network (CDBN). CDBNs are gen-
erative probabilistic models composed of one visible layer and mul-
tiple hidden layers [20]. Each hidden neuron learns a statistical re-
lationship between the neurons in the lower layer; the higher layer
representations usually become more complex [21]. The CDBN was
implemented by adopting the code that was available from [20]
and [21] so that it could be used with our activity datasets. The
CDBN was trained using greedy layer-wise training [4]. Please see
Supplement A.3 for implementation details.

2.2 Effect of Size of the Labeled and Unlabeled
Data

In machine learning, the use of more training data generally im-
proves the performance of a learning task such as activity recogni-
tion (AR) [1, 34]. We evaluated the effect of the size of both labeled
and unlabeled data on the classifier’s performance for each feature
extraction method.

2.2.1 Effect of LabeledData size on RepresentationQuality. We in-
vestigated the quality of the representations using different amounts
of labeled data. Figure 3 shows the methodology of this experiment.
During each fold, 100 % of available training data was used for
representation learning. In theory, good representations allow a
classifier to separate activities with only a small amount of labeled
training data.

2.2.2 Effect of Unlabeled Data size on RepresentationQuality. To
verify that the representation learning techniques are learning and
improving as more data became available, we fixed the size of the
labeled dataset and analyzed the effect of the amount of available
unlabeled data on the quality of the representation learning. Figure 4
shows the methodology of this experiment. We chose a labeled
dataset size where the 𝐹1 performance of all architectures was
above 50 % in the previous experiments. We fixed the amount of
labeled data to 50 samples per class and utilized the rest of the data
in incremental subset sizes as unlabeled data. This size is not too
big so that the effect of additional unlabeled size would become
insignificant against the large labeled dataset. Not all architectures
were able to deal with the imbalance with this sample size of labeled
data. Therefore, we used random under-sampling for the smaller
labeled dataset sizes.

2.3 Effect of Depth
Deep architectures promote the re-use of features and can poten-
tially lead to increasingly more abstract features at higher layers [3].
To analyze to what degree the additional depth in the representa-
tion learning techniques contributes to the AAR performance, we
repeated the experiments using features derived from intermittent
layers of the representation learning techniques. The SAE deep net
and CDBN are both hierarchical DL representation architectures
with two layers. In each experiment, we trained the SVM classifier
three times using either the representation from the first (pool-
ing) layer activations 𝐿1, the second (pooling) layer 𝐿2, and the
concatenation of both layer activations 𝐿1 + 𝐿2.

3 DATA DESCRIPTION AND PREPROCESSING
We used our open-access real-world datasets from goats [13, 15]
and horses [16, 18] comprising multiple subjects, diverse sensor-
orientations, and various activities. The datasets comprise a diverse
set of animals, e.g., some goats were from a different subspecies
than others, and our horse dataset contains data from large horses
and smaller ponies from different breeds. Furthermore, we used a
single sensor of which the position around the neck and orientation
was not fixed [17]. A more detailed description of the datasets is
attached as Supplement C. Because all activities were not exercised
by all subjects, we used data from 6 subjects and 5 classes so that
the experiments could be evaluated through leave-one-subject-out
cross-validation.

3.1 Pre-processing
We used a low dimensional (1 × 𝑛) vector as input for the repre-
sentation learning frameworks, where 𝑛 is the size of the window.
The magnitude of the 3D vector (ℓ2-norm) of accelerometer data is
theoretically orientation-independent [17]. This vector is defined
as:

𝑀 (𝑡) =
√
𝑠𝑥 (𝑡)2 + 𝑠𝑦 (𝑡)2 + 𝑠𝑧 (𝑡)2 , (1)

where, 𝑠𝑥 , 𝑠𝑦 , and 𝑠𝑧 are the three respective axes of the sensor. The
transformation effectively reduces the input dimensionality with
a factor of 3, reducing resource requirements. The activity time
series were segmented with a window size of 2 seconds, and 50 %
overlap. We scaled the data through a Z-transformation, obtaining
a standard score with zero-mean and unit variance.

4 EVALUATION
In this section, we present the evaluation results. All analysis was
done in Matlab [25]. The 𝐹1 measure was used as the evaluation
metric.

4.1 Varying Size of the Labeled Dataset
Figures 2a and 2b show the experiment results of each feature extrac-
tion method for the goat and horse dataset, respectively. The per-
centages on the x-axis between the two figures vary slightly because
we used leave-one-subject-out cross-validation and random under-
sampling. When using leave-one-subject-out cross-validation, the
size of the dataset changes per fold. The number of samples be-
tween the brackets represent the average number of samples over
all folds per percentage.
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With small dataset sizes, the performance of all representa-
tions increased rapidly and flattened out as the labeled dataset
size becomes approximately 1000 samples. The performance did
not change much between 1 % and 19 %, and these were therefore
not included in the figures for clarity. For both datasets, the sam-
pled dataset ranging from 0.01 % to 1 % size had a balance score of
1 due to random under-sampling. The balance score is discussed in
Supplement C. The larger sample sizes had average balance scores
of 0.71 and 0.83 for the goat and horse datasets, respectively. Most
likely the imbalance is the cause for the dip in performance and
high standard deviation for the SAE and PCA representations at
the 18 % - 76 % sample sizes in the goat dataset.

(a)

(b)

Figure 2: AAR performance using different sizes of labeled
data. (a) Goats (b) Horses
Legend: CDBN: convolutional deep belief network, PCA: principal component
analysis, SAE: sparse auto encoder, statfreq : spectral features, stattime : temporal

features, statcombined : spectral and temporal features, L1: first layer, L2: second layer,
L1L2: first and second layer concatenated

4.2 Varying Size of the Unlabeled Dataset
Tables 1a and 1b, show the experiment results for the Goat and
Horse datasets, respectively. The results show that the overall per-
formance of the learned representations gradually increases with
the size of the unlabeled dataset. The performance over the sample
size increased mostly in the goat dataset and more slowly in the
horse dataset. The results are further discussed in the following
section.

5 DISCUSSION
The results in Figure 2 show that the CDBN is more robust to
smaller dataset sizes and a higher imbalance in the dataset than the

Table 1: AAR performance using different sizes of unlabeled
data. Each second column denotes the standard deviation 𝜎

over multiple folds and batches. (a) Goats (b) Horses
(a)

sample size 0.3% (250) 1% (1000) 18% (13398) 74% (55510) 100% (74623)

representation 𝐹1 𝜎 𝐹1 𝜎 𝐹1 𝜎 𝐹1 𝜎 𝐹1 𝜎

CDBN𝐿1 67,19 6,18 66,30 5,66 72,56 9,63 73,56 5,72 79,55 10,87
CDBN𝐿1𝐿2 68,10 4,96 67,02 5,20 76,28 8,51 75,40 5,56 79,46 11,33
CDBN𝐿2 53,20 5,07 47,19 17,04 74,19 5,26 72,29 7,08 77,80 10,95
PCA 59,23 5,72 62,14 6,50 60,57 5,39 61,65 5,57 62,03 0,18
SAE𝐿1 65,62 6,20 62,07 8,14 61,79 5,49 60,43 7,47 67,89 6,23
SAE𝐿1𝐿2 62,63 7,92 61,13 8,63 59,40 6,63 59,61 7,09 65,31 8,56
SAE𝐿2 57,90 6,53 60,90 8,66 59,57 8,48 60,71 7,55 64,34 7,64

(b)
sample size 0.3% (250) 1% (1000) 19% (14553) 76% (58935) 100% (77523)

representation 𝐹1 𝜎 𝐹1 𝜎 𝐹1 𝜎 𝐹1 𝜎 𝐹1 𝜎

CDBN𝐿1 65,17 4,40 66,78 5,71 72,14 5,11 72,62 5,69 70,01 6,86
CDBN𝐿1𝐿2 76,45 6,81 76,16 5,90 75,30 6,12 76,87 5,48 78,00 7,90
CDBN𝐿2 60,59 10,83 61,15 10,20 62,43 7,64 63,24 9,98 65,79 9,57
PCA 59,18 4,78 59,13 4,48 58,96 3,62 58,99 3,68 56,30 5,06
SAE𝐿1 78,47 4,83 77,63 5,71 75,14 4,53 76,39 6,70 74,19 5,75
SAE𝐿1𝐿2 80,01 5,09 78,74 5,56 76,40 4,91 80,05 4,68 79,77 6,90
SAE𝐿2 76,45 4,70 76,04 4,71 77,26 4,63 81,50 5,24 80,86 9,71

other representation learning architectures. The 2nd layer represen-
tation performed better than using only the 1st layer for smaller
sizes of the goat dataset. In the horse dataset and larger sizes of
the labeled goat dataset, the concatenation of both layers (𝐿1 + 𝐿2)
performed the best. Thus, even when the second layer by itself did
not perform better than using only the first layer, the concatenation
often resulted in better representations. The CDBN representa-
tions outperformed statistical features for the goat dataset and
performed slightly worse with the horse dataset. Although statis-
tical features generally outperformed the learned representations
in smaller labeled dataset samples, our results show that CDBN
can automatically learn representations that are almost as good as
engineered features that rely on domain knowledge. With larger
labeled dataset sample sizes, representation learning techniques
slightly outperformed summary statistics.

Tables 1a and 1b show that when increasing the amount of unla-
beled data, the rate of improvement was the largest for the CDBN
and the smallest for PCA representation. Although Table 1a shows
that the standard deviation for the CDBN increased with more un-
labeled data, the worst case result for CDBN at 100 % (70.49 %) was
still the best compared to the other representations.

We observe a significant difference between the relative perfor-
mances of CDBN and SAE between Table 1a and Table 1b. On the
Goat dataset, CDBN outperforms SAE, while on the Horse dataset,
the opposite is true. We think that these effects may be caused
by the fact that the number of used sensors was different for the
datasets. The goat dataset used six sensors around the neck, and
the horse dataset one. Consequently, increasing the sample size of
the horse data also increases the relative diversity of the data while
the diversity of the goat dataset increases less because the same
activities were recorded with more sensors. SAEs perform well on
smaller datasets that are sparse and more diverse, while CDBN
perform well on dense and large datasets. Furthermore, SAEs are
more capable to to deal with overfitting because of the sparsity
constraint. These properties may explain the reverse order of SAE
and CDBN performance improvement between the two datasets.
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Furthermore, Table 1b shows that the performance of PCA slightly
decreases as more unlabeled data is available while the opposite
occurs with the goat dataset. Because PCA is defined as a linear
transformation, the increased diversity of the data distribution may
have a negative impact on its performance and vice versa.

The extra layers did not seem to contribute much when only a
small amount of unlabeled data was available. For the horse dataset,
the concatenation of both CDBN layers gained in performance as
more unlabeled data became available. The PCA representations did
not benefit from more unlabeled data and seemed to be restricted in
performance due to the size of the labeled dataset sample. Although
the performance increased very slowly, deep representations for
AAR increase in performance as more unlabeled data becomes avail-
able. The performance of the learned representations is excellent,
especially given that both architectures were only trained with
unlabeled data from limited sensor modalities without fine-tuning
to the datasets. We expect fine-tuning using a small amount of the
labeled data improves the representations even more.

The results presented in this paper are average 𝐹1 performances
for all activity classes in the datasets. In the following, we briefly
discuss the classification performance of the individual activities
using the different representations. For the goat dataset, stationary
andwalking overall obtained the best 𝐹1 score for all representations
and eating generally the lowest. Stationary is defined as no or little
motion and is both easy to classify, and it is the majority class
comprising 41 % of the goat dataset. For the horse dataset, trotting
generally had the best 𝐹1 score and eating the lowest. Walking
and trotting are periodic and relatively simple activities that are
easier to classify. Eating is a complex and more subtle activity that
includes eating different types of food such as fresh grass and hey
and is, therefore, harder to classify.

6 CONCLUSION
We demonstrated that unsupervised representation learning tech-
niques approaches and, in some cases, outperforms engineered
features in AAR. When fixing the amount of labeled data and vary-
ing the size of the unlabeled dataset, our results show that the
CDBN architecture benefited the most from an increasing amount
of unlabeled data, especially in the more diverse and imbalanced
dataset. The most significant difference between the CDBN and
other architectures is that it is a generative model. Based on our
findings, we believe that generative models, such as the CDBN,
are compelling research directions in unsupervised representation
learning for AR. Our results show that concatenating the 1st and
2nd layer representations often results in better classification per-
formance. Our results indicate that deep representations provide
more robustness to the imbalance in smaller labeled datasets. An
important lesson is that the effect of class imbalance in datasets is
not only crucial in labeled data but also affects the performance
of unsupervised representation learning, especially as the unla-
beled dataset grows. Therefore, class imbalance in unlabeled data
for representation learning is an important research problem. Al-
though ’simple’ – engineered – time-domain features match or
even outperform unsupervised representation learning algorithms
at this point, we believe that representation learning outperforms

engineered representations as the task becomes increasingly diffi-
cult, we find better design solutions, and the unlabeled dataset size
grows. The performance of CDBN motivates further analysis with
generative models such as generative adversarial network (GAN)
and variational auto encoder (VAE).
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A FEATURE EXTRACTION METHODS
A.1 Engineered representations
Table 2 shows the used summary statistics. The features can be
categorized as time and frequency domain features.

Table 2: Summary statistics that were calculated for each
window of data

Domain Feature Description

Ti
m
e

Maximum Maximum value
Minimum Minimum value
Mean Average value
Standard deviation Measure of dispersion
Median Median value
25th percentile The value below which 25 % of the observations are found
75th percentile The value below which 75 % of the observations are found
Mean low pass filtered signal Mean value of DC components
Mean rectified high pass filtered signal Mean value of rectified AC components
Skewness of the signal The degree of asymmetry of the signal distribution
Kurtosis The degree of ’peakedness’ of the signal distribution
Zero crossing rate Number of zero crossings per second

Fr
eq
ue
nc
y Principal frequency Frequency component that has the greatest magnitude

Spectral energy The sum of the squared discrete FFT component magnitudes
Frequency entropy Measure of the distribution of frequency components
Frequency magnitudes Magnitude of first six components of FFT analysis

A.2 Deep net of Sparse Auto Encoders
We implemented the SAE class from the Matlab Deep Learning
Toolbox [25]. The number of neurons in the first and second layers
was 150 and 100, respectively. The number of hidden neurons was
initially determined by a grid search over the training data. It was
fixed during the experiments to keep the parameter search space
feasible. Both layers were trained with 100 epochs. The activation
function 𝜎 was set to the logistic sigmoid function. All other pa-
rameters were found using a grid search during each experiment
iteration. The sum of mean squared reconstruction errors from both
layers was used as the selection criteria for the parameters. The
regularization parameter was varied between 𝜆 ∈ [0.1, . . . , 2]e−3
with steps of 0.5e−3. The sparsity parameter was varied between
𝜌 ∈ [0.05, . . . , 0.4] with steps of 0.05. The sparsity coefficient was
varied between 𝛽 ∈ [1, 3, 9]. Because parameter optimization had
to be performed for each experiment with a new subset of training
data, the computational overhead for the grid-search with larger
dataset sizes became problematic due to long run times. There-
fore, for dataset sizes > 40 000 samples we sampled the dataset 4
times with 12 000 samples, of which 20 % was used as validation
to compute the mean squared reconstruction error for each set of
parameters.
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A.3 Convolutional deep belief network
The CDBN was implemented by adopting the code that was avail-
able from [20] and [21] so that it could be used with our activity
datasets. Parameter tuning was performed once using the unlabeled
training data. The reconstruction error of both layers was used as
a selection criterion – no labeled information was used for param-
eter tuning. The number of hidden bases in the first and second
layer was varied between [50, 125, 200]. The sparsity regularization
parameter was varied between 𝛽 ∈ [0.01, 0.05, 0.1]. For both layers,
the filter length was varied between 𝑁𝑊 ∈ [3, 5, 7], and the pooling
ratio was varied between 𝐶 ∈ [2, 4, 6, 8]. After the grid search, we
fixed the parameters to the following settings. For the goat dataset,
we used 150 and 50 bases in the first and second layers, respectively.
The filter length 𝑁𝑊 was set to 10 and 3 for the first and second
layer, respectively. 𝛽 was set to 0.05; For the horse dataset we used
100 and 150 bases in the first and second layer, respectively. The
filter length 𝑁𝑊 was set to 15 and 3 for the first and second layer,
respectively. 𝛽 was set to 0.1 and 𝐶 was set to 2 for both datasets.

B EXPERIMENT METHODOLOGY

Figure 3: Overview of experiments where the size of the la-
beled data was varied. All available unlabeled data was used
for representation learning.

Figure 4: Overview of experiments where the size of the
unlabeled data used for representation learning was varied.
The size of the available labeled data used for training the
SVM was fixed.

C DATASET DESCRIPTION
The imbalance in a dataset can be quantified using Shannon’s di-
versity index and normalized [29, 33] as follows:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =
𝐻

log 𝑘
=

−∑𝑘
𝑖=1

( 𝑐𝑖
𝑛 log

𝑐𝑖
𝑛

)
log 𝑘

(2)

, where 𝐻 is the Shannon entropy, 𝑛 is the total number of data
samples, 𝑘 the number of classes, and 𝑐𝑖 the size of class 𝑖 . A higher
score denotes better balance. Overall, the class imbalances in our
datasets described below were 0,94 versus 0,71.

C.1 Goat Movement Data
This dataset was collected at two farms over 5 days [13]. The dataset
comprises data from 5 different goats that performed various activ-
ities. Two goats were from a different species than the other three.
Thus the subjects are quite different from each other (mostly in
size), and there is variability in the data. The ProMove-mini [36]
sensor nodes from Inertia Technology were used, which contained
a 3-axis accelerometer, gyroscope, and magnetometer and were
sampled at 100Hz. We used data from six sensors located at various
positions and orientations around the goats’ neck. We have studied
the effect of sensor orientation in earlier work [17] and showed
that robust AAR is possible with sensor-orientation-independent
features from the neck. The sensor devices were always attached
around the neck of the horses so that they could be worn with-
out a saddle or halter. Furthermore, this location is often used in
studies that monitor wildlife such as zebra [12] which increases
the usability of our datasets for research related to other animals.
The activities that were used in this research are listed in Table 3.
The composition of the dataset is shown in Table 4. The observed
goats mostly spend their time stationary or eating, and the dataset
is imbalanced.

Table 3: Observed goat activities

Activity Description

Stationary Lying on the ground or standing still, occasionally moving the head or stepping very slowly.
Walking The goat puts one foot down at the time. The pace of walking varies from very slowly to

nearly trotting.
Trotting The phase between walking and running. One front foot and its opposite hind foot come

down at the same time. Trotting at different speeds but always 2 beat gait.
Running One hind leg strikes the ground first, and then the other hind leg and one foreleg come down

together, finally the other foreleg strikes the ground. This movement creates a three-beat
rhythm.

Eating Pulling fresh grass out of the ground, eating hay from a pile or twigs/grains on the ground.

Table 4: Composition of the goat dataset. Number of samples
per subject

Subject
1 2 3 4 5

Total
Activity samples fraction

Stationary 9879 10597 7275 3415 3199 34365 41%
Walking 4526 4737 2381 3339 1015 15998 19%
Trotting 100 526 120 154 145 1045 1%
Running 88 497 56 40 115 796 1%
Eating 12973 3811 8129 6781 152 31846 38%
Total 27566 20168 17961 13729 4626 84050
Balance score 0,66 0,73 0,65 0,69 0,56 0,71
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C.2 Horse Movement Data
Movement data was collected at a riding stable over 7 days. The
dataset comprises data from 6 individual horses that performed
13 different activities. Data was collected when the horses were
being ridden and when they were able to move about the paddock
freely. We used the Human Activity Monitor [11] sensor nodes from
Gulf Coast Data Concepts, which contain a 3-axis accelerometer,
gyroscope, and magnetometer. Identical to the goat dataset, the
sensors were sampled at 100Hz. A single sensor node was attached
to the neck of the horses using a collar fabricated from hook and
loop fastener. The activities that were observed during the day are
listed in Table 6. The composition of the dataset is shown in Table 5.
Because the horses were being ridden, this dataset is more balanced
over the different types of gait than the goat dataset. This dataset
has been made publicly available [14, 16, 18].

Table 5: Composition of the horse dataset. Number of sam-
ples per subject

Subject
1 2 3 4 5 6

Total
Activity samples fraction

Standing 1750 1186 1244 347 341 245 5113 6%
Walking 11055 9642 5538 5239 4294 1677 37445 43%
Trotting 6423 7038 3402 3559 2673 1981 25076 29%
Running 1043 696 714 835 323 328 3939 4%
Eating 4331 5063 1951 1091 2496 1116 16048 18%
Total 24602 23625 12849 11071 10127 5347 87621
Balance score 0,83 0,81 0,86 0,78 0,8 0,85 0,83

Table 6: Observed horse activities

Activity Description

Standing Horse standing on 4 legs, no movement of head, standing still
Walking The horse puts each foot down one at a time. Walking with and without rider on back.
Trotting One front foot and its opposite hind foot come down at the same time, making a two-beat

rhythm. Trotting at different speeds but always 2 beat gait. With and without rider on back.
Galloping One hind leg strikes the ground first, and then the other hind leg and one foreleg come down

together, finally the other foreleg strikes the ground. This movement creates a three-beat
rhythm. With and without rider on back.

Eating Head down in the grass, eating and slowly moving to get to new grass spots or head is up,
chewing and eating food, usually eating hay or long grass.
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